
Debug Tool
User’s Guide and Reference
Release 2

SC09-2137-09

���

Debug Tool
User’s Guide and Reference
Release 2

SC09-2137-09

���

Ninth Edition (March 2001)

This edition applies to the Debug Tool feature of the following compilers:
v Version 1, Release 1, of z/OS C/C++ and z/OS Language Environment (Program Number 5694-A01)

v Release 4 of OS/390® C/C++ and OS/390 Language Environment® (Program Number 5645-001)

v Version 1, Release 2, of IBM® COBOL for MVS & VM (Program Number 5688-197), with Version 1, Release 5 of
the IBM Language Environment for MVS & VM (Program Number 5688-198),

v Version 2, Release 1 of IBM COBOL for OS/390 & VM (Program Number 5648-A25) with Release 3 of OS/390
Language Environment (Program Number 5645-001)

v Version 1, Release 1, Modification Level 1, of the IBM PL/I for MVS & VM (Program Number 5688-235) with
Version 1, Release 4, Modification Level 0, of the IBM Language Environment for MVS & VM (Program Number
5688-198),

v Version 2, Release 2, of IBM VisualAge® PL/I for OS/390 (Program Number 5655-B22) with Version 2, Release 8,
of OS/390 (Program Number 5647-A01), including the Language Environment element

v IBM VisualAge for Java™, Enterprise Edition for OS/390

and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

This edition replaces SC09-2137-08.

Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, Department HHX/H3
P. O. Box 49023
San Jose, CA 95161-9023
United States of America

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments
electronically to IBM. To find out how, see “We’d Like to Hear from You” at the back of this publication.

You can find out more about Debug Tool by visiting the IBM web site for Debug Tool at:
www.ibm.com/servers/eservers/zseries/dt

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under “Chapter 18. Notices” on page 445.

|

Contents

About this book ix
Who might use this book ix
Accessing licensed books on the Web x
How this book is organized x
Using LookAt to look up message explanations . . xi
How to read the syntax diagrams xi

Arrow symbols xi
Conventions xii
Required items xii
Optional items xii
Multiple required or optional items xii
Repeatable items xiii
Default keywords xiii

Summary of changes xv

Chapter 1. Debug Tool - overview. . . . 1
Debug Tool interfaces 2
Differences between Debug Tool environments . . . 3
Terms used in Debug Tool 3

Chapter 2. Preparing your program for
debugging. 5
Considerations before compiling and debugging . . 5

Authorized Debug Facility. 7
Compiling a C program with the TEST compiler
option 8

C TEST compiler option 9
Using C/C++ #pragma to specify the TEST
compiler option 11

Compiling a C++ program with the TEST compiler
option 12

Placing compiled-in hooks for functions and
nested blocks 13
Placing compiled-in hooks for statements and
path points 13

Compiling a COBOL program with the TEST
compiler option 14
Compiling a PL/I program with the TEST compiler
option 18

Chapter 3. Beginning a debug session 23
Data sets used by Debug Tool 24
Invoking Debug Tool using the TEST run-time
option 26

TEST run-time option 26
TEST run-time option usage notes 33
Precedence of Language Environment run-time
options 34
Example: TEST run-time options 35
Specifying additional run-time options with VS
COBOL II and OS PL/I applications 36
Specifying TEST run-time option with #pragma
runopts in C/C++ 37

Invoking Debug Tool from a program 37
Invoking Debug Tool with CEETEST 38
Example: using CEETEST to invoke Debug Tool
from C/C++ 40
Example: using CEETEST to invoke Debug Tool
from COBOL 42
Example: using CEETEST to invoke Debug Tool
from PL/I 43
Invoking Debug Tool with PLITEST 44
Invoking Debug Tool with the __ctest() function 45

Invoking your program when starting a debug
session 46

Invoking Debug Tool under CICS 47
Invoking Debug Tool under MVS in TSO . . . 47
Invoking Debug Tool under CMS 49
Invoking Debug Tool in batch 50

Chapter 4. Debugging your programs
in full-screen mode 53
Starting a full-screen debug session 53
Ending a full-screen debug session 54
Debug Tool session panel. 54

Session panel header 55
Source window 56
Monitor window 57
Log window 58

Entering commands on the session panel 59
Order in which Debug Tool accepts commands
from the session panel 60
Using the session panel command line 60
Issuing system commands 60
Using prefix commands on specific lines or
statements 61
Using commands that are sensitive to the cursor
position 61
Using Program Function (PF) keys to enter
commands. 62
Initial PF key settings 62
Retrieving previous commands 63
Retrieving commands from the Log and Source
windows 63

Navigating through Debug Tool session panel
windows 63

Moving the cursor between windows. 64
Scrolling the windows 64
Scrolling to a particular line number 65
Finding a string in a window 65
Changing which source file appears in the Source
window 65
Displaying the line at which execution halted . . 66

Recording your debug session in a log file 66
Creating the log file 67
Recording how many times each source line runs 68

Setting breakpoints to halt your program at a line 68
Stepping through or running your program . . . 69

© Copyright IBM Corp. 1995, 2001 iii

Displaying and monitoring a variable’s value . . . 69
Displaying error numbers for messages in the Log
window 70
Finding a renamed source, listing or separate debug
file 70
Requesting an attention interrupt during interactive
sessions 71
Debugging a C program in full-screen mode . . . 71

Example: sample C program for debugging . . 72
Halting when certain functions are called in C. . 75
Modifying the value of a C variable 75
Halting on a line in C only if a condition is true 76
Debugging C when only a few parts are
compiled with TEST 76
Capturing C output to stdout 77
Calling a C function from Debug Tool 77
Displaying raw storage in C 77
Debugging a C DLL 77
Getting a function traceback in C 78
Tracing the run-time path for C code compiled
with TEST 78
Finding unexpected storage overwrite errors in C 79
Finding uninitialized storage errors in C. . . . 80
Halting before calling a NULL C function . . . 80

Debugging a C++ program in full-screen mode . . 81
Example: sample C++ program for debugging. . 81
Halting when certain functions are called in C++ 84
Modifying the value of a C++ variable 85
Halting on a line in C++ only if a condition is
true 86
Viewing and modifying data members of the this
pointer in C++ 87
Debugging C++ when only a few parts are
compiled with TEST 87
Capturing C++ output to stdout 88
Calling a C++ function from Debug Tool . . . 88
Displaying raw storage in C++ 89
Debugging a C++ DLL 89
Getting a function traceback in C++ 89
Tracing the run-time path for C++ code compiled
with TEST 90
Finding unexpected storage overwrite errors in
C++ 90
Finding uninitialized storage errors in C++ . . . 91
Halting before calling a NULL C++ function . . 92

Debugging a COBOL program in full-screen mode 92
Example: sample COBOL program for debugging 92
Halting when certain routines are called in
COBOL. 95
Modifying the value of a COBOL variable . . . 96
Halting on a COBOL line only if a condition is
true 97
Debugging COBOL when only a few parts are
compiled with TEST 98
Capturing COBOL I/O to the system console . . 99
Displaying raw storage in COBOL. 99
Getting a COBOL routine traceback 99
Tracing the run-time path for COBOL code
compiled with TEST 100
Generating a COBOL run-time paragraph trace 101

Finding unexpected storage overwrite errors in
COBOL 102
Halting before calling an invalid program in
COBOL 103

Debugging a PL/I program in full-screen mode 103
Example: sample PL/I program for debugging 103
Halting when certain PL/I functions are called 106
Modifying the value of a PL/I variable 107
Halting on a PL/I line only if a condition is true 108
Debugging PL/I when only a few parts are
compiled with TEST 108
Displaying raw storage in PL/I 108
Getting a PL/I function traceback 109
Tracing the run-time path for PL/I code
compiled with TEST 109
Finding unexpected storage overwrite errors in
PL/I 110
Halting before calling an undefined program in
PL/I 111

Chapter 5. Customizing your
full-screen session 113
Defining PF keys 113
Defining a symbol for commands or other strings 113
Customizing the layout of windows on the session
panel 114

Opening and closing session panel windows . . 115
Resizing session panel windows 115
Zooming a window to occupy the whole screen 116

Customizing session panel colors 116
Customizing profile settings 117
Saving customized settings in a preferences files 120

Chapter 6. Debugging across multiple
processes and enclaves. 121
Invoking Debug Tool within an enclave 121
Viewing Debug Tool windows across multiple
enclaves 121
Using breakpoints within multiple enclaves . . . 122
Ending a Debug Tool session within multiple
enclaves 122
Using Debug Tool commands within multiple
enclaves 122

Chapter 7. Using Debug Tool in
different modes and environments . . 125
Using Debug Tool in line mode 125

Commands you can use in line mode 125
Getting help during a line-mode session . . . 126

Using Debug Tool in batch mode 126
Using Debug Tool in remote debug mode 126
Debugging multitasking programs 127

Multitasking applications require UNIX System
Services R2 127
Restrictions when debugging multitasking
applications 127

Debugging ISPF applications 127
Debugging UNIX System Services (USS) programs 128

Debugging MVS POSIX programs 128
Debugging DB2 programs 128

iv Debug Tool User’s Guide and Reference

||

Considerations for debugging DB2 programs 128
Preparing DB2 programs for debugging . . . 129
Precompiling DB2 programs for debugging . . 129
Compiling DB2 programs for debugging . . . 129
Linking DB2 programs for debugging 130
Binding DB2 programs for debugging 131
Debugging DB2 programs in batch mode . . . 131
Debugging DB2 programs in interactive mode 131

Debugging IMS programs 132
Compiling IMS programs for debugging . . . 133
Linking IMS programs for debugging 133
Debugging IMS programs in interactive mode 133
Debugging IMS programs in batch mode . . . 134
Using alternative methods of command input
under IMS 134

Debugging CICS programs 134
Debug modes under CICS 135
Invoking Debug Tool under CICS 136
Using DTCN to invoke Debug Tool for CICS
programs 136
Preparing your application to invoke Debug
Tool using DTCN 137
Creating and storing a DTCN profile 137
Using DTCN repository profile items at runtime 141
Sharing DTCN repository profile items among
CICS systems 141
Using CEEUOPT to invoke Debug Tool under
CICS 141
Using compiler directives to invoke Debug Tool
under CICS 142
Using CEDF to invoke Debug Tool under CICS 142
Restrictions when debugging under CICS . . . 143

Chapter 8. Debug Tool support of
programming languages 145
Debug Tool evaluation of HLL expressions . . . 145
Debug Tool interpretation of HLL variables and
constants 146

HLL variables 146
HLL constants 146

Debug Tool commands that resemble HLL
commands 146
Qualifying variables and changing the point of
view 147

Qualifying variables 147
Changing the point of view 149

Handling conditions and exceptions in Debug Tool 149
Handling conditions in Debug Tool 150
Handling exceptions within expressions (C/C++
and PL/I only) 151

Debugging multilanguage applications 151
Debugging an application fully supported by
Language Environment 152
Debugging an application partially supported
by Language Environment 152
Using session variables across different
languages 153

Debugging a multiple-enclave interlanguage
communication (ILC) application 154
Coexistence with other debuggers 154
Coexistence with unsupported HLL modules . . . 155

Chapter 9. Debugging C/C++
programs 157
Debug Tool commands that resemble C/C++
commands 157
Using C/C++ variables with Debug Tool 158

Accessing C/C++ program variables 158
Displaying values of C/C++ variables or
expressions 158
Assigning values to C/C++ variables 159

%PATHCODE values for C/C++ 160
Declaring session variables with C/C++ 160
C/C++ expressions 161
Calling C/C++ functions from Debug Tool . . . 162
C reserved keywords 163
C operators and operands 164
Language Environment conditions and their
C/C++ equivalents 164
Debug Tool evaluation of C/C++ expressions . . 165
Intercepting files when debugging C/C++
programs 166
Scope of objects in C/C++ 168

Storage classes in C/C++ 169
Blocks and block identifiers for C 170
Blocks and block identifiers for C++. 171
Example: referencing variables and setting
breakpoints in C/C++ blocks 171

Scope and visibility of objects 172
Blocks and block identifiers 172

Displaying environmental information 172
Qualifying variables and changing the point of
view in C/C++ 173

Qualifying variables in C/C++ 173
Changing the point of view in C/C++ 174
Example: using qualification in C under MVS 174
Example: using qualification in C under VM 176

Stepping through C++ programs 177
Setting breakpoints in C++ 178

Setting breakpoints in C++ using AT
ENTRY/EXIT 178
Setting breakpoints in C++ using AT CALL . . 178

Examining C++ objects 179
Example: displaying attributes of C++ objects 179

Monitoring storage in C++ 180
Example: monitoring and modifying registers
and storage in C 180

Chapter 10. Debugging COBOL
programs 183
COBOL source listing must be fixed block format 183
Debug Tool commands that resemble COBOL
commands 183

COBOL command format 184
COBOL compiler options in effect for Debug
Tool commands 184
COBOL reserved keywords. 185

Using COBOL variables with Debug Tool 185
Accessing COBOL variables 185
Assigning values to COBOL variables 185
Example: assigning values to COBOL variables 186
Displaying values of COBOL variables 186

Contents v

|
||

Using DBCS characters in COBOL 187
%PATHCODE values for COBOL. 187
Declaring session variables in COBOL 188
Debug Tool evaluation of COBOL expressions . . 189

Displaying the results of COBOL expression
evaluation 189
Using constants in COBOL expressions 190

Using Debug Tool functions with COBOL 190
Using %HEX with COBOL 190
Using the %STORAGE function with COBOL 190

Qualifying variables and changing the point of
view in COBOL 191

Qualifying variables in COBOL 191
Changing the point of view in COBOL 193

Chapter 11. Debugging PL/I programs 195
Debug Tool subset of PL/I commands 195
PL/I language statements 195
%PATHCODE values for PL/I. 196
PL/I conditions and condition handling 197
Entering commands in PL/I DBCS freeform format 198
Initializing Debug Tool when TEST(ERROR, ...)
run-time option is in effect 198
Debug Tool enhancements to LIST STORAGE PL/I
command 198
PL/I support for Debug Tool session variables . . 198
Accessing PL/I program variables 198
Accessing PL/I structures 199
Debug Tool evaluation of PL/I expressions . . . 200
Supported PL/I built-in functions 200

Using SET WARNING PL/I command with
built-in functions 201

Unsupported PL/I language elements 201

Chapter 12. Entering Debug Tool
commands 203
Using uppercase, lowercase, and DBCS in Debug
Tool commands 203

DBCS 203
Character case and DBCS in C/C++ 204
Character case in COBOL and PL/I 204

Abbreviating Debug Tool keywords 204
Entering multiline commands in full-screen and
line mode 205
Entering multiline commands in a command file 205
Entering multiline commands without continuation 206
Using blanks in Debug Tool commands 206
Entering comments in Debug Tool commands . . 206
Using constants in Debug Tool commands. . . . 207
Getting online help for Debug Tool command
syntax 207
Common syntax elements in Debug Tool
commands 208

block_name syntax 208
block_spec syntax 209
compile_unit_name syntax 209
cu_spec syntax 210
expression syntax 210
load_module_name syntax 211
load_spec syntax 211

references syntax 212
statement_id syntax 212
statement_id_range and stmt_id_spec syntax 212
statement_label syntax 213

Chapter 13. Debug Tool commands 215
ANALYZE command (PL/I) 218
Assignment command (PL/I) 219
AT command 220

every_clause syntax 221
AT ALLOCATE (PL/I) 222
AT APPEARANCE 223
AT CALL. 225
AT CHANGE 226
AT CURSOR (full-screen mode) 229
AT DATE (COBOL) 230
AT DELETE 231
AT ENTRY/EXIT 231
AT GLOBAL 232
AT LABEL 234
AT LINE 236
AT LOAD 236
AT OCCURRENCE 237
AT PATH. 240
AT Prefix (full-screen mode) 241
AT STATEMENT 241
AT TERMINATION 242

BEGIN command (PL/I) 243
block command (C/C++) 244
break command (C/C++) 245
CALL command 245

CALL %DUMP 246
CALL entry_name (COBOL) 250
CALL procedure 251

CLEAR command 251
CLEAR prefix (full-screen mode) 254

CMS command (VM) 255
COMMENT command 255
COMPUTE command (COBOL) 256
CURSOR command (full-screen mode) 257
Declarations (C/C++) 257
Declarations (COBOL) 260
DECLARE command (PL/I) 261
DESCRIBE command 263
DISABLE command 265

DISABLE prefix (full-screen mode) 266
do/while command (C/C++) 267
DO command (PL/I) 267
ENABLE command 270

ENABLE prefix (full-screen mode) 270
EVALUATE command (COBOL) 271
Expression command (C/C++) 272
FIND command 273
for command (C/C++) 275
GO command 276
GOTO command 276
GOTO LABEL command 277
if command (C/C++) 279
IF command (COBOL) 279

Allowable comparisons for the IF command
(COBOL) 280

vi Debug Tool User’s Guide and Reference

IF command (PL/I) 282
IMMEDIATE command (full-screen mode) . . . 283
INPUT command (C/C++ and COBOL) 283
LIST command 284

LIST (blank) 285
LIST AT 285
LIST CALLS. 287
LIST CURSOR (full-screen mode). 288
LIST expression 288
LIST FREQUENCY 289
LIST LAST 290
LIST LINE NUMBERS 290
LIST LINES 291
LIST MONITOR 291
LIST NAMES 291
LIST ON (PL/I) 293
LIST PROCEDURES 293
LIST REGISTERS 293
LIST STATEMENT NUMBERS. 294
LIST STATEMENTS 295
LIST STORAGE 295

MONITOR command. 296
MOVE command (COBOL). 298

Allowable moves for the MOVE command
(COBOL) 299

Null command 300
ON command (PL/I) 300
PANEL command (full-screen mode) 302
PERFORM command (COBOL) 304
Prefix commands (full-screen mode) 306
PROCEDURE command. 306
QUERY command 307

QUERY prefix (full-screen mode) 310
QUIT command 311
QQUIT command 311
RETRIEVE command (full-screen mode) 312
RUN command. 312
RUNTO command 312

RUNTO prefix command (full-screen mode) . . 313
SCROLL command (full-screen mode) 314
SELECT command (PL/I) 315
SET command 316

SET CHANGE 318
SET COLOR (full-screen and line mode) . . . 318
SET COUNTRY 320
SET DBCS 321
SET DEFAULT LISTINGS (MVS) 321
SET DEFAULT SCROLL (full-screen mode) . . 322
SET DEFAULT WINDOW (full-screen mode) 323
SET DYNDEBUG (COBOL for OS/390). . . . 323
SET ECHO 324
SET EQUATE 325
SET EXECUTE 326
SET FREQUENCY. 326
SET HISTORY 327
SET INTERCEPT (C/C++ and COBOL) . . . 327
SET KEYS (full-screen and line mode) 328
SET LOG 329
SET LOG NUMBERS (full-screen and line
mode) 330

SET MONITOR NUMBERS (full-screen and line
mode) 330
SET MSGID 330
SET NATIONAL LANGUAGE 331
SET PACE 332
SET PFKEY 332
SET PROGRAMMING LANGUAGE. 333
SET PROMPT (full-screen and line mode) . . . 335
SET QUALIFY 335
SET REFRESH (full-screen mode). 336
SET REWRITE 337
SET SCREEN (full-screen and line mode) . . . 337
SET SCROLL DISPLAY (full-screen mode) . . . 338
SET SOURCE 338
SET SUFFIX (full-screen mode) 340
SET TEST 340
SET WARNING (C/C++ and PL/I) 342

SET command (COBOL). 343
Allowable moves for the Debug Tool SET
command 344

SHOW prefix command (full-screen mode) . . . 344
STEP command 345
switch command (C/C++) 347
SYSTEM command 349
TRIGGER command 350
TSO command (MVS) 352
USE command 353
while command (C/C++) 354
WINDOW command (full-screen mode) 355

WINDOW CLOSE. 355
WINDOW OPEN 356
WINDOW SIZE 356
WINDOW ZOOM 357

Chapter 14. Debug Tool built-in
functions 359
%GENERATION (PL/I) 359
%HEX 359
%INSTANCES (C/C++ and PL/I) 360
%RECURSION (C/C++ and PL/I) 361

Chapter 15. Debug Tool variables. . . 363
%ADDRESS 364
%AMODE 365
%BLOCK 365
%CAAADDRESS 365
%CONDITION 365
%COUNTRY 366
%CU or %PROGRAM 366
%EPA 366
%EPRn 366
%FPRn 367
%GPRn 367
%HARDWARE 368
%LINE or %STATEMENT 368
%LOAD 369
%LPRn 369
%NLANGUAGE 370
%PATHCODE 370
%PLANGUAGE 370

Contents vii

%PROGRAM 370
%RC 370
%RUNMODE 371
%SUBSYSTEM 371
%SYSTEM 371
Attributes of Debug Tool variables in different
languages 372

Chapter 16. Using Debug Tool in a
production mode 373
Fine-tuning your programs with Debug Tool . . . 373
Removing hooks, statement tables, and symbol
tables 374
Using Debug Tool on optimized programs . . . 374

Chapter 17. Debug Tool messages 377

Chapter 18. Notices. 445
Copyright license 446
Programming interface information 446
Trademarks and service marks 446

Bibliography. 447
High level language publications 447
Related publications 447
Softcopy publications. 448

Glossary 449

Index 455

viii Debug Tool User’s Guide and Reference

About this book

Debug Tool combines the richness of the z/OS, System/370™, and System/390®

subsystem environments with the power of Language Environment to provide a
debugger for programmers to isolate and fix their program bugs and test their
applications. Debug Tool gives you the capability of testing programs in batch,
using a nonprogrammable terminal in full-screen or line mode, or using a
workstation interface to remotely debug your programs.

This book contains instructions and examples to help you use Debug Tool to debug
C, C++, COBOL, and PL/I applications running with Language Environment.
Topics covered include preparing your application for debugging, accomplishing
basic debugging tasks, and Debug Tool’s interaction with different programming
languages. A complete command reference section is also included.

You can begin testing with Debug Tool after learning just a few concepts:
v How to invoke it
v How to set, display, and remove breakpoints
v How to step through your program

Debug Tool commands are similar to commands from the supported high level
languages (HLLs).

Note: When MVS is used in this book, it refers to both MVS, OS/390, and z/OS
systems.

Who might use this book
This book is intended for application programmers using Debug Tool to debug
HLLs with Language Environment. Throughout this book, these languages are
referred to as C/C++, COBOL, PL/I, and compiled Java.

The following operating systems and subsystems are supported:
v z/OS, OS/390 and MVS

– CICS®

– DB2®

– IMS
– JES/Batch
– TSO
– USS in remote debug mode or full-screen mode using a VTAM terminal only
– Websphere in remote debug mode or full-screen mode using a VTAM

terminal only
v VM

– SQL/DS

For a list of supported compiler levels and releases, please refer to the list found
on the back side of the title page.

Note: To use this book and debug a program written in one of the supported
languages, you need to know how to write, compile, and run such a
program.

© Copyright IBM Corp. 1995, 2001 ix

|
|

|
|
|

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:
1. Log on to Resource Link using your Resource Link userid and password.
2. Click on User Profiles located on the left-hand navigation bar.
3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your
request is being processed. After your request is processed you will receive an
e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:
1. Log on to Resource Link using your Resource Link userid and password.
2. Click on Library.
3. Click on zSeries.
4. Click on Software.
5. Click on z/OS.
6. Access the licensed book by selecting the appropriate element.

How this book is organized
This book is divided into areas of similar information for easy retrieval of
appropriate information. The following list describes how the information is
grouped:
v Chapters one and two introduce Debug Tool and provide instructions on how to

prepare programs before using Debug Tool.
v Chapter three describes the different methods you can use to invoke Debug Tool.

Examples are provided to illustrate each method and to illustrate how the
method differs with each programming language.

v Chapters four and five describe how to debug programs using full-screen mode.
These chapters describe how to edit the appearance of full-screen mode, how to
navigate through full-screen, and how to debug a program in full-screen mode.
A subsection is dedicated for each high level language.

x Debug Tool User’s Guide and Reference

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

v Chapters six, seven, and eight discuss Debug Tool support for multiple process
and enclaves, debugging modes, subsystems (DB2, IMS, CICS, etc.), and
unsupported high level languages.

v Chapter nine describes how to debug C/C++ programs.
v Chapter ten describes how to debug COBOL programs.
v Chapter eleven describes how to debug PL/I programs.
v Chapters twelve, thirteen, fourteen, and fifteen describe the syntax of Debug

Tool commands, built-in functions, variables and how to enter them.
v Chapter sixteen describes additional methods to compile your programs to be

smaller, without losing debugging capabilities.
v The last several chapters list messages, bibliography, and glossary of terms.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages. You can also use LookAt to look up explanations of system abends. The
IBM LookAt development team is investigating other forms of reference
information, such as commands.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
the News and Help link or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID and select the release you are working with.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book.

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

Indicates the beginning of a statement.

About this book xi

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Indicates that the statement syntax is continued on the next line.

Indicates that a statement is continued from the previous line.

Indicates the end of a statement.

Conventions
v Keywords, their allowable synonyms, and reserved parameters, appear in

uppercase. These items must be entered exactly as shown.
v Variables appear in lowercase italics (for example, column-name). They represent

user-defined parameters or suboptions.
v When entering commands, separate parameters and keywords by at least one

blank if there is no intervening punctuation.
v Enter punctuation marks (slashes, commas, periods, parentheses, quotation

marks, equal signs) and numbers exactly as given.
v Footnotes are shown by a number in parentheses, for example, (1).
v A � symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

�� REQUIRED_ITEM �$

Optional items
Optional items appear below the main path.

�� REQUIRED_ITEM
optional_item

�$

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

�� REQUIRED_ITEM
optional_item

�$

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack. If you
must choose one of the items, one item of the stack appears on the main path.

�� REQUIRED_ITEM required_choice1
required_choice2

�$

If choosing one of the items is optional, the entire stack appears below the main
path.

xii Debug Tool User’s Guide and Reference

�� REQUIRED_ITEM
optional_choice1
optional_choice2

�$

Repeatable items
An arrow returning to the left above the main line indicates that an item can be
repeated.

�� REQUIRED_ITEM % repeatable_item �$

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� REQUIRED_ITEM %

,

repeatable_item �$

A repeat arrow above a stack indicates that you can specify more than one of the
choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the syntax
diagram, the default choices are underlined.

�� REQUIRED_ITEM
default_choice

optional_choice
optional_choice

�$

About this book xiii

xiv Debug Tool User’s Guide and Reference

Summary of changes

This section describes the major changes that have been made to this manual since
the previous edition. This book includes terminology, maintenance, and editorial
changes. Technical changes are marked in the text by a change bar (|) in the left
margin.
v Statements regarding support of z/OS operating environment have been added.
v Information on debugging in full-screen mode using a VTAM terminal has been

added, including the addition of a new suboption of the MFI suboption of the
TEST runtime option.

v Tables have been added to help describe the operating environment and
programming languages supported by byDebug Tool.

v Information regarding the preservation of breakpoint information in DTCN
profiles while debugging CICS applications has been added.

v Clarification of the acceptable formats for the COBOL source listings have been
added.

v Description of a new option to the QUIT command has been added.
v Clarification on how to display Japanese DBCS characters has been added.

© Copyright IBM Corp. 1995, 2001 xv

|

|
|
|

|
|

|
|

|
|

|

|

xvi Debug Tool User’s Guide and Reference

Chapter 1. Debug Tool - overview

Debug Tool helps you test programs and examine, monitor, and control the
execution of programs written in C/C++, COBOL, PL/I, or compiled Java on an
z/OS, OS/390, MVS, or VM system. Your applications can include other languages,
but Debug Tool does not debug those portions of your application. Table 1, Table 2,
and Table 3 on page 2 map out the combination of compiler, subsystems, and
remote debuggers that Debug Tool supports. A current list of supported compilers
and environments is available on the Debug Tool web site at:
http://www.ibm.com/servers/eservers/zseries/dt

You can use Debug Tool to debug your programs in batch mode, interactively in
full-screen mode, in line mode using a nonprogrammable terminal, or in remote
debug mode using a workstation user interface.

Table 1. Debug Tool Inteface Type versus Compiler

Batch mode Full-screen
mode

Remote
mode

AD/Cycle COBOL/370 V1R1 X X

AD/Cycle C/370 V1R2 X X

AD/Cycle PL/I MVS & VM V1R1 X X

VS COBOL II 1.3.1, 1.3.2, & 1.4.0 (with
limitations)

X X

OS PL/I 2.1, 2.2, & 2.3 (with limitations) X X

C/C++ for MVS & VM X X

COBOL for MVS & VM X X X*

COBOL for OS/390 & VM X X X*

OS/390 C/C++ feature version 1.3 and
below

X X

OS/390 C/C++ feature version 2.4 and
above

X X X

PL/I for MVS & VM X X

IBM VisualAge PL/I for OS/390 X X X

VisualAge for Java, Enterprise Edition for
OS/390

X

IBM COBOL for VSE/ESA X X

IBM C for VSE/ESA X X

IBM PL/I for VSE/ESA X X
*Support is for OS/390 or MVS only.

Table 2. Debug Tool Inteface Type versus Subsystem

Batch mode Full-screen
mode

Remote
mode

TSO X X X

JES X X

© Copyright IBM Corp. 1995, 2001 1

|
|
|

||

|||
|
|
|

||||

||||

||||

|
|
|||

||||

||||

||||

||||

|
|
|||

|
|
|||

||||

||||

|
|
|||

||||

||||

||||

|
|

||

|||
|
|
|

||||

||||

Table 2. Debug Tool Inteface Type versus Subsystem (continued)

Batch mode Full-screen
mode

Remote
mode

USS X

CICS X X X

DB2 X X X

DB2 Stored Procedures X

IMS (TM and DB) with BTS TSO
Foreground

X X

IMS (TM and DB) with BTS Batch X X

IMS without BTS IMS DB Batch X X

IMS without BTS IMS TM X

Table 3. Debug Tool VisualAge Remote Debugger versus Operating System and
Communication Protocol

VisualAge COBOL
Enterprise for OS/2
and Windows NT

OS/390 C/C++ VisualAge for Java,
Enterprise Edition
for OS/390

OS/2 4.0 and APPC X

OS/2 4.0 and TCP/IP X X

Windows NT 4.0 and
TCP/IP

X X X

Windows 95 and
TCP/IP

X

Related concepts
“Debug Tool interfaces”
“Differences between Debug Tool environments” on page 3
“Terms used in Debug Tool” on page 3

Related tasks
“Chapter 2. Preparing your program for debugging” on page 5
“Chapter 3. Beginning a debug session” on page 23
“Chapter 4. Debugging your programs in full-screen mode” on page 53

Related references
“Chapter 13. Debug Tool commands” on page 215

Debug Tool interfaces
The terms full-screen mode, line mode, batch mode, and remote debug mode are used to
describe the types of debug interfaces that Debug Tool provides. Debug Tool
supports the following interfaces:

Full-screen mode
Debug Tool provides an interactive full-screen interface on a 3270 device,
with debugging information displayed in three windows.
v A Source window in which to view your program source or listing
v A Log window, which records commands and other interactions between

Debug Tool and your program

2 Debug Tool User’s Guide and Reference

|

|||
|
|
|

||||

||||

||||

||||

|
|
|||

||||

||||

||||
|

||
|

||
|
|

||
|
|

||||

||||

|
|
|||

|
|
|||

|

v A Monitor window in which to monitor changes in your program

You can debug all languages supported by Debug Tool in full-screen mode,
except compiled Java.

Line mode
Debug Tool provides an interactive command line interface. Enter
commands on the command line and receive debugging information, one
line at a time.

You can debug all languages and subsystems, except CICS, that are
supported in full-screen mode.

Batch mode
Debug Tool command files provide a mechanism to predefine series of
Debug Tool commands to be performed on an executing batch application.
Neither terminal input nor user interaction is available for batch debugging
of a batch application.

Remote debug mode
Debug Tool, in conjunction with the VisualAge Remote Debugger or IBM
Distributed Debugger, provides users with the ability to debug host
programs, including batch, through a Graphical User Interface (GUI) on
the workstation. The VisualAge Remote Debugger is available through
products such as:
v VisualAge COBOL Enterprise Version 2.2

The IBM Distributed Debugger is available through products such as:
v C/C++ Productivity Tools for OS/390
v VisualAge COBOL for Windows® 3.0
v VisualAge for Java, Enterprise Edition for OS/390
v VisualAge PL/I

For more information, visit the IBM Software web site at:
http://www.ibm.com/software/ad/

Related references
“Debug Tool session panel” on page 54

Differences between Debug Tool environments
Certain aspects of Debug Tool usage can differ, not only across platforms but from
system to system and from subsystem to subsystem. When this occurs, differences
are marked in the text in the following manner:

For MVS only: MVS-specific information.

Special language-specific information about accomplishing a task or using a
particular procedure might also be marked the same way. More extensive
differences are usually discussed in separate sections.

Terms used in Debug Tool
Because of differing terminology among the various languages supported by
Debug Tool, as well as differing terminology between platforms, a group of
common terms has been established. The table below lists these terms and their
equivalency in each language.

Chapter 1. Debug Tool - overview 3

Debug Tool
term

C/C++
equivalent

COBOL
equivalent

PL/I equivalent Java equivalent

Compile unit C/C++ source
file

Program or class Program (or
PL/I source file
for VisualAge
PL/I for OS/390)

Java source file

Block Function or
compound
statement

Program, nested
program, method
or PERFORM
group of
statements

Block Function/method
or compound
statement

Label Label Paragraph name
or section name

Label Label

References to MVS refer to both MVS, OS/390, and z/OS.

4 Debug Tool User’s Guide and Reference

|

Chapter 2. Preparing your program for debugging

Before using Debug Tool, you must prepare your program by compiling at least
one part of it with the TEST compiler option. This option, in combination with any
of the suboptions except NONE, inserts hooks, which are assembly instructions
that you can see in an assembly listing. These hooks are placed at the entrances
and exits of blocks, at statement boundaries, and at points in the program where
program flow might change between statement boundaries (called path points).
The execution of these hooks enables Debug Tool to gain control during program
run time.

Note: With the Dynamic Debug feature, you can debug COBOL for OS/390
programs compiled with the TEST(NONE) option.

To learn how to use Debug Tool, the simplest way to get started is to use the basic
TEST options shown below.
v For C and C++, compile your program with TEST
v For PL/I and COBOL, compile your program with TEST(ALL,SYM)

Debug Tool does not need any special postcompile step to be added to your
compile JCL. All you need to do is provide the appropriate TEST compiler option
and retain the source, listing, or separate debug file for Debug Tool to read when
you debug the program.

Link your program as usual. Debug Tool may require that you link to additional
libraries to debug your ISPF, USS, DB2, IMS, or CICS applications. These
requirements are described in other sections of the book.

Related concepts
“Considerations before compiling and debugging”

Related tasks
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a C++ program with the TEST compiler option” on page 12
“Compiling a COBOL program with the TEST compiler option” on page 14
“Compiling a PL/I program with the TEST compiler option” on page 18
“Debugging ISPF applications” on page 127
“Debugging UNIX System Services (USS) programs” on page 128
“Debugging DB2 programs” on page 128
“Debugging IMS programs” on page 132
“Debugging CICS programs” on page 134

Related references
“Data sets used by Debug Tool” on page 24

Considerations before compiling and debugging
Before using Debug Tool, you should plan how you want to conduct your debug
session. Although you can compile your program with the TEST compiler option
without suboptions and invoke Debug Tool with the TEST run-time option without
suboptions, you should consider the following questions before using Debug Tool:

© Copyright IBM Corp. 1995, 2001 5

Do you want to compile your program with hooks?
Hooks are instructions inserted in a program by a compiler at compile
time. Using hooks allows you to set breakpoints that instruct Debug Tool
to gain control at selected points during program run time.

You can decide where to place the hooks. For example, you can place them
at statements, or only at entry to and exit from blocks.

COBOL for OS/390 programs can be debugged without compiled-in debug
hooks using the Dynamic Debug feature.

More information about compiling your program with or without hooks
can be found in each programming language’s compiling section.

Do you want to reference variables during your Debug Tool session?
If yes, you need to instruct the compiler to create a symbol table. The
symbol table contains descriptions of variables, their attributes, and their
location in storage. These descriptions are used by Debug Tool when
referencing variables.

COBOL for OS/390 programs can be debugged with the symbol tables
saved in a separate debug file, instead of the program’s object file. This
allows you to reduce the size of your application’s load module without
losing debug capabilities.

Do you want full debugging capability or smaller application size and higher
performance?

Removing hooks, statement tables, or symbol tables can increase your
application’s performance and/or decrease its size. However, debug
capabilities are diminished.

COBOL for OS/390 programs can be compiled with the
TEST(NONE,SYM,SEPARATE) compiler option to decrease your application
size, increase performance, and retain most debug capabilities. You must
have the Dynamic Debug feature installed.

When do you want to start Debug Tool and when do you want it to gain
control?

There are a variety of ways to invoke Debug Tool, as well as many options
for allowing it to gain control of your program.

To invoke Debug Tool, you can use the TEST run-time option. This option
gives you the choice of invoking Debug Tool either before you run your
application, at the occurrence of an High Level Language (HLL) condition
while your application is running, or at the occurrence of an attention
interrupt. Also, Language Environment, as well as certain HLLs, provides a
run-time service you can call while your program is executing, at the
location of your choice.

After Debug Tool is invoked, it gains control of your program and
suspends execution to allow you to take such actions as checking the value
of a variable or examining the contents of storage.

Do you want to use Debug Tool in full-screen mode, in line mode, in batch
mode, or in remote debug mode?

Decide which interface you want to use when debugging your application.

Related concepts
“Debug Tool interfaces” on page 2

6 Debug Tool User’s Guide and Reference

Related tasks
“Chapter 2. Preparing your program for debugging” on page 5
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a C++ program with the TEST compiler option” on page 12
“Compiling a COBOL program with the TEST compiler option” on page 14
“Compiling a PL/I program with the TEST compiler option” on page 18
“Chapter 16. Using Debug Tool in a production mode” on page 373
member EQASVDOC of data set EQAW.V1R2M0.SEQASAMP

Authorized Debug Facility
The Debug Tool Authorized Debug Facility allows authorized users and users of
authorized CICS regions to debug programs that have been loaded in protected
storage, located in subpools 251 or 252. These programs include reentrant
programs and programs loaded by CICS in RDSA or ERDSA. The Authorized
Debug Facility allows you to debug these programs only under Debug Tool with
its Dynamic Debug feature enabled.

When the Dynamic Debug feature of Debug Tool is enabled, Debug Tool overlays
storage to place the hooks needed to support program debugging. If a user is not
authorized or if the program is not in either subpool 251 or 252, Debug Tool does
not attempt to place overlay hooks. Instead, Debug Tool relies on compiled-in
hooks, placed in the object code at compile time. If the program does not have
compiled-in hooks, the user is unable to debug the program.

Related concepts
OS/390 MVS Programming: Authorized Assembler Services Guide

How to use the Authorized Debug Facility
To authorize users to debug modules in protected storage, the RACF security
administrator must take the following steps:
1. Establish a profile for the Authorized Debug Facility in the FACILITY class by

issuing the following RDEFINE command:
RDEFINE FACILITY EQADTOOL.AUTHDEBUG UACC(NONE)

Ensure that generic profile checking is in effect for the class FACILITY by
issuing the following command:
SETROPTS GENERIC(FACILITY)

2. Permit the user (in this example DUSER1) to use the Authorized Debug Facility
by issuing the following command:
PERMIT EQADTOOL.AUTHDEBUG CLASS(FACILITY) ID(DUSER1) ACCESS(READ)

DUSER1 must be the name of a RACF-defined user or group profile. Note that
instead of specifying individual users, the RACF security administrator can
specify the name of a RACF group profile and connect authorized users to the
group.

3. If the FACILITY class is not already active, make the FACILITY class active by
issuing the following SETROPTS command:
SETROPTS CLASSACT(FACILITY)

Ensure that the FACILITY class is active by issuing the SETROPTS LIST
command:
SETROPTS LIST

4. Refresh the FACILITY resource class by issuing the SETROPTS RACLIST
command:

Chapter 2. Preparing your program for debugging 7

SETROPTS RACLIST(FACILITY) REFRESH

Compiling a C program with the TEST compiler option
Before testing your C program with Debug Tool, you must compile it with the C
TEST compiler option. This causes the compiler to generate information about your
application program that Debug Tool uses.

The TEST suboptions BLOCK, LINE, and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks that are used to instruct Debug Tool where to gain control of your program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. Debug Tool uses the symbol tables to obtain
information about the variables in the program.

If you are compiling and launching programs on an HFS file system, you must do
one of the following:
v Compile and launch the programs from the same location, or
v specify the full path name when you compile the programs.

By default, the C compiler stores the relative path and file names in the object.
When you start a debug session, if the source is not in the same location as where
the progam is launched, Debug Tool cannot locate the source. To avoid this
problem, specify the full path name for the source when you compile the program.
For example, if you execute the following series of commands:
1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c89 -g -o "//TEST.LOAD(HELLO)" hello.c

2. Exit USS and return to the TSO ready prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) 'test/'

Debug Tool cannot locate the source because the source is located in another
directory (/u/myid/mypgm). Change the compile command to:
c89 -g -o "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.c

Debug Tool can locate the source. Another example where the full path name
should be specified during the compile is if you are creating an executable that
runs in the CICS environment.

When using the C TEST compiler option, be aware that:
v The C TEST compiler option generates entry and exit hooks for functions.
v The C TEST compiler option implicitly specifies the GONUMBER option, which

causes the compiler to generate line number tables corresponding to the input
source file. You can explicitly remove this option by specifying NOGONUMBER.
However, Debug Tool does not display the current execution line as you step
through your code.

v Programs compiled with both the TEST and either OPT(1) or OPT(2) options do
not have line hooks, block hooks, path hooks, or a symbol table generated,
regardless of the TEST suboptions specified. Only function entry and exit hooks
are generated for optimized programs.

v You can specify any number of TEST suboptions, including conflicting suboptions
(for example, both PATH and NOPATH). The last suboptions specified take effect.

8 Debug Tool User’s Guide and Reference

For example, if you specify TEST(BLOCK, NOBLOCK, BLOCK, NOLINE, LINE), what
takes effect is TEST(BLOCK, LINE) since BLOCK and LINE are specified last.

v No duplicate hooks are generated even if two similar TEST suboptions are
specified. For example, if you specify TEST(BLOCK, PATH), the BLOCK suboption
causes the generation of entry and exit hooks. The PATH suboption also causes
the generation of entry and exit hooks. However, only one hook is generated at
each entry and exit.

You can specify any combination of the C TEST suboptions in any order. The
default suboptions are BLOCK, LINE, PATH, and SYM.

C TEST compiler option
The syntax for the C TEST compiler option is:

��

%

NOTEST
TEST

,
BLOCK

(NOBLOCK)
LINE
NOLINE
PATH
NOPATH
SYM
NOSYM

ALL
NONE

�$

The TEST compiler suboptions control the generation of symbol tables and program
hooks Debug Tool needs to debug your programs. The choices you make when
compiling your program affect the amount of Debug Tool function available during
your debug session. When a program is under development, you should compile
the program with TEST(ALL) to get the full capability of Debug Tool.

The following list explains what is produced by each option and suboption and
how Debug Tool uses them when debugging your program:

NOTEST
Specifies that no debugging information is to be generated. That is, no
statement hooks or path hooks are compiled into your program, no symbol
tables are created, and Debug Tool does not have access to any symbol
information.
v You cannot STEP through program statements. You can suspend execution of

the program only at the initialization of the main compile unit.
v You cannot examine or use any program variables.
v You can LIST storage and registers.
v You cannot use the Debug Tool command GOTO.

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected.

The following restrictions apply when using TEST:
v The maximum number of lines in a single source file cannot exceed 131,072.

Chapter 2. Preparing your program for debugging 9

v The maximum number of include files that have executable statements
cannot exceed 1024.

BLOCK
Inserts only block entry and exit hooks into your program’s object. A block
is any number of data definitions, declarations, or statements enclosed
within a single set of braces. BLOCK also creates entry and exit hooks for
nested blocks. If SYM is enabled, symbol tables are generated for variables
local to these nested blocks.
v You can only gain control at entry and exit of blocks.
v Issuing a command such as STEP causes your program to run, until it

reaches the exit point.

NOBLOCK
Prevents symbol information and entry and exit hooks from being
generated for nested blocks.

LINE
Hooks are generated at most executable statements. Hooks are not
generated for:
v Lines that identify blocks (lines containing braces)
v Null statements
v Labels

NOLINE
Suppresses the generation of statement (line number) hooks.

PATH
Hooks are generated at all path points (if-then-else, calls, etc.)
v This option does not influence the generation of entry and exit hooks for

nested blocks. The BLOCK suboption must be specified if such hooks are
desired.

v Debug Tool can gain control only at path points and block entry and exit
points. If you attempt to STEP through your program, Debug Tool gains
control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

v The Debug Tool command GOTO is valid only for statements and labels
coinciding with path points.

NOPATH
No path hooks are generated.

SYM
Generates symbol tables in the program’s object that give Debug Tool
access to variables and other symbol information.
v You can reference all program variables by name, allowing you to

examine them or use them in expressions.
v You can use the Debug Tool command GOTO to branch to a label

(paragraph or section name).

NOSYM
Suppresses the generation of symbol tables. Debug Tool does not have
access to any symbol information.
v You cannot reference program variables by name.
v You cannot use commands such as LIST or DESCRIBE to access a variable

or expression.

10 Debug Tool User’s Guide and Reference

v You cannot use commands such as CALL or GOTO to branch to another
label (paragraph or section name).

ALL
Block and line hooks are inserted and a symbol table is generated. Hooks
are generated at all statements, all path points (if-then-else, calls, and so
on), and at all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).

NONE
Generates compiled-in hooks only at function entry and exit points. Block
and line hooks are not inserted, and the symbol tables are suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in hooks for getting in and
out of functions and nested blocks:
v The hook for function entry is placed before any initialization or statements for

the function.
v The hook for function exit is placed just before actual function return.
v The hook for nested block entry is placed before any statements or initialization

for the block.
v The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements
and path points:
v Label hooks are placed before the code and all other statement or path point

hooks for the statement.
v The statement hook is placed before the code and path point hook for the

statement.
v A path point hook for a statement is placed before the code for the statement.

Related tasks
“Using C/C++ #pragma to specify the TEST compiler option”

Related references
z/OS C/C++ User’s Guide

Using C/C++ #pragma to specify the TEST compiler option
The TEST/NOTEST compiler option can be specified either when you compile your
program or directly in your program, using a #pragma.

This #pragma must appear before any executable code in your program.

The following example generates symbol table information, symbol information for
nested blocks, and line number hooks:
#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST(SYM,BLOCK,LINE,PATH).

You can also use a #pragma to specify run-time options.

Chapter 2. Preparing your program for debugging 11

Related tasks
“Specifying TEST run-time option with #pragma runopts in C/C++” on page 37
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a C++ program with the TEST compiler option”
z/OS C/C++ Language Reference

Compiling a C++ program with the TEST compiler option
Before testing your C++ program with Debug Tool, you must compile it with the
C++ TEST compiler option. This causes the compiler to generate information about
your application program that Debug Tool uses.

If you are compiling and launching programs on an HFS file system, you must do
one of the following:
v Compile and launch the programs from the same location, or
v specify the full path name when you compile the programs.

By default, the C++ compiler stores the relative path and file names in the object.
When you start a debug session, if the source is not in the same location as where
the progam is launched, Debug Tool cannot locate the source. To avoid this
problem, specify the full path name for the source when you compile the program.
For example, if you execute the following series of commands:
1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c++ -g -o "//TEST.LOAD(HELLO)" hello.cpp

2. Exit USS and return to the TSO ready prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) 'test/'

Debug Tool can not locate the source because it is located in another directory
(/u/myid/mypgm). Change the compile command to:
c++ -g -o "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.cpp

Debug Tool can locate the source. Another example where the full path name
should be specified during the compile is if you are creating an executable that
runs in the CICS environment.

The syntax for the C++ TEST compiler option is:

��
NOTEST
TEST

(1)
(

HOOK
NOHOOK

) �$

Notes:

1 The HOOK and NOHOOK options are only available with Version 2 Release
4, Version 2 Release 6, and Version 2 Release 9.

The following list explains what is produced by each option and how Debug Tool
uses them when debugging your program:

NOTEST
Specifies that no debugging information is to be generated. That is, no

12 Debug Tool User’s Guide and Reference

statement hooks or path hooks are compiled into your program, no symbol
tables are created, and Debug Tool does not have access to any symbol
information.
v You cannot STEP through program statements. You can suspend execution of

the program only at the initialization of the main compile unit.
v You cannot examine or use any program variables.
v You can LIST storage and registers.
v You cannot use the Debug Tool command GOTO.

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The following restrictions apply when using the TEST
option
v The maximum number of lines in a single source file cannot exceed 131,072.
v The maximum number of include files that have executable statements

cannot exceed 1024.

HOOK
Generates some or all possible hook information, depending on NOOPT or OPT.
This option is only available on Version 2, Release 4; Version 2, Release 6; and
Version 2, Release 9 of OS/390 C/C++.

NOHOOK
No hook information is generated. This option is only available on Version 2,
Release 4; Version 2, Release 6; and Version 2, Release 9 of OS/390 C/C++.

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in entry and exit hooks for
functions and nested blocks:
v The hook for function entry is placed before any initialization or statements for

the function.
v The hook for function exit is placed just before actual function return.
v The hook for nested block entry is placed before any statements or initialization

for the block.
v The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements
and path points:
v Label hooks are placed before the code and all other statement or path point

hooks for the statement.
v The statement hook is placed before the code and path point hook for the

statement.
v A path point hook for a statement is placed before the code for the statement.

Related tasks
“Compiling a C program with the TEST compiler option” on page 8

Related references
z/OS C/C++ User’s Guide

Chapter 2. Preparing your program for debugging 13

Compiling a COBOL program with the TEST compiler option
Before testing your COBOL program with Debug Tool, you must compile it with
the COBOL TEST compiler option. This causes the compiler to create the symbol
tables and insert program hooks at selected points in your program. Debug Tool
uses the symbol tables to obtain information about program variables. Debug Tool
uses program hooks to gain control of your program at selected points during its
execution. These points can be at the entrances and exits of blocks, at statement
boundaries, and at points in the program where program flow might change
between statement boundaries (called path points), such as before and after a CALL
statement. The program hooks do not modify your source.

Note: COBOL for OS/390 programs can be debugged without program hooks
inserted by the compiler. These programs must be compiled with the
TEST(NONE) compiler option and the feature Dynamic Debug must be
installed. These programs must not reside in read-only storage.

Note: If your program requires the use of CICS, specify the CICS start up option
RENTPGM=NOPROTECT or link-edit the program with the NORENT option.

When using the COBOL TEST compiler option, be aware that:
v If you specify NUMBER with TEST, make sure the sequence fields in your source

code all contain numeric characters.
v Usually, when you specify TEST, the compiler options NOOPTIMIZE and OBJECT

automatically go into effect, preventing you from debugging optimized
programs. However, TEST(NONE, SYM) does not conflict with OPT, allowing
debugging of optimized programs with some limitations and behavioral
differences.

v The TEST compiler option and the DEBUG run-time option are mutually exclusive,
with DEBUG taking precedence. If you specify both the WITH DEBUGGING MODE
clause in your SOURCE-COMPUTER paragraph and the USE FOR DEBUGGING statement
in your code, TEST is deactivated. The TEST compiler option appears in the list of
options, but a diagnostic message is issued telling you that because of the
conflict, TEST is not in effect.

v For VS COBOL II programs, in addition to the TEST compiler option, you must
specify:
– the SOURCE compiler option. This option is required to generate a listing file.
– the RESIDENT parameter. This parameter is required by LE/370 to ensure that

the necessary Debug Tool routines are loaded dynamically at run time.

The syntax for the COBOL TEST compiler option is:

14 Debug Tool User’s Guide and Reference

��
NOTEST

TEST
(ALL, SYM)

(1)
, NOSEPARATE

(ALL , SYM)
BLOCK (1)
NONE , SEPARATE
PATH NOSYM
STMT (1)

, NOSEPARATE

�$

Notes:

1 SEPARATE and NOSEPARATE are available only for COBOL for OS/390
programs.

The TEST compiler suboptions control the production of such debugging aids as
symbol tables and program hooks that Debug Tool needs to debug your program.
The suboptions you choose can affect the amount of Debug Tool function available
during your debug session:
v To get the full capabilities of Debug Tool, compile your program with

TEST(ALL,SYM).
v To get a smaller load module, compile your programs with

TEST(NONE,SYM,SEPARATE). You can then use the Dynamic Debug feature to
debug your program. This is currently only available for COBOL for OS/390
programs.

The following list explains each option and suboption and the capabilities of
Debug Tool when your program is compiled using these options.

NOTEST
Specifies that no debug information is to be generated, that is, no statement
hooks or path hooks are compiled into your program, no symbol tables are
created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:
v You cannot STEP through program statements.
v You can suspend execution of the program only at the initialization of the

main compile unit.
v You can include calls to CEETEST in your program to allow you to suspend

program execution and issue Debug Tool commands.
v You cannot examine or use any program variables.
v You can LIST storage and registers.
v The source listing produced by the compiler cannot be used; therefore, no

listing is available during a debug session.
v Because a statement table is not available, you cannot set any statement

breakpoints or use commands such as GOTO or QUERY location.

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected.

Chapter 2. Preparing your program for debugging 15

ALL
Generates all compiled-in hooks, including all statement, path, date
processing, and program entry and exit hooks.
v The COBOL compiler only generates compiled-in hooks for date

processing statements when the DATEPROC compiler option is specified. A
date processing statement is any statement that references a date field, or
any EVALUATE or SEARCH statement WHEN phrase that references a
date field.

v You can set breakpoints at all statements and path points, and STEP
through your program.

v Debug Tool can gain control of the program at all statements, path
points, date processing statements, labels, and block entry and exit
points, allowing you to enter Debug Tool commands.

v Branching to statements and labels using the Debug Tool command GOTO
is allowed.

BLOCK
Hooks are inserted at all block entry and exit points.
v Debug Tool gains control at entry and exit of your program, methods,

and nested programs.
v Debug Tool can be explicitly invoked at any point with a call to CEETEST.
v Issuing a command such as STEP causes your program to run until it

reaches the next entry or exit point.
v GOTO can be used to branch to statements that coincide with block entry

and exit points.

NONE
No hooks are inserted in the program.
v The GOTO command is valid for some statements and labels coinciding

with path points.
v A call to CEETEST can be used at any point to invoke Debug Tool.

COBOL for OS/390 programs compiled with TEST(NONE,SYM) can be
debugged using the Dynamic Debug feature. However, due to compiler
optimization effects, these programs may not always halt execution at the
same statement number that the same program compiled with TEST(ALL)
would have.

PATH
Hooks are inserted at all path points and at all program entry and exit
points. A path point is anywhere in a program where the logic flow is not
necessarily sequential or can change. Some examples of path points are
IF-THEN-ELSE constructs, PERFORM loops, ON SIZE ERROR phrases, and CALL
statements.
v Debug Tool can gain control only at path points and block entry and exit

points. If you attempt to STEP through your program, Debug Tool gains
control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

v A call to CEETEST can be used at any point to invoke Debug Tool.
v The Debug Tool command GOTO is valid for all statements and labels

coinciding with path points.

STMT
Hooks are inserted at every statement and label, at every date processing
statement, and at all entry and exit points.

16 Debug Tool User’s Guide and Reference

v The COBOL compiler only generates compiled-in hooks for date
processing statements when the DATEPROC compiler option is specified. A
date processing statement is any statement that references a date field, or
any EVALUATE or SEARCH statement WHEN phrase that references a
date field.

v You can set breakpoints at all statements and STEP through your
program.

v Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

v Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates symbol tables in the program’s object that give Debug Tool
access to variables and other symbol information.
v You can reference all program variables by name, which allows you to

examine them or use them in expressions.
v SYM is required to support labels (paragraph or section names) as GOTO

targets.

SEPARATE (COBOL for OS/390 programs only)
Saves the symbolic table information in a separate debug file.

NOSEPARATE (COBOL for OS/390 programs only)
The symbolic table information is stored in the object. NOSEPARATE is
the default.

NOSYM
Suppresses the generation of dictionary tables. Debug Tool does not have
access to any symbol information. Using NOSYM produces the following
results:
v You cannot reference program variables by name.
v You cannot use commands such as LIST or DESCRIBE to access a variable

or expression.
v You cannot use commands such as CALL variable to branch to another

program, or GOTO to branch to another label (paragraph or section name).

Specifying TEST with no suboptions is equivalent to TEST(ALL, SYM, NOSEPARATE).

Note: To be able to view your source code while debugging in full-screen or
remote debug mode, you must direct the source or listing to a
nontemporary file that is available during the debug session. If you are
debugging a COBOL for OS/390 program and specified the SEPARATE
suboption of the compiler option, the listing does not need to be saved but
the separate debug file must be a nontemporary file. The separate debug file
must also be available during the debug session. If you move or rename
these nontemporary files, use the SET SOURCE or SET DEFAULT LISTINGS
command to specify the new location or name of the files.

Related tasks
“Chapter 16. Using Debug Tool in a production mode” on page 373
“Using Debug Tool on optimized programs” on page 374
Member EQASVDOC of data set EQAW.V1R2M0.SEQASAMP

Related references
“SET SOURCE” on page 338

Chapter 2. Preparing your program for debugging 17

“SET DEFAULT LISTINGS (MVS)” on page 321
“COBOL source listing must be fixed block format” on page 183
COBOL for OS/390 & VM Language Reference

Compiling a PL/I program with the TEST compiler option
The PL/I compiler provides support for Debug Tool under control of the TEST
compiler option and its suboptions for hook locations and symbol tables. The hook
location suboptions (BLOCK, STMT, PATH, ALL, and NONE) regulate the points at which
the compiler inserts hooks. These program hooks allow Debug Tool to gain control
at select points in a program during execution. The symbol table suboption (SYM or
NOSYM) controls the insertion of symbol tables into the the program’s object file.
Debug Tool uses the symbol tables to obtain information about program variables.

For OS PL/I programs, you must specify the SOURCE compiler option in addition to
the TEST compiler option. The SOURCE compiler option is required to generate a
listing file.

If you are compiling and launching VisualAge PL/I for OS/390 programs on an
HFS file system, you must do one of the following:
v Compile and launch the programs from the same location, or
v specify the full path name when you compile the programs.

By default, the VisualAge PL/I for OS/390 compiler stores the relative path and
file names in the object. When you start a debug session, if the source is not in the
same location as where the progam is launched, Debug Tool cannot locate the
source. To avoid this problem, specify the full path name for the source when you
compile the program. For example, if you execute the following series of
commands:
1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
pli -g "//TEST.LOAD(HELLO)" hello.pli

2. Exit USS and return to the TSO ready prompt.
3. Launch the program with the TEST run-time option.

call TEST.LOAD(HELLO) 'test/'

Debug Tool can not locate the source because it is located in another directory
(/u/myid/mypgm). Change the compile command to:
pli -g "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.pli

Debug Tool can locate the source. Another example where the full path name
should be specified during the compile is if you are creating an executable that
runs in the CICS environment.

The syntax for the PL/I TEST compiler option is:

18 Debug Tool User’s Guide and Reference

|

��
NOTEST
TEST

NONE
(BLOCK)

STMT SYM
PATH , NOSYM
ALL
SYM
NOSYM

NONE
, BLOCK

STMT
PATH
ALL

�$

The syntax for the VisualAge PL/I for OS/390 TEST compiler option is:

��
NOTEST
TEST

NONE
(STMT)

ALL SYM
, NOSYM

SYM
NOSYM

NONE
, STMT

ALL

�$

The choices you make when compiling your program can affect the amount of
Debug Tool function available during your debug session. When a program is
under development, compile the program with TEST(ALL) to get the full capability
of Debug Tool. The following list explains each option and suboption and the
capabilities of Debug Tool when your program is compiled using these options:

NOTEST
Specifies that no debugging information is generated, that is, no statement
hooks or path hooks are compiled into your program, no dictionary tables are
created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:
v You can LIST storage and registers.
v You can include calls to PLITEST or CEETEST in your program so you can

suspend running your program and issue Debug Tool commands.
v You cannot STEP through program statements. You can suspend running

your program only at the initialization of the main compile unit.
v You cannot examine or use any program variables.
v Because statement hooks are not available, you cannot set any statement

breakpoints or use commands such as GOTO or QUERY LOCATION.
v The source listing produced by the compiler cannot be used; therefore, no

listing is available during a debug session.

TEST
Produces debugging information for Debug Tool to use during batch and

Chapter 2. Preparing your program for debugging 19

interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected:

ALL
Generates all compiled-in hooks, including all statement, path, and
program entry and exit hooks.
v You can set breakpoints at all statements and path points, and STEP

through your program.
v Debug Tool can gain control of the program at all statements, path

points, labels, and block entry and exit points, allowing you to enter
Debug Tool commands.

v Enables branching to statements and labels using the Debug Tool
command GOTO.

BLOCK
Hooks are inserted at all block entry and exit points.
v Enables Debug Tool to gain control at block boundaries: block entry and

block exit.
v You can gain control only at entry and exit of your program and all

entry and exit points of internal program blocks.
v A call to PLITEST or CEETEST can be used to invoke Debug Tool at any

point in your program.
v Issuing a command such as STEP causes your program to run until it

reaches the next block entry or exit point.
v Block hooks are not inserted into an empty ON-unit or an ON-unit

consisting of a single GOTO statement.

NONE
No hooks are inserted in the program.
v A call to PLITEST or CEETEST can be used to invoke Debug Tool at any

point in your program.

PATH
Hooks are inserted at all path points:
v Before the THEN part of an IF statement.
v Before the ELSE part of an IF statement.
v Before the first statement of all WHEN clauses of a SELECT-group.
v Before the OTHERWISE statement of a SELECT-group.
v At the end of a repetitive DO statement, just before the Do-group is to be

executed.
v At every CALL or function reference, both before and after control is

passed to the routine.
v Before the statement following a user label, excluding labeled FORMAT

statements. If a statement has multiple labels, only one hook is inserted.

Specifying PATH also causes BLOCK hooks to be inserted.

STMT
Hooks are inserted before most executable statements and labels. STMT also
causes BLOCK hooks to be inserted.
v You can set breakpoints at all statements and STEP through your

program.
v Debug Tool cannot gain control at path points unless they are also at

statement boundaries.

20 Debug Tool User’s Guide and Reference

v Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates a symbol table in the program’s object. The symbol table is
required for examining program variables or program control constants by
name.
v You can reference all program variables by name, which allows you to

examine them or use them in expressions.
v Enables the support for labels as GOTO targets.

NOSYM
Suppresses the generation of a symbol table. Debug Tool does not have
access to any symbol information that causes the following results:
v You cannot reference program variables by name.
v You cannot use commands such as LIST or DESCRIBE to access a variable

or expression.
v You cannot use commands such as CALL variable to branch to another

program, or GOTO to branch to another label (procedure or block name).

Note: To be able to view your listing while debugging in interactive mode, PL/I
for MVS & VM and OS PL/I programs must be compiled using the PL/I
SOURCE compiler option. You must also direct the listing to a nontemporary
file that is available during the debug session. During a debug session,
Debug Tool displays the first file it finds named userid.pgmname.list in the
Source window. If Debug Tool can not find the listing at this location, use
the SET SOURCE command to associate your source listing with the program
you are debugging.

Compiling with TEST(STMT), TEST(PATH), or TEST(ALL) causes a statement number
table to be generated. If the STMT compiler option is in effect, specifying TEST
causes the GOSTMT compiler option to be in effect. If the NUMBER compiler option is
in effect, specifying TEST causes the GONUMBER compiler option to be in effect.

Related references
“SET SOURCE” on page 338
“SET DEFAULT LISTINGS (MVS)” on page 321
PL/I for MVS and VM Programming
Guide
VisualAge PL/I for OS/390 Programming Guide

Chapter 2. Preparing your program for debugging 21

22 Debug Tool User’s Guide and Reference

Chapter 3. Beginning a debug session

To begin a debug session, Debug Tool must gain control of the application you
want to debug. You can specify how Debug Tool gains control by using the TEST
run-time option or by invoking Debug Tool from your program (with calls to
CEETEST, PLITEST, or __ctest()).

An easy way to begin using Debug Tool is to specify the TEST run-time option with
no suboption; this defaults to using the suboptions ALL and PROMPT. When you start
your application, Debug Tool gains control immediately, and halts execution before
the first statement in the application. You can then choose to step through the
application, set breakpoints, and so on.

Debug Tool displays your source file in the Source Window using a source, listing,
or separate debug file, depending on the compiler.

For MVS only: When you start Debug Tool, if your source or listing is not
displayed, press PF4. This puts you in the Source Identification
panel. The Source Identification panel indicates the name of the
source, listing or separate debug file that was intended to be used
by Debug Tool. With this name, you can verify if the file exists or
if you have authorization to access it. If your file is stored at a
different place, do one of the following:
v Use the SET SOURCE command with the new name of the source,

listing, or debug file; or
v use the SET DEFAULT LISTINGS command with the new name of

the source, listing or debug file (provided they are stored in a
PDS); or

v type over the Listing/Source file field with the new name for the
source, listing, or separate debug file.

When Debug Tool is invoked, it interrupts the execution of your program to allow
you to take appropriate actions. Debug Tool returns control to your program at the
point of its interruption as the result of a GO or STEP command. You can also
specify that control return to some other point in your program with the GOTO or GO
BYPASS command. You can even specify that control be given to another program
with the CALL command or a C/C++ function invocation.

If Debug Tool gains control because of a program condition, when control is
returned to the program, the condition is raised in the program unless explicitly
prevented.

Related tasks
“Chapter 2. Preparing your program for debugging” on page 5
“Invoking Debug Tool using the TEST run-time option” on page 26
“Invoking Debug Tool from a program” on page 37
“Invoking your program when starting a debug session” on page 46
“Chapter 4. Debugging your programs in full-screen mode” on page 53
“Changing which source file appears in the Source window” on page 65

Related references
“Data sets used by Debug Tool” on page 24

© Copyright IBM Corp. 1995, 2001 23

Data sets used by Debug Tool
Debug Tool uses the following data sets:

C/C++ source
This data set is input to the compiler, and should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to show you
the program as it is executing.

The C/C++ compiler stores the name of the source data set inside the load
module. Debug Tool uses this data set name to access the source.

This might not be the original source data set; for example, the program
might have been preprocessed by the CICS translator. If you use a
preprocessor, you must keep the data set input to the compiler in a
permanent data set for later use with Debug Tool.

As this data set might be read many times by Debug Tool, we recommend
that you define it with the largest block size that your DASD can hold.

COBOL listing
This data set is output by the compiler and should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to show you
the program as it is executing.

The COBOL compiler stores the name of the listing data set inside the load
module. Debug Tool uses this data set name to access the listing.

Debug Tool does not use the output created by the COBOL LIST compiler
option; performance will be improved if you specify NOLIST.

COBOL for OS/390 programs compiled with the SEPARATE suboption do
not need to save the listing file. The separate debug file must be saved.

Note: The above behavior does not apply to VS COBOL II or OS/VS
COBOL. For these two compilers, Debug Tool creates a default name
in the form userid.cuname.LIST and uses that name to locate the
listing.

As this data set might be read many times by Debug Tool, we recommend
that you define it with the largest block size that your DASD can hold.

Separate debug file (for COBOL for OS/390 only)
This data set is output by the compiler when you compile your program
with the SEPARATE compiler suboption. It should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to retrieve the
listing and debug data.

The COBOL compiler stores the date set name of the separate debug file
inside the load module. Debug Tool uses this data set name to access the
listing and other debug data, such as the symbol table.

PL/I source (for VisualAge PL/I for OS/390 only)
This data set is input to the compiler, and should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to show you
the program as it is executing.

The VisualAge PL/I for OS/390 compiler stores the name of the source
data set inside the load module. Debug Tool uses this data set name to
access the source.

24 Debug Tool User’s Guide and Reference

This might not be the original source data set; for example, the program
might have been preprocessed by the CICS translator. If you use a
preprocessor, you must keep the data set input to the compiler in a
permanent data set, for later use with Debug Tool.

As this data set might be read many times by Debug Tool, we recommend
that you define it with the largest block size that your DASD can hold.

PL/I listing (for all other versions of PL/I compiler)
This data set is output by the compiler and should be kept in a permanent
file. Debug Tool uses it to show you the program as it is executing.

The PL/I compiler does not store the name of the listing data set. Debug
Tool looks for the listing in a data set with the name in the form of
userid.cuname.LIST.

Debug Tool does not use the output created by the PL/I compiler LIST
option; performance will be improved if you specify NOLIST.

As this data set might be read many times by Debug Tool, we recommend
that you define it with the largest block size that your DASD can hold.

Preferences file

This data set contains Debug Tool commands that customize your session.
You can use it, for example, to change the default screen colors set by
Debug Tool. It can be a sequential or PDS data set.

The default DD name for the Debug Tool preferences file is INSPPREF.

Preferences files are not used in remote debug mode.

Commands file

This data set contains Debug Tool commands that control the debug
session. You can use it, for example, to set breakpoints or set up monitors
for common variables. It can be a sequential or PDS member.

The default DD name for the Debug Tool commands file is INSPIN.

Commands files are not used in remote debug mode.

Log file

Debug Tool uses this file to record the progress of the debugging session.
We recommend that you define this data set as a sequential data set.

The default DD name for the Debug Tool log file is INSPLOG.

Log files are not used in remote debug mode.

Save file

Debug Tool uses this file to store preference settings such as screen colors
and panel layouts at the end of each session. These settings are then
restored at the start of subsequent sessions. The file must have a record
format of Fixed and a record length of 80.

The default DD name for the Debug Tool save file is INSPSAFE.

Save files are not used for remote debug sessions.

Save files are not used under CICS.

Related references
“SET DEFAULT LISTINGS (MVS)” on page 321
“SET SOURCE” on page 338

Chapter 3. Beginning a debug session 25

Related references
“COBOL source listing must be fixed block format” on page 183

Invoking Debug Tool using the TEST run-time option
To specify how Debug Tool gains control of your application and begins a debug
session, you can use the TEST run-time option. The simplest form of the TEST
option is TEST with no suboption; however, suboptions provide you with more
flexibility. There are four suboptions available, summarized below.

test_level
Determines what HLL conditions raised by your program will cause
Debug Tool to gain control

commands_file
Determines which primary commands file is used as the initial source of
commands

prompt_level
Determines whether an initial commands list is unconditionally executed
during program initialization

preferences_file
Specifies the session parameter and a file that you can use to specify
default settings for your debugging environment, such as customizing the
settings on the Debug Tool Profile panel

Related tasks
“Specifying TEST run-time option with #pragma runopts in C/C++” on page 37
“Invoking Debug Tool from a program” on page 37

Related references
“Data sets used by Debug Tool” on page 24
“TEST run-time option”
“TEST run-time option usage notes” on page 33

TEST run-time option
You can specify any combination of the TEST run-time suboptions, but they must
be specified in the order presented. Any option or suboption referred to as
"default" is the IBM-supplied default, and might have been changed by your
system administrator during installation.

The syntax for this option is:

��
NOTEST
TEST

(, ,
test_level commands_file

�

�
,)

prompt_level preferences_file

�$

26 Debug Tool User’s Guide and Reference

|
|

|||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||

|

test_level:

ALL

ERROR
NONE

commands_file:

*

commands_file_designator

prompt_level:

%

PROMPT

NOPROMPT
;
*

;
(1)

" command "
(1) '

'

preferences_file:

MFI :
% terminal_id
% VTAM_LU_id

(2)
VADAPPC& appc_workstation_id :

%session_id
(2) %8000

VADTCPIP& tcpip_workstation_id :
%port_id

�

�
INSPPREF

preferences_file_designator
*

Notes:

1 Double quotes for MVS; single quotes for VM.

2 Specifies remote debug mode.

NOTEST
Specifies that Debug Tool is not invoked at program initialization. However,

Chapter 3. Beginning a debug session 27

|

||||||||||||||||||||

|

|

|||||||||||||||||

|

|

||

|

|

|||
|

|
||||||||||||||||||

|

|

||

||

|

invoking Debug Tool is still possible through the use of CEETEST, PLITEST, or
the __ctest() function. In such a case, the suboptions specified with NOTEST
are used when Debug Tool is invoked.

TEST
Specifies that Debug Tool is given control according to its suboptions. The TEST
suboptions supplied are used if Debug Tool is invoked with CEETEST, PLITEST,
or __ctest().

test_level:

ALL (or blank)
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or Language
Environment condition of Severity 1 and above causes Debug Tool to gain
control, regardless of whether a breakpoint is defined for that type of
condition. If a condition occurs and a breakpoint exists for the condition, the
commands specified in the breakpoint are executed. If a condition occurs and a
breakpoint does not exist for that condition, or if an attention interrupt occurs,
Debug Tool does the following:
v In interactive mode, Debug Tool reads commands from a commands file (if

it exists and is available) or prompts you for commands.
v In noninteractive mode, Debug Tool reads commands from the commands

file. If none is available, the program runs uninterrupted.

ERROR
Specifies that only the following conditions cause Debug Tool to gain control
without a user-defined breakpoint.
v For C/C++:

– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above
– Any C/C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

v For COBOL:
– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above.

v For PL/I:
– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, commands specified in
the breakpoint are executed. If no commands are specified, Debug Tool reads
commands from a commands file or prompts you for them in interactive
mode.

NONE
Specifies that Debug Tool gains control from a condition only if a breakpoint is
defined for that condition. If a breakpoint exists for the condition, the
commands specified in the breakpoint are executed. An attention interrupt
does not cause Debug Tool to gain control unless Debug Tool has previously
been invoked. To change the TEST level after you start your session, use the SET
TEST command.

commands_file:

28 Debug Tool User’s Guide and Reference

* (or blank)
Indicates that no commands file is supplied. The terminal, if available, is used
as the source of Debug Tool commands.

commands_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
for the primary commands file which is used instead of the terminal as initial
source of commands after the preferences file finishes running. If the
designator might cause an ambiguity in the list of suboptions, enclose it in
single or double quotation marks to differentiate it from the remainder of the
list. If you are using a single ddname, no quotation marks are required.

The commands_file_designator has a maximum length of 80 characters.

If the specified ddname is longer than eight characters, it is automatically
truncated, but no error message is issued.

When the end of the file is reached, Debug Tool interactively prompts you for
commands until a QUIT command or the end of your application is reached.

The use of a primary commands file is required when debugging batch
programs with a noninteracting interface, and this suboption enables you to
specify a source of commands when using Debug Tool in batch mode. It also
allows you to use a log file from one Debug Tool session as a source of
commands in a subsequent Debug Tool session to regression test your
application.

The primary commands file is required for batch debug sessions, unless you
are debugging in full-screen mode using a VTAM terminal or remote debug
mode and conducting interactive batch debug sessions. The commands file acts
as a surrogate terminal. Debug Tool reads and executes commands from it
until either the file runs out of commands or your program finishes running.

If the end of the file is reached without encountering a QUIT command, Debug
Tool looks to your terminal, if available, for commands. If your terminal is not
available (if you are debugging in batch, for example), Debug Tool forces the
GO command to run your program until the end is reached.

The primary commands file is shared across multiple enclaves.

Note: Commands file is not supported in remote debug mode.

prompt_level:

PROMPT (or ; or blank)
Indicates that you want Debug Tool invoked immediately after Language
Environment initialization. Commands are read from the preferences file and
then any designated primary commands file. If neither file exists, commands
are read from your terminal or workstation.

NOPROMPT (or *)
Indicates that you do not want Debug Tool invoked immediately after
Language Environment initialization. Instead, your application begins running.

command
One or more valid Debug Tool commands. Debug Tool is invoked immediately
after program initialization, and then the command (or command string) is
executed. The command string can have a maximum length of 250 characters,
and should be enclosed in double quotation marks (MVS) or single quotation
marks (VM). Multiple commands must be separated by a semicolon.

Chapter 3. Beginning a debug session 29

|
|
|

Note: If you include a STEP or GO in your command string, none of the
subsequent commands are processed. The use of a command in
prompt_level is not supported in remote debug mode.

preferences_file:

MFI
Specifies Debug Tool should be invoked in MFI mode, that is, you are using a
3270-type terminal for your debug sessions.

terminal_id (for CICS only)
Specifies up to a four-character terminal id to receive Debug Tool screen output
during dual terminal session. The corresponding terminal should be in service
and acquired, ready to receive Debug Tool-related I/O.

VTAM_LU_id (for full-screen mode using a VTAM terminal only)
Specifies up to an eight-character VTAM logical unit (LU) identifier for a
terminal used in full-screen mode. The VTAM_LU_id parameter can not be
used to debug CICS applications. The LU must be:
v known to the z/OS, OS/390 or MVS system on which the job is executing,
v must be marked SLU enabled, and
v must not be in session with any application unless the application is a

terminal session manager that allows another application to take control of
the LU.

When you specify a VTAM_LU_id, you debug your program in full-screen
mode.

If you do not know the LU identifier for your terminal, log on to TSO and use
the EQALUNAM command to determine the LU identifier. If Debug Tool is present
in your system linklist, the EQALUNAM TSO command (with no parameters) can
be used to determine the LU identifier. Alternatively, you can use the TSO CALL
command as follows:
CALL dtdsn(EQALUNAM)

where dtdsn is the name of the data set containing the Debug Tool load
modules.

INSPPREF (or blank)
Debug Tool-supplied default preferences file ddname. Any preferences file that
is specified to Debug Tool becomes the first source of Debug Tool commands
after the debugger is invoked. It is often used to set up the Debug Tool
environment.

preferences_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
specifying the preferences file to be used.

This file is read the first time Debug Tool is invoked and must contain a
sequence of Debug Tool commands to be executed.

* Specifies that no preferences file is supplied.

Note: INSPPREF and preferences_file_designator are not supported when
using remote debug mode. * is always assumed.

For use in remote debug mode only:

30 Debug Tool User’s Guide and Reference

|
|
|
|

|

|

|
|
|

|
|

|
|
|
|
|

|

|
|

Remote debugging allows you to debug host-based applications via a
workstation-based GUI interface. It also provides important additional function
such as the ability to interactively debug batch processes. For example, a COBOL
batch job running in MVS/JES, or a COBOL CICS batch transaction, can be
interactively debugged via a TCP/IP connection to a workstation equipped with a
remote debugger. You can debug VisualAge for Java, Enterprise Edition for
OS/390, applications; VisualAge PL/I for OS/390 applications; and applications
running in UNIX System Services Shell. The Debug Tool web site contains a
current list of environments supporting remote debugging.

Remote debugging works like this: the host application invokes Debug Tool, which
uses a TCP/IP (Windows or OS/2) or APPC (OS/2 only) connection to
communicate with a remote debugger on your workstation.

The following TEST suboptions are for use only in remote debug mode:

VADAPPC&
Specifies that Debug Tool is interfacing with a workstation equipped with the
VisualAge Remote Debugger and configured for APPC communications with
the host. This suboption is valid only with the VisualAge Remote Debugger on
a workstation.

appc_workstation_id
A 1-to-8 character alphanumeric name defining your workstation at APPC
configuration time. This is the APPC name of the workstation that will display
your debug information. An example of this symbolic destination name would
be AJSMITH or DEPT87. If you do not define appc_workstation_id properly
when APPC is configured and your application is running in batch (for
example, JES), Debug Tool is not initiated. The batch program continues to run
or terminates, depending on its state when the debug session is attempted. If
appc_workstation_id is improperly defined and your application is running in
the TSO foreground, or in CICS when the task has a terminal associated with
it, an MFI session is created.

%session_id
Specifies a unique name of the application you want to debug. If you identify
your session with the same session_id as that of an existing session, an
initialization failure for the session being started will occur.

VADTCPIP&
Specifies that Debug Tool is interfacing with a workstation equipped with a
remote debugger and configured for TCP/IP communications with the host.

tcpip_workstation_id
TCP/IP name or address of the workstation where the remote debug daemon
is executing. The name can be specified as a symbolic address, such as
some.name.com. The address can be specified as a TCP/IP address, such as
9.112.26.333.

%8000
Default port_id. If this suboption is omitted, Debug Tool uses 8000 as the port
ID.

%port_id
Specifies a unique TCP/IP port on your workstation that is used by the remote
debug daemon.

When using the VADTCPIP& suboption, consider the following possible errors:

Chapter 3. Beginning a debug session 31

v The tcpip_workstation_id or port_id parameters must be syntactically or
functionally correct. If they are not and you attempt an interactive session, an
MFI session is allocated, where possible. For example, if you attempt a session
from TSO or CICS with incorrect parameters, you will receive an MFI session at
your host window. This error is noted in the MVS SDSF log as an allocation
failure.

v If the tcpip_workstation_id or port_id parameters are not syntactically or
functionally correct, and you attempt an interactive batch session with Debug
Tool, Debug Tool will terminate and the batch application will continue to run as
though no debug session was ever attempted. This error occurs when, for
example, you run a JES batch job or CICS batch transaction. This error is noted
in the MVS SDSF log as an allocation failure.

v If your OS/390 or MVS environment is not using the default TCP/IP data set
named TCPIP.TCPIP.DATA and you attempt to run an interactive batch session,
Debug Tool terminates. Batch applications continue to run as though no debug
session was ever attempted. This error is noted in the MVS SDSF log as an
allocation error.
To fix this error, specify the SYSTCPD DDNAME with the appropriate TCP/IP
data set name. For example,
//SYSTCPD DD DISP=SHR,DSN=MY.TCPIP.DATA

v For TCP/IP sessions, the remote debug daemon must be started at the
workstation before you initialize Debug Tool. Refer to the appropriate product
documentation for help on using the remote debug daemon.

There are two TEST suboptions that are used when you are debugging Japanese
programs in remote debug mode. Use one of these suboptions to notify Debug
Tool which code page to use. When you specify one of these suboptions, it must be
the second suboption in the suboption list.

VADSCP930
Use this option to specify that IBM-930 is the Japanese EBCDIC code page. For
example:
TEST(,VADSCP930,,VADTCPIPmachine name:*)

Where machinename is the IP address of your workstation.

VADSCP939
Use this option to specify that IBM-939 is the Japanese EBCDIC code page. For
example:
TEST(,VADSCP939,,VADTCPIPmachine name:*)

Where machinename is the IP address of your workstation.

“Example: TEST run-time options” on page 35

Related tasks
“Requesting an attention interrupt during interactive sessions” on page 71

Related references
“TEST run-time option usage notes” on page 33
“Precedence of Language Environment run-time options” on page 34
“SET TEST” on page 340
z/OS Language Environment Debugging
Guide

32 Debug Tool User’s Guide and Reference

TEST run-time option usage notes

Defining TEST suboptions in your program
In C, C++ or PL/I, you can define TEST with suboptions using a #pragma runopts
or PLIXOPT string, then specify TEST with no suboptions at run time. This causes
the suboptions specified in the #pragma runopts or PLIXOPT string to take effect.

You can change the TEST/NOTEST run-time options at any time with the SET TEST
command.

Suboptions and NOTEST
Some suboptions are disabled with NOTEST, but are still allowed. This means you
can start your program using the NOTEST option and specify suboptions you might
want to take effect later in your debug session. The program begins to run without
Debug Tool taking control.

To enable the suboptions you specified with NOTEST, invoke Debug Tool during
your program’s run time using a library service call such as CEETEST, PLITEST, or
the __ctest() function.

Implicit breakpoints
If the test level in effect causes Debug Tool to gain control at a condition or at a
particular program location, an implicit breakpoint with no associated action is
assumed. This occurs even though you have not previously defined a breakpoint
for that condition or location using an initial command string or a primary
commands file. Control is given to your terminal or to your primary commands
file.

Primary commands file and USE file
The primary commands file acts as a surrogate terminal. Once it is accessed as a
source of commands, it continues to act in this capacity until all commands have
been executed or the application has ended. This differs from the USE file in that,
if a USE file contains a command that returns control to the program (such as STEP
or GO), all subsequent commands are discarded. However, USE files invoked from
within a primary commands file take on the characteristics of the primary
commands file and can be executed until complete.

The initial command list, whether it consists of a command string included in the
run-time options or a primary commands file, can contain a USE command to get
commands from a secondary file. If invoked from the primary commands file, a
USE file takes on the characteristics of the primary commands file.

Running in batch mode
In batch mode, when the end of your commands file is reached, a GO command is
forced at each request for a command until the program terminates. If another
command is requested after program termination, a QUIT command is forced.

Invoking Debug Tool at different points
If Debug Tool is invoked during program initialization, invocation occurs before
the main prolog has completed. At that time, no program blocks are active and
references to variables in the main procedure cannot be made, compile units
cannot be called, and GOTO cannot be used. However, references to static variables
can be made.

If you enter STEP at this point, before entering any other commands, both program
and Language Environment initialization will complete and give you access to all
variables. You can also enter all valid commands.

Chapter 3. Beginning a debug session 33

If Debug Tool is invoked while your program is running (for example, using a
CEETEST call), it might not be able to find all compile units associated with your
application. Compile units located in load modules that are not currently active are
not known to Debug Tool, even if they were run prior to Debug Tool’s
initialization.

Debug Tool also does not know about compile units that were not compiled with
the TEST compiler option, even if they are active, nor does Debug Tool know about
compile units written in unsupported languages.

For example, suppose load module mod1 contains compile units cu1 and cu2, both
compiled with the TEST option. The compile unit cu1 calls cux, contained in load
module mod2, which returns after it completes processing. The compile unit cu2
contains a call to the CEETEST library service. When the call to CEETEST initializes
Debug Tool, only cu1 and cu2 are known to it. Debug Tool does not recognize cux.

The initial command string is performed only once, when Debug Tool is first
initialized in the process.

Commands in the preferences file are performed only once, when Debug Tool is
first initialized in the process.

Session log
The session log stores the commands entered and the results of the execution of
those commands. The session log saves the results of the execution of the
commands as comments. This allows you to use the session log as a commands
file.

Related tasks
“Preparing your application to invoke Debug Tool using DTCN” on page 137

Related references
“USE command” on page 353
“SET TEST” on page 340

Precedence of Language Environment run-time options
The Language Environment run-time options have the following order of
precedence (from highest to lowest):
1. Installation options in the CEEDOPT file that were specified as nonoverrideable

with the NONOVR attribute.
2. Options specified by the Language Environment assembler user exit. Debug

Tool uses the DTCN transaction in the CICS environment and customized
Language Environment user exit EQADCCXT that is link-edited with the
application.

3. Options specified at the invocation of your application, using the TEST run-time
option, unless accepting run-time options is disabled by Language Environment
(EXECOPS/NOEXECOPS).

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with your
application.
If the object module for the source program is input to the linkage editor before
the CEEUOPT object module, then these options override CEEUOPT defaults.
You can force the order in which objects modules are input by using linkage
editor control statements.

34 Debug Tool User’s Guide and Reference

5. Region-wide CICS or IMS options defined within CEEROPT.
6. Option defaults specified at installation in CEEDOPT.
7. IBM-supplied defaults.

Suboptions are processed in the following order:
1. Commands entered at the command line override any defaults or suboptions

specified at run time.
2. Commands executed from a preferences file override the command string and

any defaults or suboptions specified at run time.
3. Commands from a commands file override default suboptions, suboptions

specified at run time, commands in a command string, and commands in a
preferences file.

Related references
z/OS Language Environment Programming
Guide

Example: TEST run-time options
The following examples of using the TEST run-time option are provided to
illustrate run-time options available for your programs. They do not illustrate
complete commands.

NOTEST Debug Tool is not invoked at program initialization. Note that a call to
CEETEST, PLITEST, or __ctest() causes Debug Tool to be invoked during
the program’s execution.

NOTEST(ALL,MYCMDS,*,*)
Debug Tool is not invoked at program initialization. Note that a call to
CEETEST, PLITEST, or __ctest() causes Debug Tool to be invoked during
the program’s execution. After Debug Tool is invoked, the suboptions
specified become effective and the commands in the file allocated to DD
name of MYCMDS are processed.

TEST Specifying TEST with no suboptions causes a check for other possible
definitions of the suboption. For example, C and C++ allow default
suboptions to be selected at compile time using #pragma runopts. Similarly,
PL/I offers the PLIXOPT string. Language Environment provides the macro
CEEXOPT. Using this macro, you can specify installation and
program-specific defaults.

If no other definitions for the suboptions exist, the IBM-supplied default
suboptions are (ALL, *, PROMPT, INSPREF).

TEST(ALL,*,*,*)
Debug Tool is not invoked initially; however, any condition or an attention
in your program causes Debug Tool to be invoked, as does a call to
CEETEST, PLITEST, or __ctest(). Neither a primary commands file nor
preferences file is used.

TEST(NONE,,*,*)
Debug Tool is not invoked initially and begins by running in a "production
mode", that is, with minimal effect on the processing of the program.
However, Debug Tool can be invoked using CEETEST, PLITEST, or
__ctest().

TEST(ALL,test.scenario,PROMPT,prefer)
Debug Tool is invoked at the end of environment initialization, but before
the main program prolog has completed. The ddname prefer is processed

Chapter 3. Beginning a debug session 35

as the preferences file, and subsequent commands are found in data set
test.scenario. If all commands in the commands file are processed and
you issue a STEP command when prompted, or a STEP command is
executed in the commands file, the main block completes initialization
(that is, its AUTOMATIC storage is obtained and initial values are set). If
Debug Tool is reentered later for any reason, it continues to obtain
commands from test.scenario repeating this process until end-of-file is
reached. At this point, commands are obtained from your terminal.

TEST(ALL,,,MFI%F000:)
For CICS dual terminal and CICS batch, Debug Tool is invoked on the
terminal F000 at the end of the environment initialization.

TEST(ALL,,,MFI%TCP00001:)
For environments other than CICS, Debug Tool is invoked on the terminal
associated with the VTAM LU TCP00001. This terminal must be known to
VTAM and not in session when Debug Tool is invoked.

Remote debug mode
If you are working from a cooperative environment, that is, you are
debugging your host application from your workstation, the following
examples apply:
TEST(,,,VADAPPCOSCAR:*) /* Using VADAPPC suboption */
TEST(,,,VADTCPIP&ERNIE:*) /* Using VADTCPIP suboption */
TEST(,,,VADTCPIP&machine.somewhere.something.com:*)
TEST(,,,VADTCPIP&9.24.104.79:*)
NOTEST(,,,VACTCPIP&9.24.111.55:*)

where OSCAR and ERNIE is a workstation_id.

Related references
z/OS Language Environment Programming
Guide

Specifying additional run-time options with VS COBOL II and
OS PL/I applications

There are two additional run-time options that you need to use to debug VS
COBOL II and OS PL/I programs: STORAGE and TRAP(ON).

Specifying the STORAGE run-time option
The STORAGE run-time option controls the initial content of storage when allocated
and freed, and the amount of storage that is reserved for the ″out-of-storage″
condition. When you specify one of the parameters in the STORAGE run-time option,
all allocated storage processed by the parameter is initialized to that value.

Specifying the TRAP(ON) run-time option
The TRAP(ON) option is used to fully enable the Language Environment condition
handler that passes exceptions to the Debug Tool. Along with the TEST option, it
must be used if you want the Debug Tool to take control automatically when an
exception occurs. Using TRAP(OFF) with the Debug Tool causes unpredictable
results to occur.

Note: This option replaces the OS PL/I and VS COBOL II STAE/NOSTAE options.

36 Debug Tool User’s Guide and Reference

|
|
|
|

Specifying TEST run-time option with #pragma runopts in
C/C++

The TEST run-time option can be specified either when you invoke your program,
or directly in your source by using this #pragma:
#pragma runopts (test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. For
example, if you specified the following in the source:
#pragma runopts (notest(all,*,prompt))

then entered TEST on the command line, the result would be
TEST(ALL,*,PROMPT).

TEST overrides the NOTEST option specified in the #pragma and, because TEST does
not contain any suboptions of its own, the suboptions ALL, *, and PROMPT remain in
effect.

If you link together two or more compile units with differing #pragmas, the options
specified with the first compile are honored. With multiple enclaves, the options
specified with the first enclave (or compile unit) invoked in each new process are
honored.

If you specify options on the command line and in a #pragma, any options entered
on the command line override those specified in the #pragma unless you specify
NOEXECOPS. Specifying NOEXECOPS, either in a #pragma or with the EXECOPS compiler
option, prevents any command line options from taking effect.

Related tasks
z/OS C/C++ User’s Guide

Invoking Debug Tool from a program
Debug Tool can also be invoked directly from within your program using one of
the following methods:
v Language Environment provides the callable service CEETEST that is invoked

from Language Environment-enabled languages.
v For C or C++ programs, you can use a __ctest() function call or include a

#pragma runopts specification in your program.

Note: The __ctest() function is not supported in CICS.
v For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT

string that specifies the correct TEST run-time suboptions to invoke Debug Tool.

To invoke Debug Tool using these alternatives, you still need to be aware of the
TEST suboptions specified using NOTEST, CEEUOPT, or other "indirect" settings.

“Example: using CEETEST to invoke Debug Tool from C/C++” on page 40
“Example: using CEETEST to invoke Debug Tool from COBOL” on page 42
“Example: using CEETEST to invoke Debug Tool from PL/I” on page 43

Related tasks
“Invoking Debug Tool with CEETEST” on page 38
“Invoking Debug Tool with PLITEST” on page 44

Chapter 3. Beginning a debug session 37

“Invoking Debug Tool with the __ctest() function” on page 45
“Using CEEUOPT to invoke Debug Tool under CICS” on page 141

Related references
“TEST run-time option usage notes” on page 33

Invoking Debug Tool with CEETEST
Using CEETEST, you can invoke Debug Tool from within your program and send it
a string of commands. If no command string is specified, or the command string is
insufficient, Debug Tool prompts you for commands from your terminal or reads
them from the commands file. In addition, you have the option of receiving a
feedback code that tells you whether the invocation procedure was successful.

If you don’t want to compile your program with hooks, you can use CEETEST calls
to invoke Debug Tool at strategic points in your program. If you decide to use this
method, you still need to compile your application so that symbolic information is
created.

Using CEETEST when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for CEETEST is:

For C/C++

��
NOTEST
TEST

BLOCK
(NOBLOCK)

LINE
NOLINE
PATH
NOPATH
SYM
NOSYM

ALL
NONE

�$

For COBOL

��
(1) NOTEST

TEST
(ALL, SYM)

(***)
, NOSEPARATE

(ALL , SYM)
BLOCK (***)
NONE , SEPARATE
PATH NOSYM
STMT (***)

, NOSEPARATE

�$

38 Debug Tool User’s Guide and Reference

Notes:

1 SEPARATE and NOSEPARATE are available only for COBOL for OS/390
programs.

For PL/I

��
NOTEST
TEST

NONE
(BLOCK)

STMT SYM
PATH , NOSYM
ALL
SYM
NOSYM

NONE
, BLOCK

STMT
PATH
ALL

�$

string_of_commands (input)
Halfword-length prefixed string containing a Debug Tool command list,
string_of_commands is optional.

If Debug Tool is available, the commands in the list are passed to the debugger
and carried out.

If string_of_commands is omitted, Debug Tool prompts for commands in
interactive mode.

For Debug Tool, remember to use the continuation character if your command
exceeds 72 characters.

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result of
this service.

CEE000

Severity = 0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2

Severity = 3
Msg_No = 2530
Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/JES batch
applications or CICS nonterminal tasks getting APPC allocation failures.
For example, either the Debug Tool environment was corrupted or the
debug event handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you
decode the fields in the feedback code. Requesting the return of the feedback code
is recommended.

Chapter 3. Beginning a debug session 39

For C/C++ and COBOL, if Debug Tool was invoked through CALL CEETEST, the
GOTO command is only allowed after Debug Tool has returned control to your
program via STEP or GO.

Usage notes
C/C++ Include leawi.h header file.

COBOL
Include CEEIGZCT. CEEIGZCT is in the Language Environment SCEESAMP
data set.

PL/I Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Environment
SCEESAMP data set.

Batch and CICS nonterminal processes
We strongly recommend that you use feedback codes (fc) when using
CEETEST to initiate Debug Tool from a batch process or a CICS nonterminal
task; otherwise, results are unpredictable.

“Example: using CEETEST to invoke Debug Tool from C/C++”
“Example: using CEETEST to invoke Debug Tool from COBOL” on page 42
“Example: using CEETEST to invoke Debug Tool from PL/I” on page 43

Related tasks
“Entering multiline commands in full-screen and line mode” on page 205

Related references
z/OS Language Environment Programming
Guide

Example: using CEETEST to invoke Debug Tool from C/C++
The following examples show how to use the Language Environment callable
service CEETEST to invoke Debug Tool from C or C++ programs.

Example 1
In this example, an empty command string is passed to Debug Tool and a
pointer to the Language Environment feedback code is returned. If no
other TEST run-time options have been compiled into the program, the call
to CEETEST invokes Debug Tool with all defaults in effect. After it gains
control, Debug Tool prompts you for commands.
#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "");
commands.length = strlen(commands.string);

CEETEST(&commands, &fc);

}

Example 2
In this example, a string of valid Debug Tool commands is passed to
Debug Tool and a pointer to Language Environment feedback code is
returned. The call to CEETEST invokes Debug Tool and the command string
is processed. At statement 23, the values of x and y are displayed in the

40 Debug Tool User’s Guide and Reference

|
|

Log, and execution of the program resumes. Barring further interrupts,
Debug Tool regains control at program termination and prompts you for
commands. The command LIST(z) is discarded when the command GO is
executed.

Note: If you include a STEP or GO in your command string, all commands
after that are not processed. The command string operates like a
commands file.
#include <leawi.h>
#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; {LIST(x); LIST(y);} GO; LIST(z)");
commands.length = strlen(commands.string);...

CEETEST(&commands, &fc);...

}

Example 3
In this example, a string of valid Debug Tool commands is passed to
Debug Tool and a pointer to the feedback code is returned. If the call to
CEETEST fails, an informational message is printed.

If the call to CEETEST succeeds, Debug Tool is invoked and the command
string is processed. At statement 30, the values of x and y are displayed in
the Log, and execution of the program resumes. Barring further interrupts,
Debug Tool regains control at program termination and prompts you for
commands.
#include <leawi.h>
#include <string.h>
#include <stdio.h>

#define SUCCESS "\0\0\0\0"

int main (void) {

int x,y,z;
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string,"AT LINE 30 { LIST(x); LIST(y); } GO;");
commands.length = strlen(commands.string);...

CEETEST(&commands,&fc);...

if (memcmp(&fc,SUCCESS,4) != 0) {
printf("CEETEST failed with message number %d\n",fc.tok_msgno);
return(2999);

}
}

Chapter 3. Beginning a debug session 41

|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
||||
|
|
|
|
|
|

Example: using CEETEST to invoke Debug Tool from COBOL
The following examples show how to use the Language Environment callable
service CEETEST to invoke Debug Tool from COBOL programs.

Example 1
A command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes
active and prompts you for commands or reads them from a commands
file.
01 FC.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
77 Debugger Picture x(7) Value 'CEETEST'.

01 Parms.
05 AA Picture S9(4) comp Value 14.
05 BB Picture x(14) Value 'SET SCREEN ON;'.

CALL Debugger USING Parms FC.

Example 2
A string of commands is passed to Debug Tool when it is invoked. After it
gains control, Debug Tool sets a breakpoint at statement 23, runs the LIST
commands and returns control to the program by running the GO
command. The command string is already defined and assigned to the
variable COMMAND-STRING by the following declaration in the DATA
DIVISION of your program:
01 COMMAND-STRING.

05 AA Picture 99 Value 60 USAGE IS COMPUTATIONAL.
05 BB Picture x(60) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

In addition, the result of the call is returned in the feedback code, using a
variable defined as:
01 FC.

02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.

03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.

03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.

04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.

03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.

in the DATA DIVISION of your program. You are not prompted for
commands.
CALL "CEETEST" USING COMMAND-STRING FC.

42 Debug Tool User’s Guide and Reference

Example: using CEETEST to invoke Debug Tool from PL/I
The following examples show how to use the Language Environment callable
service CEETEST to invoke Debug Tool from PL/I programs.

Example 1
No command string is passed to Debug Tool at its invocation and no
feedback code is returned. After it gains control, Debug Tool becomes
active and prompts you for commands or reads them from a commands
file.
CALL CEETEST(*,*); /* omit arguments */

Example 2
A command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes
active and executes the command string. Barring any further interruptions,
the program runs to completion, where Debug Tool prompts for further
commands.
DCL ch char(50)

init('AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;');

DCL 1 fb,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case bit(2),
8 Sev bit(3),
8 Ctrl bit(3),

5 FacID Char(3),
5 I_S_info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,

254 real fixed bin(15), /* MsgSev */
254 real fixed bin(15), /* MSGNUM */
254 /* Flags */,

255 bit(2), /* Flags_Case */
255 bit(3), /* Flags_Severity */
255 bit(3), /* Flags_Control */

254 char(3), /* Facility_ID */
254 fixed bin(31)) /* I_S_Info */

options(assembler) ;

CALL CEETEST(ch, fb);

Example 3
This example assumes that you use predefined function prototypes and
macros by including CEEIBMAW, and predefined feedback code constants and
macros by including CEEIBMCT.

A command string is passed to Debug Tool that sets a breakpoint on every
tenth executed statement. Once a breakpoint is reached, Debug Tool
displays the current location information and continues the execution.
After the CEETEST call, the feedback code is checked for proper execution.

Note: The feedback code returned is either CEE000 or CEE2F2. There is no
way to check the result of the execution of the command passed.
%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/* if CEEIBMCT is NOT included, the following DECLARES need to be

Chapter 3. Beginning a debug session 43

|
|

provided: ---------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builtin;
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);

DECLARE
fbtoken CHAR;
condition CHAR;

RETURN('(ADDR('||fbtoken||')–>CEEIBMCT = '||condition||')');
%END FBCHECK;
%ACT FBCHECK;

---------- comment end --------------- */

Call CEETEST('AT Every 10 STATEMENT * Do; Q Loc; Go; End;'||
'List AT;', FC);

If ¬FBCHECK(FC, CEE000)
Then Put Skip List('––––> ERROR! in CEETEST call', FC.MsgNo);

Invoking Debug Tool with PLITEST
For PL/I programs, the preferred method of invoking Debug Tool is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform
declarations.

The syntax is:

�� CALL PLITEST
(character_string_expression)

; �$

character_string_expression
Specifies a list of Debug Tool commands. If necessary, this is converted to a
fixed-length string.

Notes:

1. If Debug Tool executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don’t want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your
application so that symbolic information is created.

The following examples show how to use PLITEST to invoke Debug Tool for PL/I.

Example 1
No argument is passed to Debug Tool when it is invoked. After gaining
control, Debug Tool prompts you for commands.
CALL PLITEST;

Example 2
A string of commands is passed to Debug Tool when it is invoked. After
gaining control, Debug Tool sets a breakpoint at statement 23, and returns
control to the program. You are not prompted for commands. In addition,
the List Y; command is discarded because of the execution of the GO
command.
CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

44 Debug Tool User’s Guide and Reference

Example 3
Variable ch is declared as a character string and initialized as a string of
commands. The string of commands is passed to Debug Tool when it is
invoked. After it runs the commands, Debug Tool prompts you for more
commands.
DCL ch Char(45) Init('At Statement 23 Do; List x; End;');

CALL PLITEST(ch);

Invoking Debug Tool with the __ctest() function
You can also use the C/C++ library routine __ctest() or ctest() to invoke Debug
Tool. Add:
#include <ctest.h>

to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use __ctest() function. The __ctest()
function is not supported in CICS.

When a list of commands is specified with __ctest(), Debug Tool runs the
commands in that list. If you specify a null argument, Debug Tool gets commands
by reading from the supplied commands file or by prompting you. If control
returns to your application before all commands in the command list are run, the
remainder of the command list is ignored. Debug Tool will continue reading from
the specified commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use __ctest()
function calls to invoke Debug Tool at strategic points in your program. If you
decide to use this method, you still need to compile your application so that
symbolic information is created.

Using __ctest() when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for this option is:

�� int
(1)

__ctest (char *char_str_exp) �$

Notes:

1 The syntax for ctest() and __ctest() is the same.

char_str_exp
Specifies a list of Debug Tool commands.

The following examples show how to use the __ctest() function for C/C++.

Example 1
A null argument is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool prompts you for commands (or reads commands from
the primary commands file, if specified).
__ctest(NULL);

Chapter 3. Beginning a debug session 45

Example 2
A string of commands is passed to Debug Tool when it is invoked. At
statement 23, Debug Tool lists x and y, then returns control to the program.
You are not prompted for commands. In this case, the command list z; is
never executed because of the execution of the command GO.
__ctest("at line 23 {"

" list x;"
" list y;"
"}"
"go;"
"list z;");

Example 3
Variable ch is declared as a pointer to character string and initialized as a
string of commands. The string of commands is passed to Debug Tool
when it is invoked. After it runs the string of commands, Debug Tool
prompts you for more commands.
char *ch = "at line 23 list x;";...

__ctest(ch);

Example 4
A string of commands is passed to Debug Tool when it is invoked. After
Debug Tool gains control, you are not prompted for commands. Debug
Tool runs the commands in the command string and returns control to the
program by way of the GO command.
#include <stdio.h>
#include <string.h>

char *ch = "at line 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[35.132];

strcpy(buffer, "at change x.y;");

__ctest(strcat(buffer, ch));

Invoking your program when starting a debug session
After you decide what level of testing you want to employ during your debug
session, you can invoke your program using the proper TEST run-time option for
your language. If you are using Debug Tool, this requires no special procedures,
although there are certain considerations depending on the environment where
you are debugging your program. Before you begin your session, make sure all
Debug Tool and program libraries are available and that all necessary Debug Tool
files, such as the session log file, the primary commands file, the preferences file,
and any desired USE files are defined and created. If the program you want to
debug is authorized, ensure that the Debug Tool load library SEQAMOD is
authorized and placed in the MVS LNKLST concatenation.

Related tasks
“Invoking Debug Tool under CICS” on page 47
“Invoking Debug Tool under MVS in TSO” on page 47
“Invoking Debug Tool under CMS” on page 49
“Invoking Debug Tool in batch” on page 50

46 Debug Tool User’s Guide and Reference

Invoking Debug Tool under CICS
To use Debug Tool under CICS, you need to ensure that all of the required
installation and configuration steps for CICS/ESA®, Language Environment, and
Debug Tool have been completed.

You can invoke Debug Tool in four ways:

Single terminal mode
Debug Tool displays its screens on the same terminal as the application.
This can be set up using DTCN, CEETEST, pragma, or CEEUOPT(TEST).

Dual terminal mode
Debug Tool displays its screens on a different terminal than the one used
by the application. This can be set up with DTCN or CEDF.

Batch mode
Debug Tool does not have a terminal, but uses a commands file for input
and writes output to the log. This can be set up using DTCN, CEETEST,
pragma, or CEEUOPT(TEST).

Remote debug mode
Debug Tool works with a remote debugger to display results on a
graphical user interface. This can be set up using DTCDN, CEETEST, pragma,or
CEEUOPT(TEST).

Related tasks
“Debugging CICS programs” on page 134

Invoking Debug Tool under MVS in TSO
To begin a debug session, ensure your program has been compiled with the TEST
compiler option, and take the following steps:
1. Make sure all Debug Tool data sets are available. This might involve defining

them as part of a STEPLIB library.

Note: High-level qualifiers and load library names will be specific to your
installation. Ask the person who installed Debug Tool what the data sets
are called. The names will probably end in SEQAMOD. These data sets
might already be in the linklist or included in your TSO logon
procedure, in which case you don’t need to do anything to access them.

The installation options will determine whether or not this step is needed.
2. Allocate all other data sets containing files your program needs.
3. If you want a session log file, allocate one. This is a file that keeps a record of

your debug session and can be used as a commands file during subsequent
sessions. Do not allocate the session log file to a terminal. For example, do not
use ALLOC FI(INSPLOG) DA(*).

4. Start your program with the TEST run-time option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or __ctest() in the program’s
source.

The following two example CLISTs show how you might allocate the Debug Tool
load library data set (SEQAMOD) if it is not in the linklist or TSO logon
procedure:

Chapter 3. Beginning a debug session 47

PROC 0 TEST
ALLOCATE DA('EQAW.V1R2M0.SEQAMOD') FILE(SEQAMOD) SHR REUSE
STEPLIB SET(SEQAMOD)
END

and
PROC 0 TEST
TSOLIB DEACTIVATE
FREE FILE(SEQAMOD)
ALLOCATE DA('EQAW.V1R2M0.SEQAMOD') FILE(SEQAMOD) SHR REUSE
TSOLIB ACTIVATE FILE(SEQAMOD)
END

If you store either example CLIST in MYID.CLIST(DTSETUP), you can execute the
CLIST by entering the following at the TSO READY prompt:
EXEC 'MYID.CLIST(DTSETUP)'

The CLIST will execute and the appropriate Debug Tool data set will be allocated.

After allocating all necessary program data sets, the command line is used to
allocate the preferences file setup.pref and the session log file session.log as
shown in the following example:
ALLOCATE FILE(insppref) DATASET(setup.pref) REUSE
ALLOCATE FILE(insplog) DATASET(session.log) REUSE
CALL tstscrpt '/TEST'

No primary commands file is created. The TEST run-time option is entered from the
command line during invocation of the COBOL program tstscrpt. Default
run-time suboptions are assumed, as well as the Language Environment default
run-time options for your installation.

The following CLIST fragment shows how to define Debug Tool-related files and
invoke the C program prog1 with the TEST run-time option:
ALLOC FI(inspsafe) DA(debug.save) REUSE
ALLOC FI(insplog) DA(debug.log) REUSE
ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL 'MYID.MYQUAL.LOAD(PROG1)' +
' TRAP(ON) TEST(,*,;,insppref)/'

Files include the session log file, debug.log; the preferences file, debug.preferen;
and the settings file, debug.save, a Debug Tool file that saves Debug Tool settings
for use in future debug sessions. Its Debug Tool-supplied default ddname is
inspsafe. All necessary data sets must exist prior to invoking this CLIST.

Invoking your program from a terminal that works only in line mode results in a
line-mode session of Debug Tool. If you want to debug in line mode and you have
a 3270-compatible terminal that is capable of sustaining a full-screen session, you
must specify SET SCREEN OFF. You can specify this with the TEST run-time option
by including the command in a preferences file, or by specifying it as a command
string (for example, TEST(,*,"SET SCREEN OFF",insppref)).

To invoke Debug Tool from a terminal other than the terminal currently controlling
your TSO session, use the VTAM_LU_id parameter to specify the LU id of a VTAM
terminal. The VTAM terminal you specify controls your debugging session as long
as you remain in full-screen mode. If you enter line mode, control reverts to your
TSO terminal until you re-enter full-screen mode using the SET SCREEN ON
command.

48 Debug Tool User’s Guide and Reference

|
|
|
|
|
|

Related tasks
“Recording your debug session in a log file” on page 66
“Invoking Debug Tool from a program” on page 37
“Using Debug Tool in line mode” on page 125

Related references
z/OS Language Environment Programming
Guide

Invoking Debug Tool under CMS
To begin a debug session, ensure that you have compiled your program with the
TEST compiler option and take the following steps:
1. Access the product minidisk where Debug Tool resides.
2. Access any other minidisks containing files your programs need.
3. Load any text decks your programs need. For example, to use PL/I, C, and

COBOL on VM, the following MACLIB, TXTLIB and LOADLIB definitions
would be required:
GLOBAL MACLIB SCEEMAC OSMACRO
GLOBAL TXTLIB SCEELKED CMSLIB
GLOBAL LOADLIB SCEERUN

4. Create and define any Debug Tool file you need, such as a preferences file, a
USE file, or a primary commands file.

5. Define the session log file. This is a file that keeps a record of your debug
session and can be used as a commands file during subsequent sessions.

6. Start your program with the TEST run-time option, specifying the appropriate
suboptions.

Note: You can also include a call to CEETEST, PLITEST, or __ctest() in the
program’s source.

After you access all necessary disks and load required text decks, the command
line is used to define the preferences file setup pref a and the session log file
seslog log a as shown in the following example:
FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F
LOAD tstscr2
START * TEST/

No primary commands file is created. The TEST run-time option is entered from the
command line during invocation of the C program tstscr2. Default suboptions are
assumed.

If you created a load module with GENMOD, enter:
FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F
tstscrpt2 TEST/

The REXX EXEC shown below, called startup exec, is created to define all Debug
Tool-related files and invoke the COBOL program prog1 with the TEST run-time
option. prog1 must be a load module.
'FILEDEF insplog DISK dbg log a (LRECL 72 RECFM F'
'FILEDEF insppref DISK dbg pref a (LRECL 80 RECFM F
'FILEDEF inspin DISK dbg cmds a (LRECL 72 RECFM F'

Chapter 3. Beginning a debug session 49

'FILEDEF inspsafe DISK dbg settings a (LRECL 80 RECFM F'
'GENMOD prog1 '

'prog1 * /TEST(,inspin,;,insppref)'

This assumes that the CBLOPTS run-time option was set to ON in the CEEDOPT or
CEEUOPT assembly programs containing defaults and user-defined Language
Environment options.

Files include the session log file, dbg log a, and dbg settings a, a Debug Tool file
that saves Debug Tool settings for use in future debug sessions. Its Debug
Tool-supplied ddname is inspsafe. Also defined are two preallocated files: dbg pref
a (the Debug Tool preferences file) and dbg cmds a (the Debug Tool primary
commands file).

Related tasks
“Customizing session panel colors” on page 116
“Customizing profile settings” on page 117

Related references
z/OS Language Environment Programming Guide

Invoking Debug Tool in batch
Before running a batch debug session, ensure that you have compiled your
program with the TEST compiler option. Next, modify the JCL to run your batch
program to include the appropriate Debug Tool data sets and to specify the TEST
run-time option. Finally, run the modified JCL.

Sample JCL for a batch debug session for the COBOL program, EMPLRUN, is
provided below. The job card and data set names need to be modified to suit your
installation.
//DEBUGJCL JOB <appropriate JOB card information>
//* **
//* JCL to run a batch Debug Tool session
//* Program EMPLRUN was previously compiled with the COBOL
//* compiler TEST option
//* **
//STEP1 EXEC PGM=EMPLRUN,
// PARM='/TEST(,INSPIN,,)'
//*
//* Include the Debug Tool SEQAMOD data set
//*
//STEPLIB DD DISP=SHR,DSN=userid.TEST.LOAD
// DD DISP=SHR,DSN=EQAW.V1R2M0.SEQAMOD
//*
//* Specify a commands file with DDNAME matching the one
//* specified in the /TEST runtime option above
//* This example shows inline data but a data set could be
//* specified like: //INSPIN DD DISP=SHR,DSN=userid.TEST.INSPIN
//*
//INSPIN DD *

STEP;
AT *

PERFORM
QUERY LOCATION;
GO;

END-PERFORM;
GO;
QUIT;

/*
//*

50 Debug Tool User’s Guide and Reference

//* Specify a log file for the debug session
//* Log file can be a data set with LRECL >= 42 and <= 256
//* For COBOL only, use LRECL <= 72 if you are planning to
//* use the log file as a commands file in subsequent Debug
//* Tool sessions. You can specify the log file like:
//* //INSPLOG DD DISP=SHR,DSN=userid.TEST.INSPLOG
//*
//INSPLOG DD SYSOUT=*,DCB=(LRECL=72,RECFM=FB,BLKSIZE=7200)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSOUT DD SYSOUT=*
/*
//

You can debug an MVS batch job in full-screen mode. Use the MFI option to
specify the LU id of a VTAM terminal that interacts with Debug Tool. In the
previous example, change the EXEC statement to specify the LU name of the VTAM
terminal. For example:
//STEP1 EXEC PGM=EMPLRUN,
// PARM='/TEST(,INSPIN,,MFI%TCP00001:)'

Related tasks
“Using Debug Tool in batch mode” on page 126
“Chapter 12. Entering Debug Tool commands” on page 203
“Using Debug Tool in remote debug mode” on page 126

Chapter 3. Beginning a debug session 51

|
|
|
|

|
|

|

52 Debug Tool User’s Guide and Reference

Chapter 4. Debugging your programs in full-screen mode

The topics below describe the Debug Tool full-screen interface, and how to use this
interface to perform common debugging tasks.

Debugging your programs in full-screen mode is the easiest way to learn how to
use Debug Tool, even if you plan to use batch or line modes later.

Note: The PF key definitions used in these topics are the default settings.

Related tasks
“Starting a full-screen debug session”
“Ending a full-screen debug session” on page 54
“Entering commands on the session panel” on page 59
“Navigating through Debug Tool session panel windows” on page 63
“Recording your debug session in a log file” on page 66
“Setting breakpoints to halt your program at a line” on page 68
“Stepping through or running your program” on page 69
“Displaying and monitoring a variable’s value” on page 69
“Displaying error numbers for messages in the Log window” on page 70
“Finding a renamed source, listing or separate debug file” on page 70
“Requesting an attention interrupt during interactive sessions” on page 71
“Debugging a C program in full-screen mode” on page 71
“Debugging a C++ program in full-screen mode” on page 81
“Debugging a COBOL program in full-screen mode” on page 92
“Debugging a PL/I program in full-screen mode” on page 103

Starting a full-screen debug session
You can invoke Debug Tool by using the Language Environment TEST run-time
option in one of the following ways:
v For TSO, you need to include the Debug Tool library in your STEPLIB

concatenation and invoke your program with the TEST run-time option as shown
in the following example for C, C++, and PL/I:
MYPROG TEST / prog arg list

For COBOL, invoke your program as follows:
MYPROG prog arg list / TEST

Contact your systems programmer if you do not know the name of the Debug
Tool library on your system.

To control Debug Tool from a separate terminal, specify the VTAM LU identifier
of the separate terminal in the TEST parameter, as in the following example:
TEST(,,,MFI%TCP00001:)/

v For MVS batch, you need to include the Debug Tool library in your STEPLIB
concatenation and invoke your program with the TEST run-time option
specifying the VTAM LU identifier of a terminal, as in the following example
TEST(,,,MFI%TCP00001:)/

© Copyright IBM Corp. 1995, 2001 53

|
|

|

|
|
|

|

v For CICS, make sure Debug Tool is installed in your CICS region. Enter DTCN
to start the Debug Tool control transaction. Press PF4 to save the default
debugging profile. Press PF3 to exit from the DTCN transaction. Enter the name
of the transaction you want to debug.

v If you build your application using the c89 orc++, do the following steps:
1. Compile your source code as usual, but specify the –g option to generate

debugging information. The –g option is equivalent to the TEST compiler
option under TSO or MVS batch. For example, to compile the C source file
fred.c from the u/mike/app directory, specify:
cd /u/mike/app
c89 –g –o "//PROJ.LOAD(FRED)" fred.c

Note: The double quotes in the command line above are required.
2. Set up your TSO environment, as described above.
3. Debug the program under TSO by entering the following:

FRED TEST ENVAR('PWD=/u/mike/app') / asis

Note: The single quotes in the command line above are required.
ENVAR('PWD=/u/mike/app') sets the environment variable PWD to the
path from where the source files were compiled. Debug Tool uses this
information to determine from where it should read the source files.

If you are debugging your application in the UNIX System Services Shell, you
must debug in remote debug mode or in full-screen mode using a VTAM
terminal. The workstation component of remote debuggers is available through
several products, including C/C++ Productivity Tools for OS/390 and VisualAge
COBOL.

Related tasks
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a C++ program with the TEST compiler option” on page 12
“Compiling a COBOL program with the TEST compiler option” on page 14
“Compiling a PL/I program with the TEST compiler option” on page 18
“Ending a full-screen debug session”
“Entering commands on the session panel” on page 59
“Chapter 7. Using Debug Tool in different modes and environments” on page 125

Related references
“Debug Tool session panel”

Ending a full-screen debug session
When you have finished debugging your program, you can either press PF3 (QUIT)
or enter QUIT on the command line to end your Debug Tool session.

If the log file is allocated to the 3270 terminal device, issue the command SET LOG
OFF before issuing the QUIT command.

Debug Tool session panel
The Debug Tool session panel contains a header with information about the
program you are debugging, a command line, and up to three windows.

Source window
Displays your program source code

54 Debug Tool User’s Guide and Reference

|

|
|
|

Log window
Records your commands and Debug Tools responses

Monitor window
Continuously displays the value of monitored variables and other items,
depending on the command used

The Debug Tool session panel below shows the default layout for the Monitor
window �1�, the Source window �2�, and the Log window �3�.

COBOL LOCATION: IBTUFS4 :> 100.1
Command ===> Scroll ===> PAGE
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 3
******************************* TOP OF MONITOR ********************************
0001 1 77 IBTUFS4:>VARBL2 21
0002 2 77 IBTUFS4:>VARBL1 11 �1�
0003 3 77 IBTUFS4:>X 1
****************************** BOTTOM OF MONITOR ******************************
SOURCE: IBTUFS4 --1----+----2----+----3----+----4----+----5---- LINE: 98 OF 118

98 ADD 1 TO VARBL1 .
99 �2� ADD 1 TO VARBL2 .
100 CALL "SUBPRO1" USING BY CONTENT PARAM1 .
101 ADD 1 TO X .
102 END-PERFORM. .

LOG 0----+----1----+----2----+----3----+----4----+----5----+---- LINE: 13 OF 19
0013 The command element MONITOR is invalid.
0014 MONITOR
0015 LIST VARBL2 ;
0016 MONITOR �3�
0017 LIST VARBL1 ;
0018 MONITOR
0019 LIST X ;

Related tasks
“Customizing the layout of windows on the session panel” on page 114

Related references
“Session panel header”
“Monitor window” on page 57
“Source window” on page 56
“Log window” on page 58

Session panel header
The first few lines of the Debug Tool session panel contain a command line and
header fields that display information about the program you are debugging.

Below is an example header for a C program under MVS/TSO.

C �1� LOCATION: MYID.SOURCE(TSTPGM1):>248 �2�
Command ===> �3� SCROLL ===> PAGE �4�

�5�

Below is an example header for a COBOL program under CMS.

COBOL �1� LOCATION: XYZPROG::>SUBR:>118 �2�
Command ===> �3� SCROLL ===> PAGE �4�

�5�...

The header fields are described below.

Chapter 4. Debugging your programs in full-screen mode 55

�1� C/C++, COBOL, or PL/I
The name of the current programming language. This is not necessarily the
programming language of the code in the Source window.

Note: Debug Tool does not differentiate between C and C++ programs. If
there is a C++ program in the Source window, only C is displayed
in this field.

�2� LOCATION
The program unit name and statement where execution is suspended,
usually in the form compile unit:>nnnnnn.

In the MVS/TSO example above, execution in MYID.SOURCE(TSTPGM1) is
suspended at line 248.

In the CMS example above, execution in XYZPROG is suspended at
XYZPROG::>SUBR:>118, or line 118 of subroutine SUBR.

�3� COMMAND
The input area for the next Debug Tool command. You can enter any valid
Debug Tool command here.

�4� SCROLL
The number of lines or columns you want to scroll when you enter a scroll
command without an amount specified. To hide this field, enter the SET
SCROLL DISPLAY command. To modify the scroll amount, use the SET
DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL
DOWN, SCROLL LEFT, and SCROLL RIGHT scrolling commands. The scrolling
commands can be used to scroll by increments of n lines, half a page, a full
page, to the top or bottom of the data, to the limit of the data, to the left or
right by specified amounts, or to the position of the cursor.

�5� Message areas
Information and error messages are displayed in the space immediately
below the command line.

Source window
�1�SOURCE: MULTCU ---1----+----2----+----3----+----4----+----5----+ LINE: 70 OF 85

70 PROCEDURE DIVISION. .
71 ** .
72 * THIS IS THE MAIN PROGRAM AREA. This program only displays .
73 * text.�3� .
74 ** .

�2� 75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE. .
76 MOVE 25 TO PROGRAM-USHORT-BIN. .
77 MOVE −25 TO PROGRAM-SSHORT-BIN. .�4�
78 PERFORM TEST-900. .
79 PERFORM TEST-1000. .
80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE. .

The Source window displays the source file or listing. The Source window has four
parts, described below.

�1�Header area
Identifies the window, shows the compile unit name, and shows the
current position in the source or listing.

56 Debug Tool User’s Guide and Reference

�2�Prefix area
Occupies the leftmost eight columns of the Source window. Contains
statement numbers or line numbers you can use when referring to the
statements in your program. You can use the prefix area to set, display, and
remove breakpoints with the prefix commands AT, CLEAR, ENABLE, DISABLE,
QUERY, and SHOW.

�3�Source display area
Shows the source code (for a C/C++ program), or the source listing (for a
COBOL or PL/I program) for the currently qualified program unit. If the
current executable statement is in the source display area, it is highlighted.

�4�Suffix area
A narrow, variable-width column at the right of the screen that Debug Tool
uses to display frequency counts. It is only as wide as the largest count it
must display.

The suffix area is optional. To show the suffix area, enter SET SUFFIX ON. To
hide the suffix area, enter SET SUFFIX OFF. You can also set it on or off
with the Source Listing Suffix field in the Profile Settings panel.

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Related tasks
“Using prefix commands on specific lines or statements” on page 61
“Customizing profile settings” on page 117

Monitor window
COBOL LOCATION: MULTCU :> 75.1
Command ===> Scroll ===> PAGE
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 2
******************************* TOP OF MONITOR ********************************
0001 1 01 MULTCU:>PROGRAM-USHORT-BIN 00000
0002 2 01 MULTCU:>PROGRAM-SSHORT-BIN +00000
****************************** BOTTOM OF MONITOR ******************************

Use the Monitor window to continuously display output from the MONITOR LIST,
MONITOR QUERY, and MONITOR DESCRIBE commands. If this window is not open,
Debug Tool opens it when you enter a monitor command. Its contents are
refreshed whenever Debug Tool receives control and after every Debug Tool
command that can affect the display.

When you issue a MONITOR command, it is assigned a reference number between 1
and 99, then added to the monitor list. You can specify the monitor number;
however, you must either replace an existing monitor number or use the next
sequential number.

While the MONITOR command can generate an unlimited amount of output,
bounded only by your storage capacity, the Monitor window can display a
maximum of only 1000 scrollable lines of output.

Chapter 4. Debugging your programs in full-screen mode 57

If a window is not wide enough to show all the output it contains, you can either
issue SCROLL RIGHT (to scroll the window to the right) or ZOOM (to make it fill the
screen).

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Related tasks
“Displaying and monitoring a variable’s value” on page 69
“Scrolling the windows” on page 64

Related references
“MONITOR command” on page 296

Log window
LOG 0----+----1----+----2----+----3----+----4----+----5----+----6 LINE: 6 OF 14
0007 MONITOR
0008 LIST PROGRAM-USHORT-BIN ;
0009 MONITOR
0010 LIST PROGRAM-SSHORT-BIN ;
0011 AT 75 ;
0012 AT 77 ;
0013 AT 79 ;
0014 GO ;

The Log window records and displays your interactions with Debug Tool. All
commands that are valid in line mode, and their responses, are automatically
appended to the Log window. The following commands are not recorded in the
Log window.

PANEL
FIND
CURSOR
RETRIEVE
SCROLL
WINDOW
IMMEDIATE
QUERY prefix command
SHOW prefix command

If SET INTERCEPT ON is in effect for a file, that file’s output also appears in the Log
window.

You can optionally exclude STEP and GO commands from the log by specifying SET
ECHO OFF.

Commands that can be used with IMMEDIATE, such as the SCROLL and WINDOW
commands, are excluded from the Log window.

By default, the Log window keeps 1000 lines for display. To change this value,
enter SET LOG KEEP n, where n is the number of lines you want kept for display.

The maximum number of lines is determined by the amount of storage available.

58 Debug Tool User’s Guide and Reference

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Entering commands on the session panel
You can enter a command or modify what is on the session panel in seven areas,
as shown below.

C LOCATION: "ICFSSCU1" :> 89
Command ===> �1� Scroll ===> PAGE �2�
MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: 1 OF 2
******************************* TOP OF MONITOR ********************************
0001 1 VARBL1 10
0002 2 VARBL2 20
****************************** BOTTOM OF MONITOR ******************************
SOURCE: ICFSSCU1 -�3�--+----2----+----3----+----4----+----5----+ LINE: 81 OF 96

81 main() .
82 { .
83 int VARBL1 = 10; .

�4� 84 int VARBL2 = 20; .
85 int R = 1; .
86 �5� .
87 printf("––– IBFSSCC1 : BEGIN\n"); .
88 do { .
89 VARBL1++; .
90 printf("INSIDE PERFORM\n"); .
91 VARBL2 = VARBL2 − 2; .
92 R++; .

LOG �6�--+----1----+----2----+----3----+----4----+----5----+----6 LINE: 7 OF 15
0007 STEP ;
0008 AT 87 ;
0009 MONITOR
0010 LIST VARBL1 ;
0011 MONITOR
0012 LIST VARBL2 ;
0013 GO ; �7�
0014 STEP ;
0015 STEP ;

�1� Command line
You can enter any valid Debug Tool command on the command line.

�2� Scroll area
You can redefine the default amount you want to scroll by typing the
desired value over the value currently displayed.

�3� Compile unit name area
You can change the qualification by typing the desired qualification over
the value currently displayed. For example, to change the current
qualification from ICFSSCU1, as shown in the Source window header, to
ICFSSCU2, type ICFSSCU2 over ICFSSCU1 and press Enter.

�4� Prefix area
You can enter only Debug Tool prefix commands in the prefix area, located
in the left margin of the Source window.

�5� Source window
You can modify any lines in the Source window and place them on the
command line.

Chapter 4. Debugging your programs in full-screen mode 59

�6� Window id area
You can change your window configuration by typing the name of the
window you want to display over the name of the window that is
currently being displayed.

�7� Log window
You can modify any lines in the log and have Debug Tool place them on
the command line.

Related tasks
“Using the session panel command line”
“Issuing system commands”
“Using prefix commands on specific lines or statements” on page 61
“Using commands that are sensitive to the cursor position” on page 61
“Using Program Function (PF) keys to enter commands” on page 62
“Retrieving previous commands” on page 63
“Retrieving commands from the Log and Source windows” on page 63

Related references
“Order in which Debug Tool accepts commands from the session panel”
“Initial PF key settings” on page 62

Order in which Debug Tool accepts commands from the
session panel

If you enter commands in more than one valid input area on the session panel and
press Enter, the input areas are processed in the following order of precedence.
1. Prefix area
2. Command line
3. Compile unit name area
4. Scroll area
5. Window id area
6. Source/Log window

Using the session panel command line
You can enter any Debug Tool command in the command field. You can also enter
any CMS or TSO command by prefixing them with CMS, SYSTEM, or TSO. Commands
can be up to 48 SBCS characters or 23 DBCS characters in length.

If you need to enter a lengthy command, Debug Tool provides a command
continuation character, the SBCS hyphen (-). When the current programming
language is C/C++, you can also use the back slash (\) as a continuation character.

Debug Tool also provides automatic continuation if your command is not
complete; for example, if the command was begun with a left brace ({) that has not
been matched by a right brace (}). If you do need to continue your command,
Debug Tool provides a MORE ===> prompt that is equivalent to another command
line. You can continue to request additional command lines with continuation
characters until you complete your command.

Related tasks
“Chapter 12. Entering Debug Tool commands” on page 203

Issuing system commands
During your Debug Tool session, you can still access your base operating system
using the SYSTEM command. The string following the SYSTEM command is passed on

60 Debug Tool User’s Guide and Reference

to your operating system. You can communicate with CMS in a CMS environment,
or TSO in a TSO environment. For example, if you want to see a CMS filelist while
in a debugging session, enter SYSTEM FILELIST;.

For CMS only: If you enter SYSTEM without a system command, you enter CMS
subset mode. To return to Debug Tool, enter RETURN.

For TSO only:
v A command is required after the SYSTEM keyword. Do not enter any required

parameters. Debug Tool prompts you.
v If you are debugging in batch and need system services, you can include

commands and their requisite parameters in a CLIST and substitute the CLIST
name in place of the command.

v If you want to enter several TSO commands, you can include them in a USE file,
a procedure, or other commands list. Or you can enter:
SYSTEM ISPF;

This invokes ISPF and displays an ISPF panel on your host emulator screen that
you can use to issue commands.

For CICS only: The SYSTEM command is not supported.

The SYSTEM command has two synonyms: CMS for the CMS environment, and TSO
for the TSO environment. Truncation of the CMS and TSO commands is not allowed.

Related references
“SYSTEM command” on page 349

Using prefix commands on specific lines or statements
Certain commands, known as prefix commands, can be typed over the prefix area in
the Source window, and then processed by pressing Enter. These commands (AT,
CLEAR, DISABLE, ENABLE, QUERY, and SHOW) pertain only to the line or lines of code
before which they are typed. For example, the AT command typed in the prefix
area of a specific line sets a statement breakpoint only at that line.

You can use prefix commands to specify the particular verb or statement in the line
where you want the command to apply. For example, AT typed in the prefix area of
a line sets a statement breakpoint at the first relative statement in that line, while
AT 3 sets a statement breakpoint at the third relative statement in that line. Typing
DISABLE 3 in the prefix area and pressing Enter disables that breakpoint.

Related references
“Prefix commands (full-screen mode)” on page 306

Using commands that are sensitive to the cursor position
Certain commands are sensitive to the position of the cursor. These commands,
called cursor-sensitive commands, include all those that contain the keyword CURSOR
(AT CURSOR, DESCRIBE CURSOR, FIND CURSOR, LIST CURSOR, SCROLL...CURSOR, TRIGGER
AT CURSOR, WINDOW...CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the
cursor at the location in your Source window where you want the command to
take effect (for example, at the beginning of a statement or at a verb), and press
Enter.

Chapter 4. Debugging your programs in full-screen mode 61

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command,
which returns the cursor to its last saved position.

Related tasks
“Defining PF keys” on page 113

Related references
“AT CURSOR (full-screen mode)” on page 229
“DESCRIBE command” on page 263
“FIND command” on page 273
“LIST CURSOR (full-screen mode)” on page 288
“SCROLL command (full-screen mode)” on page 314
“TRIGGER command” on page 350
“WINDOW command (full-screen mode)” on page 355
“CURSOR command (full-screen mode)” on page 257

Using Program Function (PF) keys to enter commands
The cursor-sensitive commands, as well as other full-screen tasks, can be issued
more quickly by assigning PF keys to them than by typing them on the command
line. You can issue the WINDOW CLOSE, LIST, CURSOR, SCROLL TO, DESCRIBE
ATTRIBUTES, RETRIEVE, FIND, WINDOW SIZE, and the scrolling commands (SCROLL UP,
DOWN, LEFT, and RIGHT) this way. Using PF keys makes tasks convenient and easy.

Related tasks
“Defining PF keys” on page 113
“Using commands that are sensitive to the cursor position” on page 61

Related references
“Initial PF key settings”

Initial PF key settings
The table below shows the initial PF key settings.

PF key Label Definition Use

PF1 ? ? “Getting online help for Debug Tool
command syntax” on page 207

PF2 STEP STEP “Stepping through or running your
program” on page 69

PF3 QUIT QUIT “Ending a full-screen debug session”
on page 54

PF4 LIST LIST “Finding a renamed source, listing or
separate debug file” on page 70

PF4 LIST LIST variable_name “Displaying and monitoring a
variable’s value” on page 69

PF5 FIND IMMEDIATE FIND “Finding a string in a window” on
page 65

PF6 AT/CLEAR AT TOGGLE CURSOR “Setting breakpoints to halt your
program at a line” on page 68

PF7 UP IMMEDIATE UP “Scrolling the windows” on page 64

PF8 DOWN IMMEDIATE DOWN “Scrolling the windows” on page 64

62 Debug Tool User’s Guide and Reference

PF key Label Definition Use

PF9 GO GO “Stepping through or running your
program” on page 69

PF10 ZOOM IMMEDIATE ZOOM “Zooming a window to occupy the
whole screen” on page 116

PF11 ZOOM LOG IMMEDIATE ZOOM LOG “Zooming a window to occupy the
whole screen” on page 116

PF12 RETRIEVE IMMEDIATE RETRIEVE “Retrieving previous commands”

Related tasks
“Defining PF keys” on page 113

Retrieving previous commands
To retrieve the last command you entered, press PF12 (RETRIEVE). The retrieved
command is displayed on the command line. You can make changes to the
command, then press Enter to issue it.

To step backwards through previous commands, press PF12 to retrieve each
command in sequence. If a retrieved command is too long to fit in the command
line, only its last line is displayed.

Related tasks
“Retrieving commands from the Log and Source windows”

Related references
“RETRIEVE command (full-screen mode)” on page 312

Retrieving commands from the Log and Source windows
You can retrieve lines from the Log and Source windows and use them as new
commands.

To retrieve a line, move the cursor to the desired line, modify it (for example,
delete any comment characters) and press Enter. The input line appears on the
command line. You can further modify the command, then press Enter to issue it.

When retrieving long or multiple Debug Tool commands, a pop-up window is
displayed, with the command as typed in so far. However, trailing blanks on the
last line are removed. To expand the pop-up window, place the cursor below it and
press Enter.

Related tasks
“Retrieving previous commands”

Related references
“RETRIEVE command (full-screen mode)” on page 312

Navigating through Debug Tool session panel windows
You can navigate in any of the windows using the CURSOR command and the
scrolling commands: SCROLL UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and BOTTOM. You
can also search for character strings using the FIND command, which scrolls you
automatically to the specified string.

Chapter 4. Debugging your programs in full-screen mode 63

The window acted upon by any of these commands is determined by one of
several factors. If you specify a window name (LOG, MONITOR, or SOURCE) when
entering the command, that window is acted upon. If the command is
cursor-oriented, the window containing the cursor is acted upon. If you do not
specify a window name and the cursor is not in any of the windows, the window
acted upon is determined by the settings of Default window and Default scroll
amount under the Profile Settings panel.

Related tasks
“Moving the cursor between windows”
“Scrolling the windows”
“Scrolling to a particular line number” on page 65
“Finding a string in a window” on page 65
“Changing which source file appears in the Source window” on page 65
“Displaying the line at which execution halted” on page 66
“Customizing profile settings” on page 117

Related references
“SCROLL command (full-screen mode)” on page 314

Moving the cursor between windows
To move the cursor back and forth quickly from the Monitor, Source, or Log
window to the command line, use the CURSOR command. This command, and
several other cursor-oriented commands, are highly effective when assigned to PF
keys. After assigning the CURSOR command to a PF key, move the cursor by
pressing that PF key. If the cursor is not on the command line when you issue the
CURSOR command, it goes there. To return it to its previous position, press the
CURSOR PF key again.

Related tasks
“Defining PF keys” on page 113

Related references
“CURSOR command (full-screen mode)” on page 257

Scrolling the windows
If the cursor is on the command line, you can scroll the Source window by
pressing PF7 (UP) or PF8 (DOWN). To scroll through other windows, place the cursor
in the desired window before pressing PF7 or PF8.

You can toggle one of the Source, Log or Monitor windows to full screen
(temporarily not displaying the others) by moving the cursor into the window you
want to zoom and pressing PF10 (ZOOM). To toggle back, press PF10 again. PF11
(ZOOM LOG) toggles the Log window the same way without the cursor needing to be
in the Log window.

You can scroll any of the windows vertically and horizontally by issuing the
SCROLL UP, DOWN, LEFT, and RIGHT commands (the SCROLL keyword is optional). You
can use the command line to specify which window to scroll. For example, to
scroll the monitor window up 5 lines, enter SCROLL UP 5 MONITOR.

Alternately, you can use the position of the cursor to indicate the window you
want to scroll; if the cursor is in a window, that window is scrolled. If you do not
specify the window, the default window (determined by the setting of the DEFAULT

64 Debug Tool User’s Guide and Reference

WINDOW command) is scrolled. You can change the default window by changing the
settings of Default window and Default scroll amount under the Profile Settings
panel.

Related tasks
“Customizing the layout of windows on the session panel” on page 114
“Scrolling to a particular line number”
“Customizing profile settings” on page 117

Related references
“SCROLL command (full-screen mode)” on page 314
“WINDOW ZOOM” on page 357

Scrolling to a particular line number
To display a particular line at the top of a window, use the SCROLL TO command
with the statement numbers shown in the window prefix areas. Enter SCROLL TO n
(where n is a line number) on the command line and press Enter.

For example, to bring line 345 to the top of the window, enter SCROLL TO 345 on
the command line. The selected window is scrolled vertically so that your specified
line is displayed at the top of that window.

Related references
“SCROLL command (full-screen mode)” on page 314

Finding a string in a window
To find the next occurrence of a string within a window:
1. On the command line, type the string you want to find, enclosed in double

quotes (COBOL or C/C++) or single quotes (PL/I), but do not press Enter.
2. Move the cursor into the window to be searched.
3. Press PF5 (FIND).

To repeat the search in whatever window the cursor is in, press PF5 again.

Related references
“FIND command” on page 273

Changing which source file appears in the Source window
To change which source file appears in the Source window, overtype the name
after SOURCE: on the top line of the Source window with the desired name. This
only works if the compile unit (CU) is already known to Debug Tool. You might
want to issue the LIST NAMES CUS command first to determine which CUs are
known.

Alternately, you can enter the command:
LIST NAMES CUS

and a list of compile units will be written to the Log window, as shown below.
USERID.MFISTART.C(CALC)
USERID.MFISTART.C(PUSHPOP)
USERID.MFISTART.C(READTOKN)

You can overtype or insert characters on one of these lines in the Log window and
press Enter to display the modified text on the command line, for example:

Chapter 4. Debugging your programs in full-screen mode 65

SET QUALIFY CU "USERID.MFISTART.C(READTOKN)"

and then press Enter to issue the command. Overtyping a line in the Log window
and issuing them as commands is a way to save keystrokes and reduce errors in
long commands.

Another way to change which source file appears in the Source window is to press
PF4 (LIST) with the cursor on the command line. This displays the Source
Identification Panel, where associations are made between listings or source files
shown in the Source window and their compile units. Overtype the Listings/Source
File field with the new name.

For C/C++ only
For C/C++ compile units, Debug Tool requires a file containing the source code.
By default, when Debug Tool encounters a new C/C++ compile unit, it looks for
the source code in a file whose name is the one that was used in the compile step.

For COBOL and PL/I only
For COBOL and PL/I compile units, Debug Tool requires a file containing the
compiler listing. By default, when Debug Tool encounters a new VS COBOL II or a
non-VisualAge PL/I for OS/390 compile unit, it looks for the listing in a file
named hlq.cuname.LIST. For VisualAge PL/I for OS/390, Debug Tool looks for the
listing in the data set specified in the load module. For COBOL/370™ and COBOL
for MVS, Debug Tool looks for the listing in the data set specified during the
compile step. For COBOL for OS/390, there are two possible places Debug Tool
looks for compiler listing:
v Debug Tool look for the listing in the data set specified during the compile step.
v If your program is compiled with the SEPARATE sub-option of the TEST compiler

option, Debug Tool looks for the compiler listing in the separate debug file.

Related tasks
“Finding a renamed source, listing or separate debug file” on page 70

Related references
“LIST (blank)” on page 285
“LIST NAMES” on page 291
“SET QUALIFY” on page 335

Displaying the line at which execution halted
After displaying different source files and scrolling, you can go back to the halted
execution point by entering the following command:
SET QUALIFY RESET

Related references
“SET QUALIFY” on page 335

Recording your debug session in a log file
Debug Tool can record your commands and their generated output in a session log
file. This allows you to record your session and use the file as a reference to help
you analyze your session strategy. You can also use the log file as a command
input file in a later session by specifying it as your primary commands file. This is
a convenient method of reproducing debug sessions or resuming interrupted
sessions.

66 Debug Tool User’s Guide and Reference

The following appear as comments (preceded by an asterisk {*} in column 7 for
COBOL programs, and enclosed in /* */ for C/C++ or PL/I programs):
v All command output
v Commands from USE files
v Commands specified on a __ctest() function call
v Commands specified on a CALL CEETEST statement
v Commands specified on a CALL PLITEST statement
v Commands specified in the run-time TEST command string suboption
v QUIT commands
v Debug Tool messages about the program execution (intercepted console

messages, exceptions, etc.)

The default ddname associated with the Debug Tool session log file is INSPLOG. If
you do not allocate a file with ddname INSPLOG, no default log file is created.

Related tasks
“Creating the log file”
“Recording how many times each source line runs” on page 68

Creating the log file
To create a permanent log of your debug session, first create a file with the
following specifications:
v A logical record length between 32 and 256. If the log file has a logical record

length outside the limits, Debug Tool issues a message and does not use the file.
v The record format and blocksize have no restrictions.
v On MVS, this file must be a sequential data set.

Then, allocate the file to the DD name INSPLOG in the CLIST, JCL, or EXEC you
use to run your program.

For COBOL only, if you want to subsequently use the session log file as a
commands file, make the LRECL less than or equal to 72. Debug Tool ignores
everything after column 72 for file input during a COBOL debug session.

For CICS only, SET LOG OFF is the default. To start the log, you must use the SET
LOG ON file command. For example, to have the log written to a data set named
TSTPINE.DT.LOG, issue: SET LOG ON FILE TSTPINE.DT.LOG;.

Make sure the default of SET LOG ON is still in effect. If you have issued SET LOG
OFF, output to the log file is suppressed. If Debug Tool is never given control, the
log file is not used.

When the default log file (INSPLOG) is accessed during initialization, any existing
file with the same name is overwritten. On MVS, if the log file is allocated with
disposition of MOD, the log output is appended to the existing file. Entering the
SET LOG ON FILE xxx command also appends the log output to the existing file.

If a log file was not allocated for your session, you can allocate one with the SET
LOG command by entering:
SET LOG ON FILE logddn;

This causes Debug Tool to write the log to the file which is allocated to the DD
name LOGDDN.

Note: Do not use MVS partitioned data sets to store session logs.

Chapter 4. Debugging your programs in full-screen mode 67

At any time during your session, you can stop information from being sent to a
log file by entering:
SET LOG OFF;

To resume use of the log file, enter:
SET LOG ON;

The log file is active for the entire Debug Tool session.

Debug Tool keeps a log file in the following modes of operation: line mode,
full-screen mode, and batch mode.

Related references
“SET LOG” on page 329

Recording how many times each source line runs
To record of how many times each line of your code was executed:
1. Allocate the INSPLOG file if you want to keep a permanent record of the

results.
2. Issue the command:

SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your Source window
is updated to show the current frequency count. Remember that this command
starts the statistic gathering to display the actual count, so if your application
has already executed a section of code, the data for these executed statements
will not be available.

If you want statement counts for the entire program, issue:
GO ;
LIST FREQUENCY * ;

which lists the number of times each statement is run. When you quit, the
results are written to the Log file. You can issue the LIST FREQUENCY * at any
time, but it will only display the frequency count for the currently active
compile unit.

Related tasks
“Creating the log file” on page 67

Setting breakpoints to halt your program at a line
To set or clear a line breakpoint, move the cursor over an executable line in the
Source window and press PF6 (AT/CLEAR). You can temporarily turn off the
breakpoint with DISABLE and turn it back on with ENABLE.

Related tasks
“Halting on a line in C only if a condition is true” on page 76
“Halting on a line in C++ only if a condition is true” on page 86
“Halting on a COBOL line only if a condition is true” on page 97
“Halting on a PL/I line only if a condition is true” on page 108

Related references
“AT command” on page 220

68 Debug Tool User’s Guide and Reference

“CLEAR command” on page 251
“DISABLE command” on page 265
“ENABLE command” on page 270

Stepping through or running your program
By default, when Debug Tool starts, none of your program has run yet (including
C++ constructors and static object initialization).

To run your program up to the next hook, press PF2 (STEP). If you compiled with
TEST for C or C++, TEST(ALL,SYM) for COBOL or PL/I, or TEST(NONE,SYM) for
COBOL for OS/390 with Dynamic Debug installed, STEP performs one statement.

To run your program until a breakpoint is reached, the program ends, or a
condition is raised, press PF9 (GO).

Note: A condition being raised is determined by the setting of the TEST run-time
suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you
accidentally step into a function when you meant to step over it, issue the STEP
RETURN command that steps to the return point (just after the call point).

Related tasks
“Chapter 2. Preparing your program for debugging” on page 5
“Invoking Debug Tool using the TEST run-time option” on page 26

Related references
“GO command” on page 276
“STEP command” on page 345

Displaying and monitoring a variable’s value
To display the contents of a single variable, move the cursor to the variable name
and press PF4 (LIST). The value of the variable is displayed in the Log window.

To continuously display (“monitor”) a variable’s value, you can issue most LIST
commands preceded by the word MONITOR. For example, enter:
MONITOR LIST num ;

The variable num is added to the Monitor window and the current value of num is
displayed. As you step through your program, the value of num is updated in the
Monitor window so that the window always reflects the current value of num. The
MONITOR command makes it easy to watch values while stepping through your
program.

Related tasks
“Displaying values of C/C++ variables or expressions” on page 158
“Displaying values of COBOL variables” on page 186

Related references
“LIST expression” on page 288
“LIST command” on page 284
“MONITOR command” on page 296

Chapter 4. Debugging your programs in full-screen mode 69

Displaying error numbers for messages in the Log window
When an error message shows up in the Log window, you can also get the
message ID number to show up as
EQA1807E The command element d is ambiguous.

instead of
The command element d is ambiguous.

by either modifying your profile or using the SET MSGID ON command. To modify
your profile, use the PANEL PROFILE command and set Show message ID numbers to
YES by overtyping.

Related tasks
“Customizing profile settings” on page 117

Related references
“Chapter 17. Debug Tool messages” on page 377
“PANEL command (full-screen mode)” on page 302
“SET MSGID” on page 330

Finding a renamed source, listing or separate debug file
If the source, listing, or separate debug file (COBOL for OS/390 only) has been
renamed since your program was compiled, Debug Tool will not be able to find it,
and it will not appear in the Source window when you debug your program.

To point Debug Tool to the renamed file:
v Use the Source Identification panel to direct Debug Tool to the new files:

1. With the cursor on the command line, press PF4 (LIST).
This displays the Source Identification panel, where associations are made
between source, listings, or separate debug files shown in the Source window
and their compile units.

2. Overtype the Listing/Source File field with the new name.
v Use the SET SOURCE and SET DEFAULT LISTINGS commands to direct Debug Tool

to the new files:
1. With the cursor on the command line, type SET SOURCE new_file_name,

where new_file_name is the renamed source file. Press Enter.
2. With the cursor on the command line, type SET DEFAULT LISTINGS

new_file_name, where new_file_name is the renamed listing or separate debug
file. Press Enter.

If you need to do this repeatedly, note the SET SOURCE ON commands generated in
the Log window. You can save these commands in a file and reissue them with the
USE command for future invocations of Debug Tool.

Related tasks
“Changing which source file appears in the Source window” on page 65

Related references
“LIST (blank)” on page 285
“SET SOURCE” on page 338
“SET DEFAULT LISTINGS (MVS)” on page 321

70 Debug Tool User’s Guide and Reference

Requesting an attention interrupt during interactive sessions
During an interactive Debug Tool session, you can request an attention interrupt, if
necessary. For example, you can stop what appears to be an unending loop, stop
the display of voluminous output at your terminal, or stop the execution of the
STEP command.

An attention interrupt should not be confused with the ATTENTION condition. If you
set an AT OCCURRENCE or ON ATTENTION, the commands associated with that
breakpoint are not run at an attention interrupt.

Language Environment TRAP and INTERRUPT run-time options should both be set to
ON in order for attention interrupts that are recognized by the host operating
system to be also recognized by Language Environment. The test_level suboption of
the TEST run-time option should not be set to NONE.

For CICS and full-screen mode using a VTAM terminal only: An attention
interrupt key is not supported in CICS or full-screen mode using a VTAM terminal.

For MVS only: For C, when using an attention interrupt, use SET INTERCEPT ON
FILE stdout to intercept messages to the terminal. This is required because
messages do not go to the terminal after an attention interrupt.

For Dynamic Debug only: The Dynamic Debug feature does not support attention
interrupts for programs compiled with TEST(NONE,SYM) compiler option.

The correct key might not be marked ATTN on every keyboard. Often the
following keys are used:
v Under TSO: PA1 key
v Under CMS: PA1 key twice
v Under IMS: PA1 key

When you request an attention interrupt, control is given to Debug Tool:
v At the next hook if Debug Tool has previously gained control or if you specified

either TEST(ERROR) or TEST(ALL) or have specifically set breakpoints
v At a __ctest() or CEETEST call
v When an HLL condition is raised in the program, such as SIGINT in C

Related references
“SET INTERCEPT (C/C++ and COBOL)” on page 327
z/OS Language Environment Programming
Guide

Debugging a C program in full-screen mode
The descriptions of basic debugging tasks for C refer to the following C program.

“Example: sample C program for debugging” on page 72

Related tasks
“Chapter 9. Debugging C/C++ programs” on page 157
“Halting when certain functions are called in C” on page 75
“Modifying the value of a C variable” on page 75
“Halting on a line in C only if a condition is true” on page 76
“Debugging C when only a few parts are compiled with TEST” on page 76

Chapter 4. Debugging your programs in full-screen mode 71

|
|

“Capturing C output to stdout” on page 77
“Calling a C function from Debug Tool” on page 77
“Displaying raw storage in C” on page 77
“Debugging a C DLL” on page 77
“Getting a function traceback in C” on page 78
“Tracing the run-time path for C code compiled with TEST” on page 78
“Finding unexpected storage overwrite errors in C” on page 79
“Finding uninitialized storage errors in C” on page 80
“Halting before calling a NULL C function” on page 80

Example: sample C program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ − * /) is
read, the top two elements are popped off the stack, the operation is performed on
them, and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

CALC.H
/*----- FILE CALC.H --*/
/* */
/* Header file for CALC.C PUSHPOP.C READTOKN.C */
/* a simple calculator */
/*--*/
typedef enum toks {

T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP

} Token;
Token read_token(char buf[]);
typedef struct int_link {

struct int_link * next;
int i;

} IntLink;
typedef struct int_stack {

IntLink * top;
} IntStack;
extern void push(IntStack *, int);
extern int pop(IntStack *);

CALC.C
/*----- FILE CALC.C --*/
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
IntStack stack = { 0 };
main()
{

Token tok;
char word[100];
char buf_out[100];
int num, num2;

72 Debug Tool User’s Guide and Reference

for(;;)
{

tok=read_token(word);
switch(tok)
{

case T_STOP:
break;

case T_INTEGER:
num = atoi(word);
push(&stack,num); /* �CALC1� statement */
break;

case T_PLUS:
push(&stack, pop(&stack)+pop(&stack));
break;

case T_MINUS:
num = pop(&stack);
push(&stack, num-pop(&stack));
break;

case T_TIMES:
push(&stack, pop(&stack)*pop(&stack));
break;

case T_DIVIDE:
num2 = pop(&stack);
num = pop(&stack);
push(&stack, num/num2); /*�CALC2� statement */
break;

case T_EQUALS:
num = pop(&stack);
sprintf(buf_out,"= %d ",num);
push(&stack,num);
break;

}
if (tok==T_STOP)

break;
}
return 0;

}

PUSHPOP.C
/*----- FILE PUSHPOP.C ---*/
/* */
/* A push and pop function for a stack of integers */
/*--*/
#include <stdlib.h>
#include "calc.h"
/*--*/
/* input: stk - stack of integers */
/* num - value to push on the stack */
/* action: get a link to hold the pushed value, push link on stack */
/* */
extern void push(IntStack * stk, int num)
{

IntLink * ptr;
ptr = (IntLink *) malloc(sizeof(IntLink)); /* �PUSHPOP1� */
ptr–>i = num; /* �PUSHPOP2� statement */
ptr–>next = stk–>top;
stk–>top = ptr;

}
/*--*/
/* return: int value popped from stack */
/* action: pops top element from stack and gets return value from it */
/*--*/
extern int pop(IntStack * stk)
{

IntLink * ptr;

Chapter 4. Debugging your programs in full-screen mode 73

int num;
ptr = stk–>top;
num = ptr–>i;
stk–>top = ptr–>next;
free(ptr);
return num;

}

READTOKN.C
/*----- FILE READTOKN.C --*/
/* */
/* A function to read input and tokenize it for a simple calculator */
/*--*/
#include <ctype.h>
#include <stdio.h>
#include "calc.h"
/*--*/
/* action: get next input char, update index for next call */
/* return: next input char */
/*--*/
static char nextchar(void)
{
/*--*/
/* input action: */
/* 2 push 2 on stack */
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
/*--*/

char * buf_in = "2 18 + = 5 / = ";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;

}
/*--*/
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */
/*--*/
Token read_token(char buf[])
{

int i;
char c;
/* skip leading white space */
for(c=nextchar();

isspace(c);
c=nextchar())

;
buf[0] = c; /* get ready to return single char e.g."+" */
buf[1] = 0;
switch(c)
{

case '+' : return T_PLUS;
case '−' : return T_MINUS;
case '*' : return T_TIMES;
case '/' : return T_DIVIDE;
case '=' : return T_EQUALS;
default:

i = 0;
while (isdigit(c)) {

buf[i++] = c;

74 Debug Tool User’s Guide and Reference

c = nextchar();
}
buf[i] = 0;
if (i==0)

return T_STOP;
else

return T_INTEGER;
}

}

Related tasks
“Debugging a C program in full-screen mode” on page 71

Halting when certain functions are called in C
“Example: sample C program for debugging” on page 72

To halt just before read_token is called, issue the command:
AT CALL read_token ;

To halt just after read_token is called, issue the command:
AT ENTRY read_token ;

To take advantage of either of the above actions, you must compile your program
with the TEST compiler option.

Modifying the value of a C variable
To LIST the contents of a single variable, move the cursor to the variable name and
press PF4 (LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

“Example: sample C program for debugging” on page 72

Run the CALC program above to the statement labeled �CALC1�, move the cursor
over num and press PF4 (LIST). The following appears in the Log window:
LIST (num) ;
num = 2

To modify the value of num to 22, overtype the num = 2 line with num = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing PF2 (STEP) and step until the
statement labeled PUSHPOP2 is reached. To view the attributes of variable ptr,
issue the Debug Tool command:
DESCRIBE ATTRIBUTES *ptr;

The result in the Log window is similar to the following:
ATTRIBUTES for * ptr
Its address is 0BB6E010 and its length is 8

struct int_link
struct int_link *next;
int i;

You can use this action to browse structures and unions.

Chapter 4. Debugging your programs in full-screen mode 75

You can list all the values of the members of the structure pointed to by ptr with
the command:
LIST *ptr ;

with results in the Log window appearing similar to the following:
LIST * ptr ;
(* ptr).next = 0x00000000
(* ptr).i = 0

You can change the value of a structure member by issuing the assignment as a
command as in the following example:
(* ptr).i = 33 ;

Halting on a line in C only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but fails afterwards because a specific condition is present. Setting a simple
line breakpoint is an inefficient way to debug the program because you need to
execute the GO command a thousand times to reach the specific condition. You can
instruct Debug Tool to continue executing a program until a specific condition is
present.

“Example: sample C program for debugging” on page 72

For example, in the main procedure of the program above, you want to stop at
T_DIVIDE only if the divisor is 0 (before the exception occurs). Set the breakpoint
like this:
AT 40 { if(num2 != 0) GO; }

Line 40 is the statement labeled �CALC2�. The command causes Debug Tool to stop
at line 40. If the value of num2 is not 0, the program continues. You can enter
Debug Tool commands to change the value of num2 to a nonzero value.

Debugging C when only a few parts are compiled with TEST
“Example: sample C program for debugging” on page 72

Suppose you want to set a breakpoint at entry to the function push() in the file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. Debug Tool comes up with an empty Source window. To display the compile
units, enter the command:
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool. Depending on the compiler you are using, or if
"USERID.MFISTART.C(PUSHPOP)" is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter:
SET QUALIFY CU "USERID.MFISTART.C(PUSHPOP)"
AT ENTRY push;
GO ;

or
AT ENTRY "USERID.MFISTART.C(PUSHPOP)":>push
GO;

If it is not displayed, set an appearance breakpoint as follows:

76 Debug Tool User’s Guide and Reference

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When that happens, you can set
breakpoints at entry to push():
AT ENTRY push;

You can also combine the breakpoints as follows:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" AT ENTRY push; GO;

Capturing C output to stdout
To redirect stdout to the Log window, issue the following command:
SET INTERCEPT ON FILE stdout ;

With this SET command, you will capture not only stdout from your program, but
also from interactive function calls. For example, you can interactively call printf
on the command line to display a null-terminated string by entering:
printf(sptr);

You might find this easier than using LIST STORAGE.

Calling a C function from Debug Tool
You can invoke a library function (such as strlen) or one of the program functions
interactively by calling it on the command line.

“Example: sample C program for debugging” on page 72

Below, we call push() interactively to push one more value on the stack just before
a value is popped off.
AT CALL pop ;
GO ;
push(77);
GO ;

The calculator produces different results than before because of the additional
value pushed on the stack.

Displaying raw storage in C
A char * variable ptr can point to a piece of storage containing printable
characters. To display the first 20 characters enter:
LIST STORAGE(*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line, as in:
puts(ptr) ;

Debugging a C DLL
“Example: sample C program for debugging” on page 72

Build PUSHPOP.C as a DLL, exporting push() and pop(). Build CALC.C and
READTOKN.C as the program that imports push() and pop() from the DLL
named PUSHPOP. When the application CALC starts the DLL, PUSHPOP will not

Chapter 4. Debugging your programs in full-screen mode 77

be known to Debug Tool. Use the AT APPEARANCE breakpoint to gain control in the
DLL the first time code in that compile unit appears, as shown in the following
example:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Related references
“AT APPEARANCE” on page 223

Getting a function traceback in C
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:
LIST CALLS ;

“Example: sample C program for debugging” on page 72

For example, if you run the CALC example with the commands:
AT ENTRY read_token ;
GO ;
LIST CALLS ;

the Log window will contain something like:
At ENTRY in C function CALC ::> "USERID.MFISTART.C(READTOKN)" :> read_token.
From LINE 18 in C function CALC ::> "USERID.MFISTART.C(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Related references
“LIST CALLS” on page 287

Tracing the run-time path for C code compiled with TEST
To trace a program showing the entry and exit points without requiring any
changes to the program, place the following Debug Tool commands in a file and
USE them when Debug Tool initially displays your program. Assuming you have a
data set USERID.DTUSE(TRACE) that contains the following Debug Tool commands:
int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \

++indent; \
if (indent < 0) indent = 0; \
printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}
AT EXIT * {\

if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

78 Debug Tool User’s Guide and Reference

You can use this file as the source of commands to Debug Tool by entering the
following command:
USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file will be
displayed in the Log window.
int foo(int i, int j) {

return i+j;
}
int main(void) {

return foo(1,2);
}

The following trace in the Log window is displayed after running the sample
program, with the USE file as a source of input for Debug Tool commands:
>main
>foo
<foo
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Related references
“USE command” on page 353

Finding unexpected storage overwrite errors in C
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happens. Consider this example where
function set_i changes more than the caller expects it to change.
struct s { int i; int j;};
struct s a = { 0, 0 };

/* function sets only field i */
void set_i(struct s * p, int k)
{

p–>i = k;
p–>j = k; /* error, it unexpectedly sets field j also */

}
main() {

set_i(&a,123);
}

Find the address of a with the command
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values starting at that address for the next 4 bytes, issue the command:
AT CHANGE %STORAGE(0x7042A04,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Related references
“AT CHANGE” on page 226
“LIST expression” on page 288

Chapter 4. Debugging your programs in full-screen mode 79

Finding uninitialized storage errors in C
To help find your uninitialized storage errors, run your program with the
Language Environment TEST run-time and STORAGE options. In the following
example:
TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through malloc() is filled with the byte 0xFD.
If you see this byte repeated through storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by calling free() might be filled
with the byte 0xFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely
uninitialized auto storage.

The values chosen in the example are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address you will get an
exception immediately.

“Example: sample C program for debugging” on page 72

As an example of uninitialized heap storage, run program CALC with the
STORAGE run-time option as STORAGE(FD,FB,F9) to the line labeled PUSHPOP2
and issue the command:
LIST *ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:
LIST * ptr ;
(* ptr).next = 0xFDFDFDFD
(* ptr).i = −33686019

Related references
“LIST expression” on page 288

Halting before calling a NULL C function
Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:
AT CALL 0

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debug session without
raising a condition.

Related references
“AT CALL” on page 225
“GO command” on page 276

80 Debug Tool User’s Guide and Reference

Debugging a C++ program in full-screen mode
The descriptions of basic debugging tasks for C++ refer to the following C++
program.

“Example: sample C++ program for debugging”

Related tasks
“Chapter 9. Debugging C/C++ programs” on page 157
“Halting when certain functions are called in C++” on page 84
“Modifying the value of a C++ variable” on page 85
“Halting on a line in C++ only if a condition is true” on page 86
“Viewing and modifying data members of the this pointer in C++” on page 87
“Debugging C++ when only a few parts are compiled with TEST” on page 87
“Capturing C++ output to stdout” on page 88
“Calling a C++ function from Debug Tool” on page 88
“Displaying raw storage in C++” on page 89
“Debugging a C++ DLL” on page 89
“Getting a function traceback in C++” on page 89
“Tracing the run-time path for C++ code compiled with TEST” on page 90
“Finding unexpected storage overwrite errors in C++” on page 90
“Finding uninitialized storage errors in C++” on page 91
“Halting before calling a NULL C++ function” on page 92

Example: sample C++ program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ − * /) is
read, the top two elements are popped off the stack, the operation is performed on
them, and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

CALC.HPP
/*----- FILE CALC.HPP --*/
/* */
/* Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP */
/* a simple calculator */
/*--*/
typedef enum toks {

T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP

} Token;
extern "C" Token read_token(char buf[]);
class IntLink {

private:
int i;
IntLink * next;

public:
IntLink();
˜IntLink();
int get_i();
void set_i(int j);
IntLink * get_next();

Chapter 4. Debugging your programs in full-screen mode 81

void set_next(IntLink * d);
};
class IntStack {

private:
IntLink * top;

public:
IntStack();
˜IntStack();
void push(int);
int pop();

};

CALC.CPP
/*----- FILE CALC.CPP --*/
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
IntStack stack;
int main()
{

Token tok;
char word[100];
char buf_out[100];
int num, num2;
for(;;)
{

tok=read_token(word);
switch(tok)
{

case T_STOP:
break;

case T_INTEGER:
num = atoi(word);
stack.push(num); /* �CALC1� statement */
break;

case T_PLUS:
stack.push(stack.pop()+stack.pop());
break;

case T_MINUS:
num = stack.pop();
stack.push(num-stack.pop());
break;

case T_TIMES:
stack.push(stack.pop()*stack.pop());
break;

case T_DIVIDE:
num2 = stack.pop();
num = stack.pop();
stack.push(num/num2); /* �CALC2� statement */
break;

case T_EQUALS:
num = stack.pop();
sprintf(buf_out,"= %d ",num);
stack.push(num);
break;

}
if (tok==T_STOP)

break;
}
return 0;

}

82 Debug Tool User’s Guide and Reference

PUSHPOP.CPP
/*----- FILE: PUSHPOP.CPP --*/
/* */
/* Push and pop functions for a stack of integers */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
/*--*/
/* input: num - value to push on the stack */
/* action: get a link to hold the pushed value, push link on stack */
/*--*/
void IntStack::push(int num) {

IntLink * ptr;
ptr = new IntLink;
ptr–>set_i(num);
ptr–>set_next(top);
top = ptr;

}
/*--*/
/* return: int value popped from stack (0 if stack is empty) */
/* action: pops top element from stack and get return value from it */
/*--*/
int IntStack::pop() {

IntLink * ptr;
int num;
ptr = top;
num = ptr–>get_i();
top = ptr–>get_next();
delete ptr;
return num;

}
IntStack::IntStack() {

top = 0;
}
IntStack::˜IntStack() {

while(top)
pop();

}
IntLink::IntLink() { /* constructor leaves elements unassigned */
}
IntLink::˜IntLink() {
}
void IntLink::set_i(int j) {

i = j;
}
int IntLink::get_i() {

return i;
}
void IntLink::set_next(IntLink * p) {

next = p;
}
IntLink * IntLink::get_next() {

return next;
}

READTOKN.CPP
/*----- FILE READTOKN.CPP --*/
/* */
/* A function to read input and tokenize it for a simple calculator */
/*--*/
#include <ctype.h>
#include <stdio.h>
#include "calc.hpp"
/*--*/
/* action: get next input char, update index for next call */

Chapter 4. Debugging your programs in full-screen mode 83

/* return: next input char */
/*--*/
static char nextchar(void)
{

/* input action
* ----- ------
* 2 push 2 on stack
* 18 push 18
* + pop 2, pop 18, add, push result (20)
* = output value on the top of the stack (20)
* 5 push 5
* / pop 5, pop 20, divide, push result (4)
* = output value on the top of the stack (4)
*/
char * buf_in = "2 18 + = 5 / = ";
static int index; /* starts at 0 */
char ret;
ret = buf_in[index];
++index;
return ret;

}
/*--*/
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */
/*--*/
extern "C"
Token read_token(char buf[])
{

int i;
char c;
/* skip leading white space */
for(c=nextchar();

isspace(c);
c=nextchar())

;
buf[0] = c; /* get ready to return single char e.g. "+" */
buf[1] = 0;
switch(c)
{

case '+' : return T_PLUS;
case '−' : return T_MINUS;
case '*' : return T_TIMES;
case '/' : return T_DIVIDE;
case '=' : return T_EQUALS;
default:

i = 0;
while (isdigit(c)) {

buf[i++] = c;
c = nextchar();

}
buf[i] = 0;
if (i==0)

return T_STOP;
else

return T_INTEGER;
}

}

Related tasks
“Debugging a C++ program in full-screen mode” on page 81

Halting when certain functions are called in C++
You need to include the C++ signature along with the function name to set an AT
ENTRY or AT CALL breakpoint for a C++ function.

84 Debug Tool User’s Guide and Reference

“Example: sample C++ program for debugging” on page 81

To facilitate entering the breakpoint, you can display PUSHPOP.CPP in the Source
window by overtyping the name of the file on the top line of the Source window.
This makes PUSHPOP.CPP your currently qualified program. You can then issue
the command:
LIST NAMES

which displays the names of all the blocks and variables for the currently qualified
program. Debug Tool displays information similar to the following in the Log
window:
There are no session names.
The following names are known in block CALC ::> "USERID.MFISTART.CPP(PUSHPOP)"
IntStack::˜IntStack()
IntStack::IntStack()
IntLink::get_i()
IntLink::get_next()
IntLink::˜IntLink()
IntLink::set_i(int)
IntLink::set_next(IntLink*)
IntLink::IntLink()

Now you can save some keystrokes by inserting the command next to the block
name.

To halt just before IntStack::push(int) is called, insert AT CALL next to the
function signature and, by pressing Enter, the entire command is placed on the
command line. Now, with AT CALL IntStack::push(int) on the command line, you
can enter the command:
AT CALL IntStack::push(int)

To halt just after IntStack::push(int) is called, issue the command:
AT ENTRY IntStack::push(int) ;

in the same way as the AT CALL command.

To be able to halt, the file with the calling code must be compiled with the TEST
compiler option.

Related references
“AT CALL” on page 225
“AT ENTRY/EXIT” on page 231
“LIST NAMES” on page 291

Modifying the value of a C++ variable
To list the contents of a single variable, move the cursor to the variable name and
press PF4 (LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

“Example: sample C++ program for debugging” on page 81

Run the CALC program and step into the first call of function
IntStack::push(int) until just after the IntLink has been allocated. Enter the
Debug Tool command:
LIST TITLED num

Chapter 4. Debugging your programs in full-screen mode 85

Debug Tool displays the following in the Log window:
LIST TITLED num;
num = 2

To modify the value of num to 22, overtype the num = 2 line with num = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most C++ expressions on the command line.

To view the attributes of variable ptr in IntStack::push(int), issue the Debug Tool
command:
DESCRIBE ATTRIBUTES *ptr;

The result in the Log window is:
ATTRIBUTES for * ptr
Its address is 0BA25EB8 and its length is 8

class IntLink
signed int i
struct IntLink *next

So for most classes, structures, and unions, this can act as a browser.

You can list all the values of the data members of the class object pointed to by ptr
with the command:
LIST *ptr ;

with results in the Log window similar to:
LIST * ptr ; * ptr.i = 0 * ptr.next = 0x00000000

You can change the value of data member of a class object by issuing the
assignment as a command, as in this example:
(* ptr).i = 33 ;

Related tasks
“Using C/C++ variables with Debug Tool” on page 158

Related references
“DESCRIBE command” on page 263
“LIST expression” on page 288

Halting on a line in C++ only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but fails under certain conditions. You don’t want to set a simple line
breakpoint because you will have to keep entering GO.

“Example: sample C++ program for debugging” on page 81

For example, in main you want to stop in T_DIVIDE only if the divisor is 0 (before
the exception occurs). Set the breakpoint like this:
AT 40 { if(num2 != 0) GO; }

Line 40 is the statement labeled �CALC2�. The command causes Debug Tool to stop
at line 40. If the value of num is not 0, the program will continue. Debug Tool stops
on line 40 only if num2 is 0.

86 Debug Tool User’s Guide and Reference

Related references
“AT STATEMENT” on page 241

Viewing and modifying data members of the this pointer in
C++

If you step into a class method, for example, one for class IntLink, the command:
LIST TITLED ;

responds with a list that includes this. With the command:
DESCRIBE ATTRIBUTES *this ;

you will see the types of the data elements pointed to by the this pointer. With the
command:
LIST *this ;

you will list the data member of the object pointed to and see something like:
LIST * this ;
(* this).i = 4
(* this).next = 0x0

in the Log window. To modify element i, enter either the command:
i = 2001;

or, if you have ambiguity (for example, you also have an auto variable named i),
enter:
(* this).i = 2001 ;

Related references
“DESCRIBE command” on page 263
“LIST expression” on page 288

Debugging C++ when only a few parts are compiled with TEST
“Example: sample C++ program for debugging” on page 81

Suppose you want to set a breakpoint at entry to function IntStack::push(int) in
the file PUSHPOP.CPP. PUSHPOP.CPP has been compiled with TEST but the other
files have not. Debug Tool comes up with an empty Source window. To display the
compile units, enter the command:
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool.

Depending on the compiler you are using, or if USERID.MFISTART.CPP(PUSHPOP) is
fetched later on by the application, this compile unit might or might not be known
to Debug Tool, and the PDS member PUSHPOP might or might not be displayed.
If it is displayed, enter:
SET QUALIFY CU "USERID.MFISTART.CPP(PUSHPOP)"
AT ENTRY IntStack::push(int) ;
GO ;

or
AT ENTRY "USERID.MFISTART.CPP(PUSHPOP)":>push
GO

Chapter 4. Debugging your programs in full-screen mode 87

If it is not displayed, you need to set an appearance breakpoint as follows:
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;

You can also combine the breakpoints as follows:
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" AT ENTRY push; GO;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When that happens you can, for
example, set a breakpoint at entry to IntStack::push(int) as follows:
AT ENTRY IntStack::push(int) ;

Related references
“AT APPEARANCE” on page 223
“AT ENTRY/EXIT” on page 231
“LIST NAMES” on page 291
“SET QUALIFY” on page 335

Capturing C++ output to stdout
To redirect stdout to the Log window, issue the following command:
SET INTERCEPT ON FILE stdout ;

With this SET command, you will not only capture stdout from your program, but
also from interactive function calls. For example, you can interactively use cout on
the command line to display a null terminated string by entering:
cout << sptr ;

You might find this easier than using LIST STORAGE.

For CICS only, SET INTERCEPT is not supported.

Related references
“LIST STORAGE” on page 295
“SET INTERCEPT (C/C++ and COBOL)” on page 327

Calling a C++ function from Debug Tool
You can invoke a library function (such as strlen) or one of the programs
functions interactively by calling it on the command line. The same is true of C
linkage functions such as read_token. You cannot call C++ linkage functions
interactively.

“Example: sample C++ program for debugging” on page 81

In the example below, we call read_token interactively.
AT CALL read_token;
GO;
read_token(word);

The calculator produces different results than before because of the additional
token removed from input.

Related references
“AT CALL” on page 225

88 Debug Tool User’s Guide and Reference

Displaying raw storage in C++
A char * variable ptr can point to a piece of storage containing printable
characters. To display the first 20 characters, enter;
LIST STORAGE(*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line as shown in this example:
puts(ptr) ;

Related references
“LIST STORAGE” on page 295

Debugging a C++ DLL
“Example: sample C++ program for debugging” on page 81

Build PUSHPOP.CPP as a DLL, exporting IntStack::push(int) and IntStack::pop().
Build CALC.CPP and READTOKN.CPP as the program that imports
IntStack::push(int) and IntStack::pop() from the DLL named PUSHPOP. When the
application CALC starts, the DLL PUSHPOP is not known to Debug Tool. Use the
AT APPEARANCE breakpoint, as shown in the following example, to gain control in
the DLL the first time code in that compile unit appears.
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Related references
“AT APPEARANCE” on page 223

Getting a function traceback in C++
Often when you get close to a programming error, you want to know how you got
into that situation, especially what the traceback of calling functions is. To get this
information, issue the command:
LIST CALLS ;

For example, if you run the CALC example with the following commands:
AT ENTRY read_token ;
GO ;
LIST CALLS ;

the Log window contains something like:
At ENTRY in C function "USERID.MFISTART.CPP(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.CPP(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Related references
“AT ENTRY/EXIT” on page 231
“LIST CALLS” on page 287

Chapter 4. Debugging your programs in full-screen mode 89

Tracing the run-time path for C++ code compiled with TEST
To trace a program showing the entry and exit of that program without requiring
any changes to it, place the following Debug Tool commands, shown in the
example below, in a file and USE them when Debug Tool initially displays your
program. Assume you have a data set that contains USERID.DTUSE(TRACE) and
contains the following Debug Tool commands:
int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \

++indent; \
if (indent < 0) indent = 0; \
printf("%*.s>%s\n", indent, " ", %block); \
GO; \

}
AT EXIT * {\

if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:
USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file is
displayed in the Log window:
int foo(int i, int j) {

return i+j;
}
int main(void) {

return foo(1,2);
}

The following trace in the Log window is displayed after running the sample
program, using the USE file as a source of input for Debug Tool commands:
>main
>foo(int,int)
<foo(int,int)
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect will be achieved.

Related references
“AT ENTRY/EXIT” on page 231
“SET INTERCEPT (C/C++ and COBOL)” on page 327
“USE command” on page 353

Finding unexpected storage overwrite errors in C++
During program run time, some storage might unexpectedly change its value and
you would like to find out when and where this happened. Consider this simple
example where function set_i changes more than the caller expects it to change.
struct s { int i; int j;};
struct s a = { 0, 0 };

/* function sets only field i */

90 Debug Tool User’s Guide and Reference

void set_i(struct s * p, int k)
{

p–>i = k;
p–>j = k; /* error, it unexpectedly sets field j also */

}
main() {

set_i(&a,123);
}

Find the address of a with the command:
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values, starting at that address for the next 4 bytes, issue the command:
AT CHANGE %STORAGE(0x7042A04,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Related references
“AT CHANGE” on page 226
“LIST expression” on page 288

Finding uninitialized storage errors in C++
To help find your uninitialized storage errors, run your program with the
Language Environment TEST run-time and STORAGE options. In the following
example:
TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through operator new is filled with the byte
0xFD. If you see this byte repeated throughout storage, it is likely uninitialized
heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by the operator delete might be
filled with the byte 0xFB. If you see this byte repeated throughout storage, it is
likely storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated throughout storage, it is likely that it
is uninitialized auto storage.

The values chosen in the example are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address, you will get an
exception immediately.

As an example of uninitialized heap storage, run program CALC, with the STORAGE
run-time option as STORAGE(FD,FB,F9), to the line labeled PUSHPOP2 and issue the
command:
LIST *ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:
LIST * ptr ;
(* ptr).next = 0xFDFDFDFD
(* ptr).i = −33686019

Chapter 4. Debugging your programs in full-screen mode 91

Related references
“LIST expression” on page 288
z/OS Language Environment Programming
Guide

Halting before calling a NULL C++ function
Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:
AT CALL 0

When Debug Tool stops at this breakpoint, you can bypass the call by entering the
GO BYPASS command. This command allows you to continue your debug session
without raising a condition.

Related references
“AT CALL” on page 225
“GO command” on page 276

Debugging a COBOL program in full-screen mode
The descriptions of basic debugging tasks for COBOL refer to the following
COBOL program.

“Example: sample COBOL program for debugging”

Related tasks
“Chapter 10. Debugging COBOL programs” on page 183
“Halting when certain routines are called in COBOL” on page 95
“Modifying the value of a COBOL variable” on page 96
“Halting on a COBOL line only if a condition is true” on page 97
“Debugging COBOL when only a few parts are compiled with TEST” on page 98
“Capturing COBOL I/O to the system console” on page 99
“Displaying raw storage in COBOL” on page 99
“Getting a COBOL routine traceback” on page 99
“Tracing the run-time path for COBOL code compiled with TEST” on page 100
“Generating a COBOL run-time paragraph trace” on page 101
“Finding unexpected storage overwrite errors in COBOL” on page 102
“Halting before calling an invalid program in COBOL” on page 103

Related references
“COBOL source listing must be fixed block format” on page 183

Example: sample COBOL program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program calls two subprograms to calculate a loan payment amount and the
future value of a series of cash flows. Several COBOL intrinsic functions are
utilized.

Main program COBCALC
**
* COBCALC *
* *
* A simple program that allows financial functions to *

92 Debug Tool User’s Guide and Reference

* be performed using intrinsic functions. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBCALC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARM-1.

05 CALL-FEEDBACK PIC XX.
01 FIELDS.

05 INPUT-1 PIC X(10).
01 INPUT-BUFFER-FIELDS.

05 BUFFER-PTR PIC 9.
05 BUFFER-DATA.

10 FILLER PIC X(10) VALUE "LOAN".
10 FILLER PIC X(10) VALUE "PVALUE".
10 FILLER PIC X(10) VALUE "pvalue".
10 FILLER PIC X(10) VALUE "END".

05 BUFFER-ARRAY REDEFINES BUFFER-DATA
OCCURS 4 TIMES

PIC X(10).

PROCEDURE DIVISION.
DISPLAY "CALC Begins." UPON CONSOLE.
MOVE 1 TO BUFFER-PTR.
MOVE SPACES TO INPUT-1.

* Keep processing data until END requested
PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".

* END requested
DISPLAY "CALC Ends." UPON CONSOLE.
GOBACK.

* End of program.

*
* Accept input data from buffer
*
ACCEPT-INPUT.

MOVE BUFFER-ARRAY (BUFFER-PTR) TO INPUT-1.
ADD 1 BUFFER-PTR GIVING BUFFER-PTR.

* Allow input data to be in UPPER or lower case
EVALUATE FUNCTION UPPER-CASE(INPUT-1) �CALC1�

WHEN "END"
MOVE "END" TO INPUT-1

WHEN "LOAN"
PERFORM CALCULATE-LOAN

WHEN "PVALUE"
PERFORM CALCULATE-VALUE

WHEN OTHER
DISPLAY "Invalid input: " INPUT-1

END-EVALUATE.
*
* Calculate Loan via CALL to subprogram
*
CALCULATE-LOAN.

CALL "COBLOAN" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN

DISPLAY "Call to COBLOAN Unsuccessful.".
*
* Calculate Present Value via CALL to subprogram
*
CALCULATE-VALUE.

CALL "COBVALU" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN

DISPLAY "Call to COBVALU Unsuccessful.".

Subroutine COBLOAN

Chapter 4. Debugging your programs in full-screen mode 93

**
* COBLOAN *
* *
* A simple subprogram that calculates payment amount *
* for a loan. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBLOAN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FIELDS.

05 INPUT-1 PIC X(26).
05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.
05 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.
05 LOAN-AMOUNT-IN PIC X(16).
05 INTEREST-IN PIC X(5).
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 NO-OF-PERIODS-IN PIC X(3).
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 OUTPUT-LINE PIC X(79).

LINKAGE SECTION.
01 PARM-1.

05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.

MOVE "NO" TO CALL-FEEDBACK.
MOVE "30000 .09 24 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY ALL " "

INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values

COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL(LOAN-AMOUNT-IN).
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

* Calculate annuity amount required
COMPUTE PAYMENT = LOAN-AMOUNT *

FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).
* Make it presentable

MOVE SPACES TO OUTPUT-LINE
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBLOAN:_Repayment_amount_for_a_" NO-OF-PERIODS-IN

"_month_loan_of_" LOAN-AMOUNT-IN
"_at_" INTEREST-IN "_interest_is:_"

DELIMITED BY SPACES
INTO OUTPUT-LINE.

INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

Subroutine COBVALU
**
* COBVALU *
* *
* A simple subprogram that calculates present value *
* for a series of cash flows. *
* *
**
IDENTIFICATION DIVISION.
PROGRAM-ID. COBVALU.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHAR-DATA.

94 Debug Tool User’s Guide and Reference

05 INPUT-1 PIC X(10).
05 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.
05 INTEREST-IN PIC X(5).
05 NO-OF-PERIODS-IN PIC X(3).
05 INPUT-BUFFER PIC X(10) VALUE "5069837544".
05 BUFFER-ARRAY REDEFINES INPUT-BUFFER

OCCURS 5 TIMES
PIC XX.

05 OUTPUT-LINE PIC X(79).
01 NUM-DATA.

05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 COUNTER PIC 99 USAGE COMP.
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 VALUE-AMOUNT OCCURS 99 PIC S9(7)V99 COMP.

LINKAGE SECTION.
01 PARM-1.

05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.

MOVE "NO" TO CALL-FEEDBACK.
MOVE ".12 5 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY "," OR ALL " " �VALU1�
INTO INTEREST-IN NO-OF-PERIODS-IN.

* Convert to numeric values
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN). �VALU2�
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).

* Get cash flows
PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL

COUNTER IS GREATER THAN NO-OF-PERIODS.
* Calculate present value

COMPUTE PAYMENT =
FUNCTION PRESENT-VALUE(INTEREST VALUE-AMOUNT(ALL)). �VALU3�

* Make it presentable
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBVALU:_Present_value_for_rate_of_"

INTEREST-IN "_given_amounts_"
BUFFER-ARRAY (1) ",_"
BUFFER-ARRAY (2) ",_"
BUFFER-ARRAY (3) ",_"
BUFFER-ARRAY (4) ",_"
BUFFER-ARRAY (5) "_is:_"

DELIMITED BY SPACES
INTO OUTPUT-LINE.

INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

*
* Get cash flows for each period
*
GET-AMOUNTS.

MOVE BUFFER-ARRAY (COUNTER) TO INPUT-1.
COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

Related tasks
“Debugging a COBOL program in full-screen mode” on page 92

Halting when certain routines are called in COBOL
“Example: sample COBOL program for debugging” on page 92

To halt just before COBLOAN is called, issue the command:
AT CALL COBLOAN ;

Chapter 4. Debugging your programs in full-screen mode 95

If the CU COBVALU is known to Debug Tool (that is, it has been called
previously), to halt just after COBVALU is called, issue the command:
AT ENTRY COBVALU ;

If the CU COBVALU is not known to Debug Tool (that is, it has not been called
previously), to halt just before COBVALU is entered the first time, issue the
command:
AT APPEARANCE COBVALU ;

You can display a list of all compile units that are known to Debug Tool by
entering the command:
LIST NAMES CUS ;

The Debug Tool Log window displays something similar to:
LIST NAMES CUS ;
The following CUs are known in *:
COBCALC
COBLOAN
COBVALU

Additionally, you can combine the breakpoints as follows:
AT APPEARANCE COBVALU AT ENTRY COBVALU ; GO ;

The purpose for the appearance breakpoint is to gain control the first time the
COBVALU compile unit is run.

To take advantage of either AT ENTRY or AT APPEARANCE, you must compile the
routine program (COBVALU in the above example) with the TEST compiler option.

If you have many breakpoints set in your program, you can issue the command:
QUERY LOCATION

to indicate where in your program execution has been interrupted. The Debug Tool
Log window displays something similar to:
QUERY LOCATION ;
You were prompted because STEP ended.
The program is currently entering block COBVALU.

Related references
“AT CALL” on page 225
“AT APPEARANCE” on page 223
“AT ENTRY/EXIT” on page 231
“LIST NAMES” on page 291
“QUERY command” on page 307

Modifying the value of a COBOL variable
“Example: sample COBOL program for debugging” on page 92

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). Remember that Debug
Tool starts after program initialization but before symbolic COBOL variables are
initialized, so you cannot view or modify the contents of variables until you have
performed a step or run. The value is displayed in the Log window. This is
equivalent to entering LIST TITLED variable on the command line. Run the
COBCALC program to the statement labeled �CALC1�, and enter AT 46 ; GO ; on

96 Debug Tool User’s Guide and Reference

the Debug Tool command line. Move the cursor over INPUT-1 and press LIST (PF4).
The following appears in the Log window:
LIST (INPUT-1) ;
INPUT-1 = 'LOAN '

To modify the value of INPUT-1, enter on the command line:
MOVE 'pvalue' to INPUT-1 ;

You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing PF2 (STEP) and step until the
statement labeled �VALU2� is reached. To view the attributes of the variable
INTEREST, issue the Debug Tool command:
DESCRIBE ATTRIBUTES INTEREST ;

The result in the Log window is:
ATTRIBUTES FOR INTEREST

ITS LENGTH IS 4
ITS ADDRESS IS 00011DC8
02 COBVALU:>INTEREST S999V99 COMP

You can use this action as a simple browser for group items and data hierarchies.
For example, you can list all the values of the elementary items for the
CHAR-DATA group with the command:
LIST CHAR-DATA ;

with results in the Log window appearing something like this:
LIST CHAR-DATA ;
02 COBVALU:>INPUT-1 of 01 COBVALU:>CHAR-DATA = '.12 5 '
Invalid data for 02 COBVALU:>PAYMENT-OUT of 01 COBVALU:>CHAR-DATA is found.
02 COBVALU:>INTEREST-IN of 01 COBVALU:>CHAR-DATA = '.12 '
02 COBVALU:>NO-OF-PERIODS-IN of 01 COBVALU:>CHAR-DATA = '5 '
02 COBVALU:>INPUT-BUFFER of 01 COBVALU:>CHAR-DATA = '5069837544'
SUB(1) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '50'
SUB(2) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '69'
SUB(3) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '83'
SUB(4) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '75'
SUB(5) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '44'

Note: If you use the LIST command to list the contents of an uninitialized variable,
or a variable that contains invalid data, Debug Tool displays INVALID DATA.

Related tasks
“Using COBOL variables with Debug Tool” on page 185

Related references
“DESCRIBE command” on page 263
“LIST expression” on page 288
“MOVE command (COBOL)” on page 298

Halting on a COBOL line only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. You don’t want to just set a line
breakpoint because you will have to keep entering GO.

“Example: sample COBOL program for debugging” on page 92

Chapter 4. Debugging your programs in full-screen mode 97

For example, in COBVALU you want to stop at the calculation of present value
only if the discount rate is less than or equal to -1 (before the exception occurs).
First run COBCALC, step into COBVALU, and stop at the statement labeled
�VALU1�. To accomplish this, issue these Debug Tool commands at the start of
COBCALC:
AT 67 ; GO ;
CLEAR AT 67 ; STEP 4 ;

Now set the breakpoint like this:
AT 44 IF INTEREST > -1 THEN GO ; END-IF ;

Line 44 is the statement labeled �VALU3�. The command causes Debug Tool to stop
at line 44. If the value of INTEREST is greater than -1, the program continues. The
command causes Debug Tool to remain on line 44 only if the value of INTEREST is
less than or equal to -1.

To force the discount rate to be negative, enter the Debug Tool command:
MOVE '-2 5' TO INPUT-1 ;

Run the program by issuing the GO command. Debug Tool halts the program at
line 44. Display the contents of INTEREST by issuing the LIST INTEREST command.
To view the effect of this breakpoint when the discount rate is positive, begin a
new debug session and repeat the Debug Tool commands shown in this section.
However, do not issue the MOVE '-2 5' TO INPUT-1 command. The program
execution does not stop at line 44 and the program runs to completion.

Related references
“AT STATEMENT” on page 241
“MOVE command (COBOL)” on page 298

Debugging COBOL when only a few parts are compiled with
TEST

“Example: sample COBOL program for debugging” on page 92

Suppose you want to set a breakpoint at entry to COBVALU. COBVALU has been
compiled with TEST but the other programs have not. Debug Tool comes up with
an empty Source window. You can use the LIST NAMES CUS command to determine
if the COBVALU compile unit is known to Debug Tool and then set the
appropriate breakpoint using either the AT APPEARANCE or the AT ENTRY command.

Instead of setting a breakpoint at entry to COBVALU in this example, issue a STEP
command when Debug Tool initially displays the empty Source window. Debug
Tool runs the program until it reaches the entry for the first routine compiled with
TEST, COBVALU in this case.

Related tasks
“Halting when certain routines are called in COBOL” on page 95

Related references
“AT ENTRY/EXIT” on page 231
“LIST NAMES” on page 291

98 Debug Tool User’s Guide and Reference

Capturing COBOL I/O to the system console
To redirect output normally appearing on the system console to your Debug Tool
terminal, enter the following command:
SET INTERCEPT ON CONSOLE ;

“Example: sample COBOL program for debugging” on page 92

For example, if you run COBCALC and issue the Debug Tool SET INTERCEPT ON
CONSOLE command, followed by the STEP 3 command, you will see the following
output displayed in the Debug Tool Log window:
SET INTERCEPT ON CONSOLE ;
STEP 3 ;
CONSOLE : CALC Begins.

The phrase CALC Begins. is displayed by the statement DISPLAY "CALC Begins."
UPON CONSOLE in COBCALC.

The SET INTERCEPT ON CONSOLE command not only captures output to the system
console, but also allows you to input data from your Debug Tool terminal instead
of the system console by using the Debug Tool INPUT command. For example, if
the next COBOL statement executed is ACCEPT INPUT-DATA FROM CONSOLE, the
following message appears in the Debug Tool Log window:
CONSOLE : IGZ0000I AWAITING REPLY.
The program is waiting for input from CONSOLE.
Use the INPUT command to enter 114 characters for the intercepted
fixed-format file.

Continue execution by replying to the input request by entering the following
Debug Tool command:
INPUT some data ;

Note: Whenever Debug Tool intercepts system console I/O, and for the duration
of the intercept, the display in the Source window is empty and the Location
field in the session panel header at the top of the screen shows Unknown.

Related references
“INPUT command (C/C++ and COBOL)” on page 283
“SET INTERCEPT (C/C++ and COBOL)” on page 327

Displaying raw storage in COBOL
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 12 characters of BUFFER-DATA
enter:
LIST STORAGE(BUFFER-DATA,12)

Related references
“LIST STORAGE” on page 295

Getting a COBOL routine traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling routines is. To get
this information, issue the command:
LIST CALLS ;

Chapter 4. Debugging your programs in full-screen mode 99

“Example: sample COBOL program for debugging” on page 92

For example, if you run the COBCALC example with the commands:
AT APPEARANCE COBVALU AT ENTRY COBVALU;
GO;
GO;
LIST CALLS;

the Log window contains something like:
AT APPEARANCE COBVALU

AT ENTRY COBVALU ;
GO ;
GO ;
LIST CALLS ;
At ENTRY in COBOL program COBVALU.
From LINE 67.1 in COBOL program COBCALC.

which shows the traceback of callers.

Related references
“AT ENTRY/EXIT” on page 231
“LIST CALLS” on page 287

Tracing the run-time path for COBOL code compiled with
TEST

To trace a program showing the entry and exit points without requiring any
changes to the program, place the following Debug Tool commands in a file or
data set and USE them when Debug Tool initially displays your program.
Assuming you have a PDS member, USERID.DT.COMMANDS(COBCALC), that
contains the following Debug Tool commands:
* Commands in a COBOL USE file must be coded in columns 8-72.
* If necessary, commands can be continued by coding a '-' in
* column 7 of the continuation line.
01 LEVEL PIC 99 USAGE COMP;
MOVE 1 TO LEVEL;
AT ENTRY * PERFORM;

COMPUTE LEVEL = LEVEL + 1;
LIST ("Entry:", LEVEL, %CU);
GO;
END-PERFORM;

AT EXIT * PERFORM;
LIST ("Exit:", LEVEL);
COMPUTE LEVEL = LEVEL - 1;
GO;
END-PERFORM;

You can use this file as the source of commands to Debug Tool by entering the
following command:
USE USERID.DT.COMMANDS(COBCALC)

If, after executing the USE file, you run COBCALC, the following trace (or similar)
is displayed in the Log window:
ENTRY:
LEVEL = 00002
%CU = COBCALC
ENTRY:
LEVEL = 00003
%CU = COBLOAN
EXIT:

100 Debug Tool User’s Guide and Reference

LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
EXIT:
LEVEL = 00002

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Related references
“AT ENTRY/EXIT” on page 231
“USE command” on page 353

Generating a COBOL run-time paragraph trace
To generate a trace showing the names of paragraphs through which execution has
passed, the Debug Tool commands shown in the following example can be used.
You can either enter the commands from the Debug Tool command line or place
the commands in a file or data set.

“Example: sample COBOL program for debugging” on page 92

Assume you have a PDS member, USERID.DT.COMMANDS(COBCALC2), that
contains the following Debug Tool commands.
* COMMANDS IN A COBOL USE FILE MUST BE CODED IN COLUMNS 8-72.
* IF NECESSARY, COMMANDS CAN BE CONTINUED BY CODING A '-' IN
* COLUMN 7 OF THE CONTINUATION LINE.
AT GLOBAL LABEL PERFORM;

LIST LINES %LINE;
GO;

END-PERFORM;

When Debug Tool initially displays your program, enter the following command:
USE USERID.DT.COMMANDS(COBCALC2)

After executing the USE file, you can run COBCALC and the following trace (or
similar) is displayed in the Log window:

Chapter 4. Debugging your programs in full-screen mode 101

42 ACCEPT-INPUT.

59 CALCULATE-LOAN.

42 ACCEPT-INPUT.

66 CALCULATE-VALUE.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

42 ACCEPT-INPUT.

66 CALCULATE-VALUE.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

64 GET-AMOUNTS.

42 ACCEPT-INPUT.

Related references
“USE command” on page 353

Finding unexpected storage overwrite errors in COBOL
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example
where the program changes more than the caller expects it to change.

05 FIELD-1 OCCURS 2 TIMES
PIC X(8).

05 FIELD-2 PIC X(8).
PROCEDURE DIVISION.
* (An invalid index value is set)

MOVE 3 TO PTR.
MOVE "TOO MUCH" TO FIELD-1(PTR).

Find the address of FIELD-2 with the command:
DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'0000F559'. To set a breakpoint that watches for a change in
storage values starting at that address for the next 8 bytes, issue the command:
AT CHANGE %STORAGE(H'0000F559',8)

When the program runs, Debug Tool halts if the value in this storage changes.

Related references
“AT CHANGE” on page 226
“DESCRIBE command” on page 263

102 Debug Tool User’s Guide and Reference

Halting before calling an invalid program in COBOL
Calling an undefined program is a severe error. If you have developed a main
program that calls a subprogram that doesn’t exist, you can cause Debug Tool to
halt just before such a call. For example, if the subprogram NOTYET doesn’t exist,
you can set the breakpoint:
AT CALL (NOTYET)

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debug session without
raising a condition.

Related references
“AT CALL” on page 225
“GO command” on page 276

Debugging a PL/I program in full-screen mode
The descriptions of basic debugging tasks for PL/I refer to the following PL/I
program.

“Example: sample PL/I program for debugging”

Related tasks
“Chapter 11. Debugging PL/I programs” on page 195
“Halting when certain PL/I functions are called” on page 106
“Modifying the value of a PL/I variable” on page 107
“Halting on a PL/I line only if a condition is true” on page 108
“Debugging PL/I when only a few parts are compiled with TEST” on page 108
“Displaying raw storage in PL/I” on page 108
“Getting a PL/I function traceback” on page 109
“Tracing the run-time path for PL/I code compiled with TEST” on page 109
“Finding unexpected storage overwrite errors in PL/I” on page 110
“Halting before calling an undefined program in PL/I” on page 111

Example: sample PL/I program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ - * /) is
read, the top two elements are popped off the stack, the operation is performed on
them and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

Before running PLICALC, you need to allocate SYSPRINT to the terminal by
entering one of the following commands:
v For MVS under TSO, enter the following command:

ALLOC FI(SYSPRINT) DA(*)

v For VM, enter the following command:
FILEDEF SYSPRINT TERMINAL

Main program PLICALC
plicalc: proc options(main);
/*--*/
/* */

Chapter 4. Debugging your programs in full-screen mode 103

/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/* */
/*--*/
dcl index builtin;
dcl length builtin;
dcl substr builtin;
/* */
dcl 1 stack,

2 stkptr fixed bin(15,0) init(0),
2 stknum(50) fixed bin(31,0);

dcl 1 bufin,
2 bufptr fixed bin(15,0) init(0),
2 bufchr char (100) varying;

dcl 1 tok char (100) varying;
dcl 1 tstop char(1) init ('s');
dcl 1 ndx fixed bin(15,0);
dcl num fixed bin(31,0);
dcl i fixed bin(31,0);
dcl push entry external;
dcl pop entry returns (fixed bin(31,0)) external;
dcl readtok entry returns (char (100) varying) external;
/*--*/
/* input action: */
/* 2 push 2 on stack */
/* 18 push 18 */
/* + pop 2, pop 18, add, push result (20) */
/* = output value on the top of the stack (20) */
/* 5 push 5 */
/* / pop 5, pop 20, divide, push result (4) */
/* = output value on the top of the stack (4) */
/*--*/
bufchr = '2 18 + = 5 / =';
do while (tok |= tstop);

tok = readtok(bufin); /* get next 'token' */
select (tok);

when (tstop)
leave;

when ('+') do;
num = pop(stack);
call push(stack,num); /* �CALC1� statement */

end;
when ('-') do;

num = pop(stack);
call push(stack,pop(stack)-num);

end;
when ('*')

call push(stack,pop(stack)*pop(stack));
when ('/') do;

num = pop(stack);
call push(stack,pop(stack)/num); /* �CALC2� statement */

end;
when ('=') do;

num = pop(stack);
put list ('PLICALC: ', num) skip;
call push(stack,num);

end;
otherwise do;/* must be an integer */

num = atoi(tok);
call push(stack,num);

end;
end;

end;
return;

TOK function

104 Debug Tool User’s Guide and Reference

atoi: procedure(tok) returns (fixed bin(31,0));
/*--*/
/* */
/* convert character string to number */
/* (note: string validated by readtok) */
/* */
/*--*/

dcl 1 tok char (100) varying;
dcl 1 num fixed bin (31,0);
dcl 1 j fixed bin(15,0);
num = 0;
do j = 1 to length(tok);

num = (10 * num) + (index('0123456789',substr(tok,j,1))-1);
end;
return (num);

end atoi;
end plicalc;

PUSH function
push: procedure(stack,num);
/*--*/
/* */
/* a simple push function for a stack of integers */
/* */
/*--*/
dcl 1 stack connected,

2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);

dcl num fixed bin(31,0);
stkptr = stkptr + 1;
stknum(stkptr) = num; /* �PUSH1� statement */
return;
end push;

POP function
pop: procedure(stack) returns (fixed bin(31,0));
/*--*/
/* */
/* a simple pop function for a stack of integers */
/* */
/*--*/
dcl 1 stack connected,

2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);

stkptr = stkptr - 1;
return (stknum(stkptr+1));
end pop;

READTOK function
readtok: procedure(bufin) returns (char (100) varying);
/*--*/
/* */
/* a function to read input and tokenize it for a simple calculator */
/* */
/* action: get next input char, update index for next call */
/* return: next input char(s) */
/*--*/
dcl length builtin;
dcl substr builtin;
dcl verify builtin;
dcl 1 bufin connected,

2 bufptr fixed bin(15,0),
2 bufchr char (100) varying;

dcl 1 tok char (100) varying;
dcl 1 tstop char(1) init ('s');

Chapter 4. Debugging your programs in full-screen mode 105

dcl 1 j fixed bin(15,0);
/* start of processing */

if bufptr > length(bufchr) then do;
tok = tstop;
return (tok);

end;
bufptr = bufptr + 1;
do while (substr(bufchr,bufptr,1) = ' ');

bufptr = bufptr + 1;
if bufptr > length(bufchr) then do;

tok = tstop;
return (tok);

end;
end;
tok = substr(bufchr,bufptr,1); /* get ready to return single char */
select (tok);

when ('+','-','/','*','=')
bufptr = bufptr;

otherwise do; /* possibly an integer */
tok = '';
do j = bufptr to length(bufchr);

if verify(substr(bufchr,j,1),'0123456789') |= 0 then
leave;

end;
if j > bufptr then do;

j = j - 1;
tok = substr(bufchr,bufptr,(j-bufptr+1));
bufptr = j;

end;
else

tok = tstop;
end;

end;
return (tok);
end readtok;

Related tasks
“Debugging a PL/I program in full-screen mode” on page 103

Halting when certain PL/I functions are called
“Example: sample PL/I program for debugging” on page 103

To halt just before READTOK is called, issue the command:
AT CALL READTOK ;

To halt just after READTOK is called, issue the command:
AT ENTRY READTOK ;

To take advantage of the AT ENTRY command, you must compile your program
with the TEST option.

If you have many breakpoints set in your program, you can issue the command:
QUERY LOCATION

to indicate where in your program execution has been interrupted. The Debug Tool
Log window displays something similar to:
QUERY LOCATION ;
You are executing commands in the ENTRY READTOK breakpoint.
The program is currently entering block READTOK.

106 Debug Tool User’s Guide and Reference

Related references
“AT ENTRY/EXIT” on page 231
“AT CALL” on page 225
“QUERY command” on page 307

Modifying the value of a PL/I variable
To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the PLICALC program to the statement labeled
�CALC1� by entering AT 22 ; GO ; on the Debug Tool command line. Move the
cursor over NUM and press PF4 (LIST) The following appears in the Log window:
LIST NUM ;
NUM = 18

To modify the value of NUM to 22, overtype the NUM = 18 line with NUM = 22,
press Enter to put it on the command line, and press Enter again to issue the
command.

You can enter most PL/I expressions on the command line.

Now step into the call to PUSH by pressing PF2 (STEP) and step until the statement
labeled �PUSH1� is reached. To view the attributes of variable STKNUM, issue the
Debug Tool command:
DESCRIBE ATTRIBUTES STKNUM;

The result in the Log window is:
ATTRIBUTES FOR STKNUM

ITS ADDRESS IS 0003944C AND ITS LENGTH IS 200
PUSH : STACK.STKNUM(50) FIXED BINARY(31,0) REAL PARAMETER

ITS ADDRESS IS 0003944C AND ITS LENGTH IS 4

You can list all the values of the members of the structure pointed to by STACK with
the command:
LIST STACK;

with results in the Log window appearing something like this:
LIST STACK ;
STACK.STKPTR = 2
STACK.STKNUM(1) = 2
STACK.STKNUM(2) = 18
STACK.STKNUM(3) = 233864...

STACK.STKNUM(50) = 121604

You can change the value of a structure member by issuing the assignment as a
command as in the following example:
STKNUM(STKPTR) = 33;

Related references
“DESCRIBE command” on page 263
“LIST expression” on page 288

Chapter 4. Debugging your programs in full-screen mode 107

Halting on a PL/I line only if a condition is true
Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. You don’t want to just set a line
breakpoint because you will have to keep entering GO.

“Example: sample PL/I program for debugging” on page 103

For example, in PLICALC you want to stop at the division selection only if the
divisor is 0 (before the exception occurs). Set the breakpoint like this:
AT 31 DO; IF NUM |= 0 THEN GO; END;

Line 31 is the statement labeled �CALC2�. The command causes Debug Tool to stop
at line 31. If the value of NUM is not 0, the program continues. The command
causes Debug Tool to stop on line 31 only if the value of NUM is 0.

Related references
“AT STATEMENT” on page 241

Debugging PL/I when only a few parts are compiled with TEST
“Example: sample PL/I program for debugging” on page 103

Suppose you want to set a breakpoint at entry to subroutine PUSH. PUSH has
been compiled with TEST, but the other files have not. Debug Tool comes up with
an empty Source window. To display the compile units, enter the command:
LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool. If PUSH is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter:
SET QUALIFY CU PUSH
AT ENTRY PUSH;
GO ;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE PUSH ;
GO ;

You can also combine the breakpoints as follows:
AT APPEARANCE PUSH AT ENTRY PUSH; GO;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSH compile unit is run. When that happens, you can set a
breakpoint at entry to PUSH like this:
AT ENTRY PUSH;

Related references
“AT ENTRY/EXIT” on page 231
“LIST NAMES” on page 291
“SET QUALIFY” on page 335

Displaying raw storage in PL/I
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of STACK enter:
LIST STORAGE(STACK,30)

108 Debug Tool User’s Guide and Reference

Related references
“LIST STORAGE” on page 295

Getting a PL/I function traceback
Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:
LIST CALLS ;

“Example: sample PL/I program for debugging” on page 103

For example, if you run the PLICALC example with the commands:
AT ENTRY READTOK ;
GO ;
LIST CALLS ;

the Log window will contain something like:
At ENTRY IN PL/I subroutine READTOK.
From LINE 17.1 IN PL/I subroutine PLICALC.

which shows the traceback of callers.

Related references
“AT ENTRY/EXIT” on page 231
“LIST CALLS” on page 287

Tracing the run-time path for PL/I code compiled with TEST
To trace a program showing the entry and exit without requiring any changes to
the program, place the following Debug Tool commands in a file or data set and
USE them when Debug Tool initially displays your program. Assuming you have a
PDS member, USERID.DT.COMMANDS(PLICALL), that contains the following
Debug Tool commands:
DCL LVLSTR CHARACTER (50) ;
DCL LVL FIXED BINARY (15) ;
LVL = 0 ;
AT ENTRY *

DO ;
LVLSTR = ' ' ;
LVL = LVL + 1 ;
SUBSTR (LVLSTR, LVL, 1) = '>' ;
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
GO ;

END ;
AT EXIT *

DO ;
SUBSTR (LVLSTR, LVL, 1) = '<' ;
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
LVL = LVL - 1 ;
GO ;

END ;

You can use this file as the source of commands to Debug Tool by entering the
following command:
USE USERID.DT.COMMANDS(PLICALL)

If, after executing the USE file, you run the following program sequence:

Chapter 4. Debugging your programs in full-screen mode 109

PLICALL: PROC OPTIONS(MAIN);...

CALL PLISUB ;...

END PLICALL;

PLISUB: PROCEDURE;...

CALL PLISUB1 ;...

END PLISUB;

PLISUB1: PROCEDURE;...

CALL PLISUB2 ;...

END PLISUB1;

PLISUB2: PROCEDURE;...

END PLISUB2;

the following trace (or similar) is displayed in the Log window:
'>PLICALL '
' >PLISUB '
' >PLISUB1 '
' >PLISUB2 '
' <PLISUB2 '
' <PLISUB1 '
' <PLISUB '
'<PLICALL '

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Related references
“USE command” on page 353

Finding unexpected storage overwrite errors in PL/I
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider the following
example where the program changes more than the caller expects it to change.
2 FIELD1(2) CHAR(8);
2 FIELD2 CHAR(8);
CTR = 3; /* an invalid index value is set */
FIELD1(CTR) = 'TOO MUCH';

Find the address of FIELD2 with the command:
DESCRIBE ATTRIBUTES FIELD2

Suppose the result is X'00521D42'. To set a breakpoint that watches for a change in
storage values starting at that address for the next 8 bytes, issue the command:
AT CHANGE %STORAGE('00521D42'px,8)

110 Debug Tool User’s Guide and Reference

When the program is run, Debug Tool halts if the value in this storage changes.

Related references
“AT CHANGE” on page 226
“DESCRIBE command” on page 263

Halting before calling an undefined program in PL/I
Calling an undefined program or function is a severe error. To halt just before such
a call is run, set this breakpoint:
AT CALL 0

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debug session without
raising a condition.

Related references
“AT CALL” on page 225
“GO command” on page 276

Chapter 4. Debugging your programs in full-screen mode 111

112 Debug Tool User’s Guide and Reference

Chapter 5. Customizing your full-screen session

You have several options for customizing your session. For example, you can
resize and rearrange windows, close selected windows, change session parameters,
and change session panel colors. This section explains how to customize your
session using these options.

The window acted upon as you customize your session is determined by one of
several factors. If you specify a window name (for example, WINDOW OPEN MONITOR
to open the Monitor window), that window is acted upon. If the command is
cursor-oriented, such as the WINDOW SIZE command, the window containing the
cursor is acted upon. If you do not specify a window name and the cursor is not
in any of the windows, the window acted upon is determined by the setting of
Default window under the Profile Settings panel.

Related tasks
“Chapter 4. Debugging your programs in full-screen mode” on page 53
“Chapter 5. Customizing your full-screen session”
“Defining PF keys”
“Defining a symbol for commands or other strings”
“Customizing the layout of windows on the session panel” on page 114
“Customizing session panel colors” on page 116
“Customizing profile settings” on page 117
“Saving customized settings in a preferences files” on page 120

Defining PF keys
To define your PF keys, use the SET PFKEY command. For example, to define the
PF8 key as SCROLL DOWN PAGE, enter one of the following commands:
v For PL/I:

SET PF8 'Down' = SCROLL DOWN PAGE ;

v For C/C++:
SET PF8 "Down" = SCROLL DOWN PAGE ;

Use single quotation marks for PL/I, double quotation marks for C/C++. COBOL
allows the use of single or double quotation marks. The string set apart by the
quotation marks (Down in this instance) is the label that appears next to PF8 when
you SET KEYS ON and your PF key definitions are displayed at the bottom of your
screen.

Related references
“Initial PF key settings” on page 62
“SET KEYS (full-screen and line mode)” on page 328
“SET PFKEY” on page 332

Defining a symbol for commands or other strings
You can define a symbol to represent a long character string. For example, if you
have a long command that you do not want to retype several times, you can use
the SET EQUATE command to equate the command to a short symbol. Afterwards,
Debug Tool treats the symbol as though it were the command. The following
examples show various settings for using EQUATEs:

© Copyright IBM Corp. 1995, 2001 113

v SET EQUATE info = "abc, def(h+1)"; Sets the symbol info to the string, "abc,
def(h+1)".

v CLEAR EQUATE (info); Disassociates the symbol and the string. This example
clears info.

v CLEAR EQUATE; If you do not specify what symbol to clear, all symbols created by
SET EQUATE are cleared.

If a symbol created by a SET EQUATE command is the same as a keyword or
keyword abbreviation in an HLL, the symbol takes precedence. If the symbol is
already defined, the new definition replaces the old. Operands of certain
commands are for environments other than the standard Debug Tool
environment,and are not scanned for symbol substitution.

Related references
“CLEAR command” on page 251
“SET EQUATE” on page 325

Customizing the layout of windows on the session panel
To change the relative layout of the Source, Monitor, and Log windows, use the
PANEL LAYOUT command (the PANEL keyword is optional).

The PANEL LAYOUT command displays the panel below, showing the six possible
window layouts.

Window Layout Selection Panel
Command ===>

�1� �2� �3�
1 .-----------. 2 .-----------. 3 .-----------. Legend:

| M | | _ | _ | | _ |
|-----------| | | | | | L - Log
| S | |-----------| |-----------| M - Monitor
|-----------| | _ | | _ | _ | S - Source
| L | | | | | |
'-----------' '-----------' '-----------' To reassign the

Source, Monitor,
�4� �5� �6�

4 .-----------. 5 .-----------. 6 .-----------. and Log windows,
| _ | _ | _ | | _ | _ | | _ | _ | type over the
| | | | | | | | | | current settings
| | | | |-----| | | |-----| or underscores
| | | | | _ | | | | _ | with L, M, or S.
| | | | | | | | | |
'-----------' '-----------' '-----------'

Enter END/QUIT to return with current settings saved.
CANCEL to return without current settings saved.

Initially, the session panel uses the default window layout �1�.

Follow the instructions on the screen, then press the END PF key to save your
changes and return to the main session panel in the new layout.

Note: You can choose only one of the six layouts. Also, only one of each type of
window can be visible at a time on your session panel. For example, you
cannot have two Log windows on a panel.

Related tasks
“Opening and closing session panel windows” on page 115

114 Debug Tool User’s Guide and Reference

“Resizing session panel windows”
“Zooming a window to occupy the whole screen” on page 116
“Saving customized settings in a preferences files” on page 120

Related references
“Debug Tool session panel” on page 54

Opening and closing session panel windows
To close a window, either:
v Type the WINDOW CLOSE command, move the cursor to the window you want to

close, then press Enter.

or
v Enter the WINDOW CLOSE LOG, WINDOW CLOSE MONITOR, or WINDOW CLOSE SOURCE

command.

When you close a window, the remaining windows occupy the full area of the
screen.

To open a window, enter the WINDOW OPEN LOG, WINDOW OPEN MONITOR, or WINDOW
OPEN SOURCE command.

The WINDOW CLOSE command can be assigned to a PF key.

If you want to monitor the values of selected variables as they change during your
Debug Tool session, the Monitor window must be open. If it is closed, open it as
described above. The Monitor window occupies the available space according to
your selected window layout.

If at any time during your session you open a window and the contents assigned
to it are not available, the window is empty.

Related references
“WINDOW command (full-screen mode)” on page 355

Resizing session panel windows
To resize windows, type WINDOW SIZE on the command line, move the cursor to
where you want the window boundary, then press Enter. The WINDOW keyword is
optional.

Rather than using the cursor, you can also explicitly specify the number of rows or
columns you want the window to contain (as appropriate for the window layout).
For example, to change the Source window from 10 rows deep to 12 rows deep,
enter:
WINDOW SIZE 12 SOURCE

WINDOW SIZE can be assigned to a PF key.

To restore window sizes to their default values for the current window layout,
enter the PANEL LAYOUT RESET command.

Related references
“PANEL command (full-screen mode)” on page 302
“WINDOW SIZE” on page 356

Chapter 5. Customizing your full-screen session 115

Zooming a window to occupy the whole screen
To toggle a window to full screen (temporarily not displaying the others), move
the cursor into that window and press PF10 (ZOOM). Press PF10 to toggle back.

PF11 (ZOOM LOG) toggles the Log window in the same way, without the cursor
needing to be in the Log window.

Related references
“WINDOW ZOOM” on page 357

Customizing session panel colors
You can change the color and highlighting on your session panel to distinguish the
fields on the panel. Consider highlighting such areas as the current line in the
Source window, the prefix area, and the statement identifiers where breakpoints
have been set.

To change the color, intensity, or highlighting of various fields of the session panel
on a color terminal, use the PANEL COLORS command. When you issue this
command, the panel shown below appears.

The usable color attributes are determined by the type of terminal you are using. If
you have a monochrome terminal, you can still use highlighting and intensity
attributes to distinguish fields.

Color Selection Panel
Command ===>

Color Highlight Intensity
Title : field headers TURQ NONE HIGH

output fields GREEN NONE LOW Valid Color:
Monitor: contents TURQ REVERSE LOW White Yellow Blue

line numbers TURQ REVERSE LOW Turq Green Pink Red
Source : listing area WHITE REVERSE LOW

prefix area TURQ REVERSE LOW Valid Intensity:
suffix area YELLOW REVERSE LOW High Low
current line RED REVERSE HIGH
breakpoints GREEN NONE LOW Valid Highlight:

Log : program output TURQ NONE HIGH None Reverse
test input YELLOW NONE LOW Underline Blink
test output GREEN NONE HIGH
line numbers BLUE REVERSE HIGH Color and Highlight

Command line WHITE NONE HIGH are valid only with
Window headers GREEN REVERSE HIGH color terminals.
Tofeof delimiter BLUE REVERSE HIGH
Search target RED NONE HIGH
Enter END/QUIT to return with current settings saved.

CANCEL to return without current settings saved.

Initially, the session panel areas and fields have the default color and attribute
values shown above.

To change the color and attribute settings for your Debug Tool session, enter the
desired colors or attributes over the existing values of the fields you want to
change. The changes you make are saved when you enter QUIT.

You can also change the colors or intensity of selected areas by issuing the
equivalent SET COLOR command from the command line. Either specify the fields

116 Debug Tool User’s Guide and Reference

explicitly, or use the cursor to indicate what you want to change. Changing a color
or highlight with the equivalent SET command changes the value on the Color
Selection Panel.

Settings remain in effect for the entire debug session.

To preserve any changes you make to the default color fields, specify a file before
you begin your session using the ddname inspsafe and the dsname or fileid of
your choice. Debug Tool recognizes any file with this ddname as the file where it
saves session panel settings for use during subsequent sessions. If you do not
allocate this file before your session, Debug Tool begins the next debug session
with the default values shown in the panel above.

Related tasks
“Saving customized settings in a preferences files” on page 120

Related references
“PANEL command (full-screen mode)” on page 302
“SET COLOR (full-screen and line mode)” on page 318

Customizing profile settings
The PANEL PROFILE command displays the Profile Settings Panel, which contains
profile settings that affect the way Debug Tool runs. This panel is shown below
with the IBM-supplied initial settings. You can change the settings by either typing
over them with the desired values, or by issuing the appropriate SET command
from the command line or from within a commands file.

Profile Settings Panel
Command ===>

Current Setting

Change Test Granularity STATEMENT (All,Blk,Line,Path,Stmt)
DBCS characters NO (Yes or No)
Default Listing PDS name(MVS only)
Default scroll amount PAGE (Page,Half,Max,Csr,Data,int)
Default window SOURCE (Log,Monitor,Source)
Execute commands YES (Yes or No)
History YES (Yes or No)
History size 100 (nonnegative integer)
Logging YES (Yes or No)
Pace of visual trace 2 (steps per second)
Refresh screen NO (Yes or No)
Rewrite interval 50 (number of output lines)
Session log size 1000 (number of retained lines)
Show log line numbers YES (Yes or No)
Show message ID numbers NO (Yes or No)
Show monitor line numbers YES (Yes or No)
Show scroll field YES (Yes or No)
Show source/listing suffix YES (Yes or No)
Show warning messages YES (Yes or No)
Test level ALL (All,Error,None)
Enter END/QUIT to return with current settings saved.

CANCEL to return without current settings saved.

A list of the profile parameters, their descriptions, and the equivalent SET
commands follows.

Change Test Granularity
Specifies the granularity of testing for AT CHANGE. Equivalent to SET CHANGE.

Chapter 5. Customizing your full-screen session 117

DBCS characters
Controls whether the shift-in and shift-out characters are recognized. Equivalent
to SET DBCS.

Default Listing PDS name
If specified, the data set where Debug Tool looks for the source/listing. This
field appears only if you are debugging on MVS. Equivalent to SET DEFAULT
LISTINGS.

Default scroll amount
Specifies the default amount assumed for SCROLL commands where no amount
is specified. Equivalent to SET DEFAULT SCROLL.

Default window
Selects the default window acted upon when WINDOW commands are issued
with the cursor on the command line. Equivalent to SET DEFAULT WINDOW.

Execute commands
Controls whether commands are executed or just checked for syntax errors.
Equivalent to SET EXECUTE.

History
Controls whether a history (an account of each time Debug Tool is entered) is
maintained. Equivalent to SET HISTORY.

History size
Controls the size of the Debug Tool history table. Equivalent to SET HISTORY.

Logging
Controls whether a log file is written. Equivalent to SET LOG.

Pace of visual trace
Sets the maximum pace of animated execution. Equivalent to SET PACE.

Refresh screen
Clears the screen before each display. REFRESH is useful when there is another
application writing to the screen. Equivalent to SET REFRESH.

Rewrite interval
Defines the number of lines of intercepted output that are written by the
application before Debug Tool refreshes the screen. Equivalent to SET REWRITE.

Session log size
The number of session log output lines retained for display. Equivalent to SET
LOG.

Show log line numbers
Turns line numbers on or off in the log window. Equivalent to SET LOG
NUMBERS.

Show message ID numbers
Controls whether ID numbers are shown in Debug Tool messages. Equivalent
to SET MSGID.

Show monitor line numbers
Turns line numbers on or off in the monitor window. Equivalent to SET
MONITOR NUMBERS.

Show scroll field
Controls whether the scroll amount field is shown in the display. Equivalent to
SET SCROLL DISPLAY.

118 Debug Tool User’s Guide and Reference

Show source/listing suffix
Controls whether the frequency suffix column is displayed in the Source
window. Equivalent TO SET SUFFIX.

Show warning messages (C/C++ and PL/I only)
Controls whether warning messages are shown or conditions raised when
commands contain evaluation errors. Equivalent to SET WARNING.

Test level
Selects the classes of exceptions to cause automatic entry into Debug Tool.
Equivalent to SET TEST.

A field indicating scrolling values is shown only if the screen is not large enough
to show all the profile parameters at once. This field is not shown in the example
panel above.

You can change the settings of these profile parameters at any time during your
session. For example, you can increase the delay that occurs between the execution
of each statement when you issue the STEP command by modifying the amount
specified in the Pace of visual trace field at any time during your session.

To modify the profile settings for your session, enter a new value over the old
value in the field you want to change. Equivalent SET linemode commands are
issued when you QUIT from the panel.

Entering the equivalent SET command changes the value on the Profile Settings
panel as well.

To preserve any changes you make to the default profile settings, specify a file
before you begin your session using the ddname inspsafe and the dsname or
fileid of your choice. Debug Tool recognizes any file with this ddname as the file
where it saves session panel settings for use during subsequent sessions. All PANEL
settings are saved, except the setting for the Listing panel and the following
settings:

COUNTRY
FREQUENCY
INTERCEPT
LOG
NATIONAL LANGUAGE
PROGRAMMING LANGUAGE
QUALIFY
SOURCE
TEST

If you do not allocate this file before your session, Debug Tool begins the next
debug session with the values shown in the example panel above.

Settings remain in effect for the entire debug session.

Related tasks
“Saving customized settings in a preferences files” on page 120

Related references
“PANEL command (full-screen mode)” on page 302

Chapter 5. Customizing your full-screen session 119

Saving customized settings in a preferences files
You can place a set of commands into a data set, called a preferences file, and then
indicate that file should be used by providing its name in the preferences_file
suboption of the TEST run-time string. Debug Tool reads these commands at
initialization and sets up the session appropriately.

Below is an example preferences file.
SET TEST ERROR;
SET DEFAULT SCROLL CSR;
SET HISTORY OFF;
SET MSGID ON;
DESCRIBE CUS;

Related references
“TEST run-time option” on page 26

120 Debug Tool User’s Guide and Reference

Chapter 6. Debugging across multiple processes and
enclaves

There is a single Debug Tool session across all enclaves in a process. Breakpoints
set in one process are restored when the new process begins in the new session.

In full-screen mode or batch mode, you can debug a non-POSIX program that
spans more than one process, but Debug Tool can only be active in one process.

A commands file continues to execute its series of commands regardless of what
level of enclave is entered.

Related tasks
“Invoking Debug Tool within an enclave”
“Viewing Debug Tool windows across multiple enclaves”
“Using breakpoints within multiple enclaves” on page 122
“Ending a Debug Tool session within multiple enclaves” on page 122
“Using Debug Tool commands within multiple enclaves” on page 122

Invoking Debug Tool within an enclave
Once an enclave in a process activates Debug Tool, it remains active throughout
subsequent enclaves in the process, regardless of whether the run-time options for
the enclave specify TEST or NOTEST. Debug Tool retains the settings specified from
the TEST run-time option for the enclave that activated it, until you modify them
with SET TEST. If your Debug Tool session includes more than one process, the
settings for TEST are reset according to those specified on the TEST run-time option
of the first enclave that activates Debug Tool in each new process.

If Debug Tool is first activated in a nested enclave of a process, and you STEP or GO
back to the parent enclave, you can debug the parent enclave. However, if the
parent enclave contains COBOL but the nested enclave does not, Debug Tool is not
active for the parent enclave, even upon return from the child enclave.

Upon activation of Debug Tool, the initial commands string, primary commands
file, and the preferences file are run. They run only once, and affect the entire
Debug Tool session. A new primary commands file cannot be invoked for a new
enclave.

Related references
“SET TEST” on page 340

Viewing Debug Tool windows across multiple enclaves
A particular enclave’s Source or Listing windows and their related windows
(Compact Source, Local Breakpoint, and Local Monitor windows) are hidden when
that enclave invokes another enclave. You cannot open a Source or Listing window
for a compile unit unless that compile unit is in the current enclave.

© Copyright IBM Corp. 1995, 2001 121

|
|

Using breakpoints within multiple enclaves
When any process is initialized, a termination breakpoint is automatically defined
for the process. Unless you clear or disable this breakpoint, it will be triggered
when the process finishes execution. During run time of a termination breakpoint,
GO and STEP are valid commands that cause your program to continue running the
next process in the series.

Ending a Debug Tool session within multiple enclaves
You cannot specify NOPROMPT as the third suboption in the TEST run-time option for
the next process on the host. This is to ensure that STATEMENT/LINE, ENTRY, EXIT,
and LABEL breakpoints are properly restored when the next process starts. If you
have not used these breakpoint types, you can specify NOPROMPT.

In a single enclave, QUIT closes Debug Tool.

In a nested enclave, however, QUIT causes Debug Tool to signal a severity 3
condition corresponding to Language Environment message CEE2529S. The system
is attempting to cleanly terminate all enclaves in the process.

Normally, the condition causes the current enclave to terminate. Then, the same
condition will be raised in the parent enclave, which will also terminate. This
continues until all enclaves in the process have been terminated. As a result, you
will see a CEE2529S message for each enclave that is terminated.

For CMS only: Under CMS, an unhandled condition in a nested enclave causes an
Language Environment abend 4094 with reason code 40.

For CICS and MVS only: Depending on Language Environment run-time settings,
the application may be terminated with an ABEND 4038. This is normal and
should be expected.

Using Debug Tool commands within multiple enclaves
Some Debug Tool commands and variables have a specific scope for enclaves and
processes. The table below summarizes the behavior of specific Debug Tool
commands and variables when you are debugging an application that consists of
multiple enclaves.

Debug Tool command Affects current
enclave only

Affects entire
Debug Tool

session

Comments

%CAAADDRESS X

AT GLOBAL X

AT TERMINATION X

CLEAR AT X X In addition to clearing breakpoints set in the
current enclave, CLEAR AT can clear global
breakpoints.

CLEAR DECLARE X

CLEAR VARIABLES X

Declarations X Session variables are cleared at the termination of
the process in which they were declared.

122 Debug Tool User’s Guide and Reference

Debug Tool command Affects current
enclave only

Affects entire
Debug Tool

session

Comments

DISABLE X X In addition to disabling breakpoints set in the
current enclave, DISABLE can disable global
breakpoints.

ENABLE X X In addition to enabling breakpoints set in the
current enclave, ENABLE can enable global
breakpoints.

LIST AT X X In addition to listing breakpoints set in the current
enclave, LIST AT can list global breakpoints.

LIST CALLS X Applies to all systems except MVS batch and MVS
with TSO. Under MVS batch and MVS with TSO,
LIST CALLS lists the call chain for the current
active thread in the current active enclave.

For programs containing interlanguage
communication (ILC), routines from previous
enclaves are only listed if they are coded in a
language that is active in the current enclave.

Also lists compile units in parent enclaves under
CMS if the enclave was created using view SVC
LINK. If the enclave was created with the
system() function or the CMSCALL macro, compile
units in parent enclaves will not be listed.
Note: Only compile units in the current thread
will be listed for PL/I multitasking applications.

LIST EXPRESSION X You can only list variables in the currently active
thread.

LIST LAST X

LIST NAMES CUS X Applies to compile unit names. In the Debug
Frame window, compile units in parent enclaves
are marked as deactivated.

LIST NAMES TEST X Applies to Debug Tool session variable names.

MONITOR GLOBAL X Applies to Global monitors.

PROCEDURE X

SET COUNTRY1 X This setting affects both your application and
Debug Tool.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the parent’s
settings are restored upon return from a child
enclave.

SET EQUATE1 X

SET INTERCEPT1 X For C, intercepted streams or files cannot be part
of any C I/O redirection during the execution of a
nested enclave. For example, if stdout is
intercepted in program A, program A cannot then
redirect stdout to stderr when it does a system()
call to program B. Also, not supported for PL/I.

Chapter 6. Debugging across multiple processes and enclaves 123

Debug Tool command Affects current
enclave only

Affects entire
Debug Tool

session

Comments

SET NATIONAL LANGUAGE1 X This setting affects both your application and
Debug Tool.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the parent’s
settings are restored upon return from a child
enclave.

SET PROGRAMMING LANGUAGE1 X Applies only to programming languages in which
compile units known in the current enclave are
written (a language is "known" the first time it is
entered in the application flow).

SET QUALIFY1 X Can only be issued for load modules, compile
units, and blocks that are known in the current
enclave.

SET TEST1 X

TRIGGER condition2 X Applies to triggered conditions.2 Conditions can
be either an Language Environment symbolic
feedback code, or a language-oriented keyword or
code, depending on the current programming
language setting.

TRIGGER AT X X In addition to triggering breakpoints set in the
current enclave, TRIGGER AT can trigger global
breakpoints.

Notes:
1. SET commands other than those listed in this table affect the entire Debug Tool

session.
2. If no active condition handler exists for the specified condition, the default

condition handler can cause the program to end prematurely.

Related references
“Chapter 13. Debug Tool commands” on page 215

124 Debug Tool User’s Guide and Reference

Chapter 7. Using Debug Tool in different modes and
environments

The topics below describe how to use Debug Tool in line mode and batch mode,
and how to use Debug Tool to debug ISPF, DB2, IMS, and CICS programs.

Related tasks
“Using Debug Tool in line mode”
“Using Debug Tool in batch mode” on page 126
“Debugging multitasking programs” on page 127
“Debugging ISPF applications” on page 127
“Debugging DB2 programs” on page 128
“Debugging IMS programs” on page 132
“Debugging CICS programs” on page 134

Using Debug Tool in line mode
If you only have access to a typewriter-like terminal, you need to use Debug Tool
in line mode.

Note: Line mode is not supported in CICS or in full-screen mode using a VTAM
terminal that is not running under TSO..

To start a line-mode Debug Tool session, make sure the setting of SCREEN is off
by specifying it in either your primary commands file, preferences file, or the
initial command string included in the TEST run-time option. Then follow the steps
outlined in “Invoking your program when starting a debug session” on page 46 to
begin a Debug Tool session in CMS or MVS with TSO. If you are using a terminal
that does not support a full-screen session, Debug Tool defaults to line mode.

Debug Tool issues a message indicating that execution has begun.

After control is given to Debug Tool, it displays the following prompt when it is
ready for a command:
TEST:

or
TEST (qualify:>location):

where qualify:>location is replaced by Debug Tool’s current location in the
program. The prompt used depends on the current PROMPT setting (SHORT or LONG).
Enter your commands at the prompt.

If you need to continue a command, use the command continuation character, the
hyphen (-), and the prompt is replaced by the word PENDING.... When you are
finished with Debug Tool in line mode, end your session by entering QUIT.

Commands you can use in line mode
You can use most, but not all, Debug Tool commands in line mode. The commands
that you cannot use are those designed to control your full-screen session, such as
PANEL commands, WINDOW commands, and cursor-sensitive commands.

© Copyright IBM Corp. 1995, 2001 125

|
|

To help make line-mode debugging more efficient, use the LIST command to list
source statements.

Getting help during a line-mode session
Online command syntax help is available for each Debug Tool command.

You must issue a separate request for syntax help for each command.

Related tasks
“Getting online help for Debug Tool command syntax” on page 207
“Chapter 12. Entering Debug Tool commands” on page 203
“Invoking your program when starting a debug session” on page 46

Related references
“LIST command” on page 284

Using Debug Tool in batch mode
Debug Tool can run in batch mode, creating a noninteractive session.

In batch mode, Debug Tool receives its input from the primary commands file, the
USE file, or the command string specified in the TEST run-time option, and writes
its normal output to a log file.

Note: You must ensure that you specify a log data set.

Commands that require user interaction, such as PANEL, are invalid in batch mode.

You might want to run a Debug Tool session in batch mode if:
v You want to restrict the processor resources used. Batch mode generally uses

fewer processor resources than interactive mode.
v You have a program that might tie up your terminal for long periods of time.

With batch mode, you can use your terminal for other work while the batch job
is running.

v You are debugging an application in its native batch environment, such as
MVS/JES or CICS batch.

When Debug Tool is reading commands from a specified data set or file and no
more commands are available in that data set or file, it forces a GO command until
the end of the program is reached.

When debugging in batch mode, use QUIT to end your session.

Related tasks
“Invoking Debug Tool in batch” on page 50

Using Debug Tool in remote debug mode
Debug Tool can run in remote debug mode, creating an interactive session.

126 Debug Tool User’s Guide and Reference

Debugging multitasking programs
You can run your multitasking programs with Debug Tool. When more than one
task is involved in your program, Debug Tool might be invoked by any or all of
them. Because conflicting use of the terminal or log file, for example, could occur if
Debug Tool is operating on multiple tasks, its use is single-threaded. So, if your
program runs as two tasks (task A and task B) and task A calls Debug Tool, Debug
Tool accepts the request and begins operating on behalf of task A. If, during that
period, task B calls Debug Tool, the request from task B is held until the request
from task A is complete (for example, you issued a STEP or GO command). Debug
Tool is then released and can accept any pending invocation.

Multitasking applications require UNIX System Services R2
MVS/ESA SP™ V5R19 (or later) with UNIX System Services R2 must be installed
and activated in order to run multitasking applications. UNIX System Services R2
provides the POSIX-defined multithreading functions needed to support
multitasking.

Restrictions when debugging multitasking applications
v Debugging applications that create another process because of conflicting use of

the terminal.
v Only variables and symbol information for compile units in the task currently

being debugged are accessible.
v The LIST CALL command only provides a traceback of the compile units in the

current task.
v The source file can reside on an HFS file system, but executables that are stored

on an HFS file system cannot be debugged.

Related references
“LIST CALLS” on page 287
z/OS Language Environment Programming
Guide

Debugging ISPF applications
You can debug ISPF applications in one of two ways:
v Using a separate terminal by specifying the LU name of a VTAM terminal as

part of the TEST parameter. For example:
TEST(,,,MFI%TCP00001:)

v Using the same emulator session. Consequently, it is necessary to press PA2 after
each ISPF panel display. PA2 refreshes the ISPF application panel and removes
residual Debug Tool output from the emulator session. This is necessary only if
Debug Tool sends output to the emulator session between ISPF application panel
displays.

The rest of this section assumes you are debugging ISPF applications using the
same emulator session.

When debugging ISPF applications or applications using line mode I/O, issue the
SET REFRESH ON command.

This command is executed and is displayed in the log output area of the
Command/Log window. Note that SET REFRESH ON modifies the Debug Tool
environment. Consequently, the REFRESH setting is saved in the preferences file

Chapter 7. Using Debug Tool in different modes and environments 127

|

|
|

|

|
|
|
|
|

|
|

(inspsafe), and it is preserved between Debug Tool invocations. So, you only need
to specify it once; Debug Tool uses the same setting on subsequent invocations.

Related tasks
“Chapter 5. Customizing your full-screen session” on page 113

Related references
“SET REFRESH (full-screen mode)” on page 336

Debugging UNIX System Services (USS) programs
You must debug your UNIX System Services (USS) programs in remote debug
mode, using a remote debugger, or in full-screen mode using a VTAM terminal. If
your program does not span more than one process, you can debug it in
full-screen mode using a VTAM terminal. If your program does span more than
one process, you must debug in remote debug mode using a remote debugger. The
remote debugger is available through several products, including C/C++
Productivity Tools for OS/390.

Debugging MVS POSIX programs
You can debug MVS POSIX programs, including programs:
v that store source in HFS
v that use POSIX multithreading
v that use fork/exec
v that use asynchronous signals that are handled by the Language Environment

condition handler

To debug MVS POSIX programs in full screen mode or batch mode, the program
must run under TSO or MVS batch. To debug any MVS POSIX program that spans
more than one process, you must debug the program in remote debug mode.

Debugging DB2 programs
The topics below describe the steps for using Debug Tool to debug your DB2
programs.

Related tasks
“Preparing DB2 programs for debugging” on page 129
“Precompiling DB2 programs for debugging” on page 129
“Compiling DB2 programs for debugging” on page 129
“Linking DB2 programs for debugging” on page 130
“Binding DB2 programs for debugging” on page 131
“Debugging DB2 programs in batch mode” on page 131
“Debugging DB2 programs in interactive mode” on page 131

Related references
“Considerations for debugging DB2 programs”

Considerations for debugging DB2 programs
There are no special coding techniques for any DB2 programs you might want to
debug using Debug Tool.

To communicate with DB2, you should:
v Delimit SQL statements with EXEC SQL and END-EXEC statements

128 Debug Tool User’s Guide and Reference

|
|
|
|
|
|
|

|

|

|

|

|

|
|

|
|
|

v Declare SQLCA in working storage
v Declare the host variables
v Code the appropriate SQL statements
v Test the DB2 return codes

Related references
DB2 UDB for OS/390 Application Programming
and SQL Guide

Preparing DB2 programs for debugging
Program preparation includes the DB2 precompiler, the compiler, the prelinker, the
linkage editor, and DB2 bind. The program listing (for COBOL and PL/I) or the
program source file (for C/C++) must be retained in a permanent data set for
Debug Tool to read when you debug your program.

Note: For C/C++, it is the input to the compiler (the output from the DB2
precompiler) that needs to be retained.

Precompiling DB2 programs for debugging
Before your program can be compiled, the SQL statements must be prepared using
the DB2 precompiler. No special preparations are needed in the precompile step to
use Debug Tool.

When debugging a program containing SQL, keep the following in mind:
v The SQL preprocessor replaces all the SQL statements in the program with host

language code. The modified source output from the preprocessor contains the
original SQL statements in comment form. For this reason, the source or listing
view displayed during a debugging session can look very different from the
original source.

v The host language code inserted by the SQL preprocessor invokes the SQL
access module for your program. You can halt program execution at each call to
a SQL module and immediately following each call to a SQL module, but the
called modules cannot be debugged.

Related references
DB2 UDB for OS/390 Application Programming
and SQL Guide

Compiling DB2 programs for debugging
You must use the output from the DB2 precompiler as input to the compiler.

Before using Debug Tool, you must prepare your program by compiling at least
one part of it with the TEST compiler option.

The suboptions of the TEST compiler option control the production of such
debugging aids as dictionary tables and program hooks that Debug Tool needs in
order to debug your program. The choices you make when compiling your
program can affect the amount of Debug Tool function available during your
debug session. When a program is under development, you should compile it with
TEST(ALL) to get the full capability of Debug Tool.

Important: Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

Chapter 7. Using Debug Tool in different modes and environments 129

Related tasks
“Chapter 2. Preparing your program for debugging” on page 5

Linking DB2 programs for debugging
To debug DB2 programs, you must link the output from the compiler into your
program load library. You can include the user run-time options module,
CEEUOPT, by doing the following:
1. Find the user run-time options program CEEUOPT in the Language

Environment SCEESAMP library.
2. Change the NOTEST parameter into the desired TEST parameter. For example:

old: NOTEST=(ALL,*,PROMPT,INSPPREF),
new: TEST=(,*,;,*),

For remote debug mode only
TEST=(,,,VACTCPIP&&9.24.104.79:*)

Note: Double ampersand is required.

For full-screen mode using a VTAM terminal only
Test=(,,,MFI%TCP00001:)

3. Assemble the CEEUOPT program and keep the object code.
4. Link-edit the CEEUOPT object code with any program to invoke Debug Tool.

The modified assembler program, CEEUOPT, is shown below.
*/**/
/ LICENSED MATERIALS - PROPERTY OF IBM */
/ 5688-198 (C) COPYRIGHT IBM CORP. 1994. ALL RIGHTS RESERVED. */
/ SEE COPYRIGHT INSTRUCTIONS. */
*/**/
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY

CEEXOPT ABPERC=(NONE), X
AIXBLD=(OFF), X
ALL31=(OFF), X
ANYHEAP=(32K,16K,ANYWHERE,FREE), X
BELOWHEAP=(32K,16K,FREE), X
CBLOPTS=(ON), X
CBLPSHPOP=(ON), X
CBLQDA=(ON), X
CHECK=(ON), X
COUNTRY=(US), X
DEBUG=(ON), X
ERRCOUNT=(20), X
HEAP=(64K,64K,ANYWHERE,KEEP,16K,16K), X
INTERRUPT=(OFF), X
LIBSTACK=(32K,16K,FREE), X
MSGFILE=(SYSOUT), X
MSGQ=(15), X
NATLANG=(ENU), X
TEST=(,*,;,*), X
RPTOPTS=(OFF), X
RPTSTG=(OFF), X
RTEREUS=(OFF), X
SIMVRD=(OFF), X
STACK=(512K,512K,BELOW,KEEP), X
STORAGE=(NONE,NONE,NONE,8K), X
TERMTHDACT=(MSG), X
TRAP=(ON), X
UPSI=(00000000), X

130 Debug Tool User’s Guide and Reference

|

|

VCTRSAVE=(OFF), X
XUFLOW=(OFF)

DC C'5688-198 (C) COPYRIGHT IBM CORP. 1994'
DC C'LICENSED MATERIAL - PROGRAM PROPERTY OF IBM'
END

The user run-time options program can be assembled with predefined TEST
run-time options to establish defaults for one or more applications. Link-editing an
application with this program results in the default options when that application
is invoked.

If your system programmer has not already done so, include all the proper
libraries in the SYSLIB concatenation. For example, the ISPLOAD library for
ISPLINK calls, and the DB2 DSNLOAD library for the DB2 interface modules
(DSNxxxx).

Related tasks
“Invoking Debug Tool from a program” on page 37

Binding DB2 programs for debugging
Before you can run your DB2 program, you must run a DB2 bind in order to bind
your program with the relevant DBRM output from the precompiler step. No
special requirements are needed for Debug Tool.

Debugging DB2 programs in batch mode
In order to debug your program with Debug Tool while in batch mode, follow
these steps:
1. Make sure the Debug Tool modules are available, either by STEPLIB or through

the LINKLIB.
2. Provide all the data set definitions in the form of DD statements (example: Log,

Preference, list, and so on).
3. Specify your debug commands in the command input file.
4. Run your program through the TSO batch facility.

Debugging DB2 programs in interactive mode
In this mode, you can decide at debug time what debugging commands you want
issued during the test.

Using TSO commands

1. Ensure that either you or your system programmer has allocated all the
required data sets through a CLIST or REXX EXEC.

2. Issue the DSN command to invoke DB2.
3. Issue the RUN subcommand to execute your program. The TEST run-time option

can be specified as a parameter on the RUN subcommand. An example for a
COBOL program is:
RUN PROG(progname) PLAN(planname) LIB('user.library')

PARMS('/TEST(,*,;,*)')

In full-screen mode using a VTAM terminal

1. Specify the MFI%LU_name: parameter as part of the TEST option.
2. Follow the other requirements for debugging DB2 programs either under TSO

or in batch mode.

Chapter 7. Using Debug Tool in different modes and environments 131

|

|

|
|

Using TSO/Call Access Facility (CAF)

1. Link-edit the CAF language interface module DSNALI with your program.
2. Ensure that the data sets required by Debug Tool and your program have been

allocated through a CLIST or REXX procedure.
3. Issue the TSO CALL command CALL 'DSN230.RUNLIB.LOAD(name of your

program)', to start your program. DSN230 is a default high-level qualifier and
DB2 might be installed elsewhere on your system. Include the TEST run-time
option as a parameter in this command.

After your program has been initiated, debug your program by issuing the
required Debug Tool commands.

Note: If your source does not come up in Debug Tool when you launch it, check
that the listing or source file name corresponds to the MVS library name,
and that you have at least read access to that MVS library.

The program listing (for COBOL and PL/I) or program source (for C/C++) that
Debug Tool displays and uses for the debug session is the output from the compile
step and precompile step respectively, and thus includes all the DB2 expansion
code produced by the DB2 precompiler.

Related references
“PANEL command (full-screen mode)” on page 302
“SET DEFAULT LISTINGS (MVS)” on page 321
“SET SOURCE” on page 338
DB2 UDB for OS/390 Administration
Guide

Debugging IMS programs
You can debug IMS programs in full-screen mode and remote mode. In full-screen
mode, use the Batch Terminal Simulator (BTS) Full-Screen Image Support (FSS) to
display your MFS screen formats on the TSO terminal. This enables you to enter
data on-screen in the same way as it would be entered in IMS. The rest of this
section covers additional details on debugging IMS programs in full-screen mode.
In remote mode, you can debug IMS programs with or without BTS.

You can use Debug Tool with BTS to debug IMS programs in the following three
ways.
1. To test your IMS program interactively, use Debug Tool while running BTS in

the TSO foreground. The IMS program still executes in batch; however, it
invokes a CLIST that runs interactively. This is the only way to use the
interactive mode of Debug Tool.

2. Run BTS as a batch job. Only the batch mode of Debug Tool can be used with
BTS running as a batch job.

3. Test your program as an IMS batch job (without BTS). Only the batch mode of
Debug Tool can be used without BTS.

FSS is the default option when BTS is started in the TSO foreground, and is only
available when you are running BTS in the TSO foreground. FSS can only be
turned off by specifying TSO=NO on the ./O command. When running in the TSO
foreground, all call traces are displayed on your TSO terminal by default. This can
be turned off by parameters on either the ./O or ./T commands.

132 Debug Tool User’s Guide and Reference

|
|
|
|
|
|

Related tasks
“Compiling IMS programs for debugging”
“Linking IMS programs for debugging”
“Debugging IMS programs in interactive mode”
“Debugging IMS programs in batch mode” on page 134
“Using alternative methods of command input under IMS” on page 134

Related references
IMS/VS Batch Terminal Simulator Program Reference and Operations Manual.

Compiling IMS programs for debugging
Your program must be compiled with the TEST compiler option. Use the default
options to gain maximum debugging facilities.

Important: Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

Linking IMS programs for debugging
When you link your program, you must include a run-time options module in
your program link. They must be coded and assembled in a user-defined run-time
option module. For instructions on how to create the CEEUOPT run-time options
module using the CEEXOPT macro, follow the steps in “Linking DB2 programs for
debugging” on page 130.

Additionally, for COBOL programs using IMS, include the IMS interface module
DFSLI000 from the IMS RESLIB library.

Related tasks
“Linking DB2 programs for debugging” on page 130

Debugging IMS programs in interactive mode
There are two ways to invoke Debug Tool in interactive mode:
v Specifying the MFI%LU_name: parameter of the TEST run-time option. This

invokes Debug Tool in full-screen mode with a VTAM terminal. The VTAM
terminal controls the Debug Tool session.

v Run BTS in the TSO foreground.

In interactive mode, Debug Tool commands can be entered as required.

If you want to debug an IMS batch program using the interactive mode of Debug
Tool, do the following under BTS:
1. Define a dummy transaction code on the ./T command to initiate your program
2. Include a dummy transaction in the BTS input stream
3. Start BTS in the TSO foreground

Note: If your source (C/C++) or listing (COBOL and PL/I) does not come up in
Debug Tool when you launch it, check that the source or listing file name
corresponds to the MVS library name, and that you have at least read access
to that MVS library.

Currently, Debug Tool can only be used to debug one iteration of a transaction at a
time. When the program terminates you must close down Debug Tool before you
can view the output of the transaction.

Chapter 7. Using Debug Tool in different modes and environments 133

|

|
|
|

|

|

Therefore, if you use an input data set, you can only specify data for one
transaction in that data set. The data for the next transaction must be entered from
your TSO terminal.

A new debug session will be started automatically for the next transaction. When
using FSS, you must enter the /* command on your TSO terminal to terminate the
BTS session.

Related references
“PANEL command (full-screen mode)” on page 302
“SET SOURCE” on page 338

Debugging IMS programs in batch mode
You can use Debug Tool to debug IMS programs in batch mode. The debug
commands must be predefined and included in one of the Debug Tool command
files, or in a command string. The command string can be specified as a parameter
either in the TEST run-time option, or when CALL CEETEST or __ctest is used.
Although batch mode consumes fewer resources, you must know beforehand
exactly which debug commands you are going to issue. When you run BTS as a
batch job, the batch mode of Debug Tool is the only mode available for use.

For example, you can allocate a data set, userid.CODE.BTSINPUT with individual
members of test input data for IMS transactions under BTS.

Under IMS, you can invoke Debug Tool in the following ways:
v Use the compiler run-time option (#pragma runopts for C and C++)
v Include CSECT CEEUOPT when linking your program (for C/C++)
v Use the Language Environment callable service CEETEST (__ctest() for C/C++)

Using alternative methods of command input under IMS
You can issue Debug Tool commands in different ways, depending on which mode
you are running under.

In TSO/BTS, commands are interactive.
v TEST run-time options (primary commands file, preferences file, or command

string)
v Line mode
v Full-screen mode

Outside BTS, TEST run-time (primary commands file, preferences file, or command
string) are in batch IMS mode.

Under BTS, TEST run-time options (primary commands file, preferences file, or
command string) are in BTS batch mode.

Debugging CICS programs
Before you can debug your programs under CICS, make sure your Systems
Programmer has made the appropriate changes to your CICS region to support
Debug Tool (see your compiler Installation Guide or Program Directory). You also
need to ensure that your program is translated by the CICS translator prior to
compilation. The program source file (for C/C++ and VisualAge PL/I for OS/390)
or the program listing (for COBOL and all other PL/I) must be retained in a
permanent data set for Debug Tool to read when you debug your program.

134 Debug Tool User’s Guide and Reference

Note: For C/C++ and VisualAge PL/I for OS/390, it is the input to the compiler
(that is, the output from the CICS translator) that needs to be retained. To
enhance performance when using Debug Tool, use a large blocksize when
saving these files.

Related tasks
“Invoking Debug Tool under CICS” on page 136
“Using DTCN to invoke Debug Tool for CICS programs” on page 136
“Preparing your application to invoke Debug Tool using DTCN” on page 137
“Creating and storing a DTCN profile” on page 137
“Using CEEUOPT to invoke Debug Tool under CICS” on page 141
“Using compiler directives to invoke Debug Tool under CICS” on page 142
“Using CEDF to invoke Debug Tool under CICS” on page 142

Related references
“Debug modes under CICS”
“Restrictions when debugging under CICS” on page 143

Debug modes under CICS
Debug Tool can run in several different modes, providing you with the flexibility
to debug your applications in the way that suits you best. These modes include:

Single terminal mode
This is probably the mode you will use the most. A single 3270 session is
used by both Debug Tool and the application, swapping displays on the
terminal as required.

As you step through your application, the terminal shows Debug Tool
screens, but when an EXEC CICS SEND command is issued, that screen will
be displayed. Debug Tool holds that screen on the terminal for you to
review; simply press Enter to return to a Debug Tool screen. When your
application issues EXEC CICS RECEIVE, the application screen again appears,
so you can fill in the screen details.

Dual terminal mode
This mode can be useful if you are debugging screen I/O applications.
Debug Tool displays its screens on a separate 3270 session than the
terminal displaying the application.

You step through the application using the Debug Tool terminal and,
whenever the application issues an EXEC CICS SEND, the screen is sent to
the application display terminal. Note that, if you do not code IMMEDIATE
on the EXEC CICS SEND command, the buffer of data might be held within
CICS Terminal Control until an optimum opportunity to send it is
encountered--usually the next EXEC CICS SEND or EXEC CICS RECEIVE. When
the application issues an EXEC CICS RECEIVE, the Debug Tool terminal will
wait until you respond to the application terminal.

Interactive batch mode
Use this mode if you are debugging a transaction that does not have a
terminal associated with it. The transaction continues to run without a
CICS principal facility, but Debug Tool screens are displayed on a 3270
session that you name.

Noninteractive batch mode
In this mode, Debug Tool does not have a terminal associated to it at all. It

Chapter 7. Using Debug Tool in different modes and environments 135

receives its commands from a command file and writes its results to a log
file. This mode is useful if you want Debug Tool to debug a program
automatically.

Invoking Debug Tool under CICS
There are several different mechanisms available to invoke Debug Tool under
CICS. Each mechanism has a different advantage and are listed below:
v DTCN, a full-screen CICS transaction that allows you to dynamically modify

any Language Environment TEST/NOTEST run-time option with which your
application was originally link-edited. You can also use DTCN to modify other
Language Environment run-time options that are not specific to Debug Tool.
DTCN is the recommended mechanism for invoking Debug Tool sessions.

v Language Environment CEEUOPT module link-edited into your application,
containing an appropriate TEST option, which tells Language Environment to
invoke Debug Tool every time the application is run.
This mechanism can be useful during initial testing of new code when you will
want to run Debug Tool frequently.

v A compiler directive within the application, such as #pragma runopts(test) (for
C/C++) or CALL CEETEST.
These directives can be useful when you need to run multiple debug sessions for
a piece of code that is deep inside a multiple enclave or multiple CU
application. The application runs without Debug Tool until it encounters the
directive, at which time Debug Tool is invoked at the precise point that you
specify. With CALL CEETEST, you can even make the invocation of Debug Tool
conditional, depending on variables that the application can test.

v CICS CEDF utility where you can invoke a debug session in Dual Terminal
mode alongside CEDF, using a special option on the CEDF command.
This mechanism does not require you to change the application link-edit options
or code, so it can be useful if you need to debug programs that have been
compiled with the TEST option, but do not have invocation mechanisms built
into them.

Related tasks
“Using CEEUOPT to invoke Debug Tool under CICS” on page 141
“Using CEDF to invoke Debug Tool under CICS” on page 142

Related references
“Debug modes under CICS” on page 135

Using DTCN to invoke Debug Tool for CICS programs
DTCN is a menu-driven tool that allows you to specify when to activate Debug
Tool for CICS programs. You can do this by entering your debugging requirements
into the DTCN panels from your CICS terminal. DTCN then saves these
debugging requirements in its repository. When a CICS program starts, Debug Tool
is invoked if the task environment matches a repository item.

DTCN profiles contain the identifiers (IDs) of CICS resources to debug. These
resource IDs can be Terminal, Transaction, Program, or User.

To debug a CICS program using DTCN to invoke Debug Tool, update the link-edit
step to include member EQADCCXT from the Debug Tool library **.SEQAMOD into the
application load module.

136 Debug Tool User’s Guide and Reference

DTCN not only provides the capability to specify what to debug by specifying
debug resource IDs, DTCN also provides the capability to specify how the debug
session will run, for example, whether a mainframe (MFI) or workstation (VAD)
debug session is desired.

Preparing your application to invoke Debug Tool using DTCN
In order to use the DTCN utility to invoke Debug Tool, link-edit the DTCN
customized Language Environment user exit, CEEBXITA, into the CICS program
you want to debug, using one of the following methods:
1. If your installation is not using this user exit, link-edit member EQADCCXT,

which contains the CSECT CEEBXITA, from library EQAW.V1R2M0.SEQAMOD
into your main program.

2. If your installation is already using CEEBXITA, request the name and location
of the DTCN customized exit from your CICS system administrator and link
that exit with your main program.

Once you have successfully link-edited your program, the application is ready to
run. However, before you begin debugging your application, make sure you use
the DTCN transaction to create a profile that specifies the resource ID combination
that you want to debug. Once the profile has been created, store it in the Debug
Tool repository. You are now ready to run your application.

Creating and storing a DTCN profile
When you want to start a Debug Tool session under CICS, log on to a CICS
terminal and enter the transaction ID DTCN. The DTCN transaction displays the
main DTCN screen, Debug Tool CICS Control - Primary Menu, shown below. Some of
the entry fields are filled in with default values. These values have been set to
activate Debug Tool for tasks running on the terminal displaying the DTCN panel.
The Debug Tool session is started in full-screen mode, so debug screens are sent to
the terminal that displays the DTCN panel.

Most users don’t need to alter the default settings; but, if you want to change the
settings on this panel, simply enter the new values.

DTCN also reads the Language Environment NOTEST option supplied to the CICS
region in CEECOPT or CEEROPT. You can supply suboptions, such as the name of
a preference file, with the NOTEST option to supply additional defaults to DTCN.

DTCN has a secondary options panel, Debug Tool CICS Control - Menu 2, also
shown below. This panel controls Debug Tool behavior when it is active. If you
want to change the default values set on this panel, switch to the panel by pressing
PF9, enter the your new values, then press PF3 to return to the primary panel.

As you enter options into the DTCN panels, DTCN displays the TEST string that is
being generated in the display field Generated String. When you are satisfied with
the settings shown on the panel, press PF4 to save the profile in the repository.

DTCN stores one profile for each DTCN terminal. Each profile is retained in the
repository until one of the following occurs:
v it is explicitly deleted by the terminal that entered it,
v DTCN detects that the terminal which created the profile has been disconnected,

or
v the CICS region is terminated.

Chapter 7. Using Debug Tool in different modes and environments 137

|
|

When a DTCN profile is active for a full-screen mode debugging session, Debug
Tool preserves all breakpoint information for that session in the profile. When the
DTCN profile is deleted, the breakpoint information is deleted. After you save the
profile in the repository, DTCN shows the saved TEST string in the display field
Repository String. When you are satisfied with the saved profile, press PF3 to exit
DTCN.

Now, any tasks that run in the CICS system and match the resource IDs that you
specified on the DTCN panel will invoke Debug Tool.

DTCN Debug Tool CICS Control - Primary Menu S07CICPD

Select the combination of resources to debug (see Help for more information)

Terminal Id ==> 0006
Transaction Id ==>
Program Id ==>
User Id ==>

Select type and ID of debug display device

Session Type ==> MFI MFI, TCP, APPC, LU2
PWS Type ==> VAD, CODE
Port/SessionId ==> TCP Port or APPC Session ID
Display Id ==> 0006

Generated String: TEST(ALL,,PROMPT,MFI%0006:*)

Repository String: No string currently saved in repository

PF1=HELP 2=GHELP 3=EXIT 4=SAVE 6=DELETE 9=OPTIONS

The definitions for the main DTCN screen are:

Terminal ID
Specifies a CICS terminal to debug. By default, this is set to the terminal
that is currently running DTCN.

Transaction ID
Specifies a CICS transaction to debug. If you specify a transaction ID
without any other resource, Debug Tool is invoked for every execution of
that transaction (including executions by other users).

Program ID
Specifies a CICS program to debug. If you specify a program ID without
any other resource, Debug Tool is invoked for every execution of that
program (including executions by other users).

User ID
Specifies a CICS userid to debug, that is, Debug Tool is invoked for all
programs executed by that user.

Session Type
Select one of the following:

MFI Indicates that Debug Tool will initialize on a 3270 type terminal.

TCP Indicates that you will interface with Debug Tool from your
workstation using the TCP/IP protocol.

APPC Indicates that you will interface with Debug Tool from your
workstation using the APPC protocol.

LU2 Indicates that you will use an LU2 cooperative debug session on

138 Debug Tool User’s Guide and Reference

|
|
|

the workstation with OS/2®. LU2 applies only if you have the
Workstation feature of CODE/370 installed on your OS/2
workstation.

PWS Type
Identifies which one of the following tools you plan to use when
debugging your application program:

CODE You plan to use CODE/370 to debug your application

VAD You plan to use VisualAge Remote Debugger to debug your
application

Port/Session Id
Allows you to have multiple workstation sessions so you can debug two or
more applications at the same time.

Display ID
Identifies target destination for Debug Tool information. Depending on the
Session Type that you’ve selected, the Display ID is one of the following:
v If you selected MFI, the Display ID is a CICS 3270 terminal ID. This is set

by default to the terminal that is currently running DTCN, but you can
change this to direct MFI screens to a different CICS terminal.

v If you selected TCP, enter either the IP address or Host Name of the
workstation that will display the debug screens. That workstation needs
to have appropriate software installed and running for the debug session
to begin.

v If you selected APPC, enter the LU name of the workstation that will
display the debug screens. That workstation needs to have appropriate
software installed and running for the debug session to begin.

The PF keys used by the Debug Tool CICS Control - Primary Menu screen are:

PF1 Help
Context sensitive help. Provides detailed help for each entry field. Place
the cursor on any field and press PF1 for help with that field.

PF2 GHelp
General help for DTCN.

PF3 Exit
Exits DTCN.

PF4 Save
Saves the profile displayed on the screen into the repository.

PF6 Delete
Deletes this DTCN terminal’s profile from the repository.

PF9 Options
Displays the secondary DTCN entry panel.

Chapter 7. Using Debug Tool in different modes and environments 139

DTCN Debug Tool CICS Control - Menu 2 S07CICPD

Select Debug Tool options

Test Option ==> TEST Test/Notest

Test Level ==> ALL All/Error/None

Commands File ==>

Prompt Level ==> PROMPT Prompt/Noprompt/*/;

Preference File ==> *

Any other valid Language Environment Options

==>

PF1=HELP 2=GHELP 3=RETURN

The definitions for the DTCN Menu 2 panel are:

TEST Option
TEST/NOTEST specifies the conditions under which Debug Tool assumes
control during the initialization of your application.

Test Level
ALL/ERROR/NONE specifies what conditions need to be met for Debug Tool
to gain control.

Command File
A valid fully qualified data set name specifying the primary commands file
for this run.

Note: Enclosing the name of the data set in single or double quotes is not
allowed.

Prompt Level
Specifies whether Debug Tool is invoked at Language Environment
initialization.

Preference File
A valid fully qualified data set name specifying the preference file to be
used.

Note: Enclosing the name of the data set in single or double quotes is not
allowed.

Any other valid Language Environment Options
You can dynamically change any other Language Environment options
defined in your CICS installation as overrideable except the STACK option.
For additional information about Language Environment options, see the
various Language Environment publications or contact your CICS system
programmer.

The PF keys used by the Debug Tool CICS Control - Menu 2 screen are:

PF1 Help
Context sensitive help. Provides detailed help for each entry field. Place
the cursor on any field and press PF1 for help with that field.

140 Debug Tool User’s Guide and Reference

PF2 GHelp
General help for DTCN.

PF3 Return
Returns you to the main DTCN panel.

DTCN data entry verification
DTCN performs data verification on the data you entered in the DTCN panel.
When DTCN discovers an error, it places the cursor in the erroneous field and
displays a message. You can use context sensitive help (PF1) to find what is wrong
with the input.

Once you have entered your debug requirements and saved them, you can activate
Debug Tool. Debug Tool will run according to the options you specified.

After you have finished debugging your program, use DTCN again to turn off
your debug profile by pressing PF3 to exit. You do not need to remove EQADCCXT
from the load module; in fact, it’s a good idea to leave it there for the next time
you want to invoke Debug Tool.

Using DTCN repository profile items at runtime
When programs are invoked, Language Environment runs the EQADCCXT user exit
that you used to link-edit into the program. EQADCCXT uses a highly efficient
look-up mechanism to decide if the task’s Terminal, Transaction, Program and User
IDs match a repository profile item. EQADCCXT selects the best matching profile, that
is, the one with the greatest number of resource IDs matching the active task. If
there is a conflict between two profile items, that is, two items have an equal
number of matching resource IDs, the oldest item is selected.

For example, consider the following two profile items:
1. First, Item 1 is saved, specifying resource ID program PROG1
2. Later, Item 2 is saved, specifying resource ID userid USER1

When PROG1 is run by USER1, profile item 1 is used.

If this situation occurs, an error message is sent to the system console, suggesting
that DTCN users should specify additional resource qualification. So, in the above
case, each profile item should be set up with both User ID and Program ID.

Sharing DTCN repository profile items among CICS systems
The DTCN repository is a CICS Temporary Storage Queue, named EQADTCN2. If
you want to share the repository among CICS systems, define the queue as
REMOTE in your CICS Temporary Storage Tables (TST). This stores a profile item
in one CICS system, and makes it readable to another system.

Using CEEUOPT to invoke Debug Tool under CICS
To request that Language Environment invoke Debug Tool every time the
application is run, assemble a CEEUOPT module with an appropriate TEST
run-time option. It is a good idea to link-edit the CEEUOPT module into a library
and just add an INCLUDE LibraryDDname(CEEUOPT-MemberName) statement to the
link-edit options when you link your application. Once the application program
has been placed in the load library (and NEWCOPY'd if required), whenever it is
run Debug Tool will be invoked.

Chapter 7. Using Debug Tool in different modes and environments 141

|

|
|
|
|

Debug Tool runs in the mode defined in the TEST run-time option you supplied,
normally Single Terminal mode, although you could provide a primary commands
file and a log file and not use a terminal at all.

To invoke Debug Tool, simply run the application. Don’t forget to remove the
CEEUOPT containing your TEST run-time option when you have finished
debugging your program.

Related tasks
“Invoking Debug Tool using the TEST run-time option” on page 26

Using compiler directives to invoke Debug Tool under CICS
When compile-directives are processed by your program, Debug Tool will be
invoked in single terminal mode (this method supports only single terminal mode).

Related tasks
“Invoking Debug Tool with CEETEST” on page 38
“Specifying TEST run-time option with #pragma runopts in C/C++” on page 37

Using CEDF to invoke Debug Tool under CICS
No specific preparation is required to use CEDF to invoke Debug Tool other than
compiling the application with the appropriate compiler options and saving the
source/listing.

CEDF has an ″,I″ option that invokes Debug Tool. This option invokes both EDF
and Debug Tool in Dual Terminal mode. In Dual Terminal mode, EDF and Debug
Tool screens are displayed on the terminal where you issue the CEDF command;
application screens are displayed on the application terminal.

Note: You need to know the id of each terminal. One way to get this information
is by using the CEOT transaction. The output will include Ter(xxxx), where
xxxx is the terminal id.

To invoke Debug Tool, enter the CEDF transaction as follows:
CEDF xxxx,ON,I

where xxxx is the terminal on which you want to start the transaction to be
debugged. This terminal is where the application is started. It performs 3270
application I/O, while a Debug Tool session is invoked at the terminal where
CEDF is invoked.

CICS will return a message verifying the terminal id of the second terminal. Then,
on the xxxx terminal, enter:
TRAN

where TRAN is the id for the transaction being debugged.

Once the command is entered, Debug Tool will be invoked for all Language
Environment-enabled programs that are running on the terminal where Debug
Tool is started. Debug Tool will continue to be active on this terminal, even if you
turn off EDF.

For example, to begin a Debug Tool session using terminal T304 as the debugging
terminal and T305 as the terminal where you want to run your application, invoke
the CEDF transaction as follows on T304:

142 Debug Tool User’s Guide and Reference

CEDF T305,ON,I

Then, on terminal T305, enter the name of the transaction you are debugging:
TRAN

When you run your application on T305, Debug Tool is invoked on T304. Terminal
T305 displays only application output, that is, a specific CICS command to write to
the screen.

Restrictions when debugging under CICS
The following restrictions apply when debugging programs with the Debug Tool in
a CICS environment.
v The __ctest() function with CICS does nothing.
v The CDT# transaction is a special Debug Tool service transaction, and is not

intended for activation by direct terminal input. If CDT# is invoked via terminal
entry, it will return to the caller (no function is performed).

v Applications that issue EXEC CICS POST cannot be debugged in Dual Terminal
mode.

v CICS does not support Debug Tool line mode.
v Data definition (ddname) is not supported. All files, including the log file, USE

files, and preferences file, must be referred to by their full data set names.
v The TSO, SET INTERCEPT, and SYSTEM commands cannot be used.
v CICS does not support an attention interrupt from the keyboard.
v The log file is not automatically started. You need to use the SET LOG ON

command.
v Ensure that you allocate a log file big enough to hold all the log output from a

debug session, because the log file is truncated after it becomes full. (A warning
message is not issued before the log is truncated.)

v Save files are not used under CICS.

Chapter 7. Using Debug Tool in different modes and environments 143

|

144 Debug Tool User’s Guide and Reference

Chapter 8. Debug Tool support of programming languages

To support multiple high-level programming languages, Debug Tool adapts its
commands to the HLLs, provides interpretive subsets of commands from the various
HLLs, and maps common attributes of data types across the languages. It evaluates
HLL expressions and handles constants and variables.

The topics below describe how Debug Tool makes it possible for you to debug
programs consisting of different languages, structures, conventions, variables, and
methods of evaluating expressions.

A general rule to remember is that Debug Tool tries to let the language itself guide
how Debug Tool works with it.

Related tasks
“Qualifying variables and changing the point of view” on page 147
“Debugging multilanguage applications” on page 151
“Handling conditions and exceptions in Debug Tool” on page 149
“Debugging a multiple-enclave interlanguage communication (ILC) application” on page 154

Related references
“Debug Tool evaluation of HLL expressions”
“Debug Tool interpretation of HLL variables and constants” on page 146
“Debug Tool commands that resemble HLL commands” on page 146
“Coexistence with other debuggers” on page 154
“Coexistence with unsupported HLL modules” on page 155
“Attributes of Debug Tool variables in different languages” on page 372

Debug Tool evaluation of HLL expressions
When you enter an expression, Debug Tool records the programming language in
effect at that time. When the expression is run, Debug Tool passes it to the
language run time in effect when you entered the expression. This run time might
be different from the one in effect when the expression is run.

When you enter an expression that will not be run immediately, you should fully
qualify all program variables. Qualifying the variables assures that proper context
information (such as load module and block) is passed to the language run time
when the expression is run. Otherwise, the context might not be the one you
intended when you set the breakpoint, and the language run time might not
evaluate the expression.

Related references
“Debug Tool evaluation of C/C++ expressions” on page 165
“Debug Tool evaluation of COBOL expressions” on page 189
“Debug Tool evaluation of PL/I expressions” on page 200

© Copyright IBM Corp. 1995, 2001 145

Debug Tool interpretation of HLL variables and constants
Debug Tool supports the use of HLL variables and constants, both as a part of
evaluating portions of your test program and in declaring and using session
variables.

Three general types of variables supported by Debug Tool are:
v Program variables defined by the HLL compiler’s symbol table
v Debug Tool variables denoted by the percent (%) sign
v Session variables declared for a given Debug Tool session and existing only for

the session

HLL variables
Some variable references require language-specific evaluation, such as pointer
referencing or subscript evaluation. Once again, the Debug Tool interprets each
case in the manner of the HLL in question. Below is a list of some of the areas
where Debug Tool accepts a different form of reference depending on the current
programming language:
v Structure qualification

C/C++ and PL/I: dot (.) qualification, high-level to low-level
COBOL: IN or OF keyword, low-level to high-level

v Subscripting
C/C++: name [subscript1][subscript2]...
COBOL and PL/I: name(subscript1,subscript2,...)

HLL constants
You can use both string constants and numeric constants. Debug Tool accepts both
types of constants in C/C++, COBOL, and PL/I.

Related references
“Chapter 15. Debug Tool variables” on page 363
“Declarations (C/C++)” on page 257
“Declarations (COBOL)” on page 260
“DECLARE command (PL/I)” on page 261

Debug Tool commands that resemble HLL commands
To allow you to use familiar commands while in a debug session, Debug Tool
provides an interpretive subset of commands for each language. This consists of
commands that have the same syntax, whether used with Debug Tool or when
writing application programs. You use these commands in Debug Tool as though
you were coding in the original language.

Use the SET PROGRAMMING LANGUAGE command to set the current programming
language to the desired language. The current programming language determines
how commands are parsed. If you SET PROGRAMMING LANGUAGE to AUTOMATIC, every
time the current qualification changes to a module in a different language, the
current programming language is automatically updated.

The following types of Debug Tool commands have the same syntax (or a subset of
it) as the corresponding statements (if defined) in each supported programming
language:

146 Debug Tool User’s Guide and Reference

Assignment
These commands allow you to assign a value to a variable or reference.

Conditional
These commands evaluate an expression and control the flow of execution
of Debug Tool commands according to the resulting value.

Declarations
These commands allow you to declare session variables.

Looping
These commands allow you to program an iterative or logical loop as a
Debug Tool command.

Multiway
These commands allow you to program multiway logic in the Debug Tool
command language.

In addition, Debug Tool supports special kinds of commands for some languages.

Related references
“Debug Tool commands that resemble C/C++ commands” on page 157
“Debug Tool commands that resemble COBOL commands” on page 183
“SET PROGRAMMING LANGUAGE” on page 333

Qualifying variables and changing the point of view
Each HLL defines a concept of name scoping to allow you, within a single compile
unit, to know what data is referenced when a name is used (for example, if you
use the same variable name in two different procedures). Similarly, Debug Tool
defines the concepts of qualifiers and point of view for the run-time environment
to allow you to reference all variables in a program, no matter how many
subroutines it contains. The assignment x = 5 does not appear difficult for Debug
Tool to process. However, if you declare x in more than one subroutine, the
situation is no longer obvious. If x is not in the currently executing compile unit,
you need a way to tell Debug Tool how to determine the proper x.

You also need a way to change the Debug Tool’s point of view to allow it to
reference variables it cannot currently see (that is, variables that are not within the
scope of the currently executing block or compile unit, depending upon the HLL’s
concept of name scoping).

Related tasks
“Qualifying variables”
“Changing the point of view” on page 149

Qualifying variables
Qualification is a method you can use to specify to what procedure or load module
a particular variable belongs. You do this by prefacing the variable with the block,
compile unit, and load module (or as many of these labels as are necessary),
separating each label with a colon (or double colon following the load module
specification) and a greater-than sign (:>), as follows:
load_name::>cu_name:>block_name:>object

This procedure, known as explicit qualification, lets Debug Tool know precisely
where the variable is.

Chapter 8. Debug Tool support of programming languages 147

If required, load_name is the load module name. It is required only when the
program consists of multiple load modules and when you want to change the
qualification to other than the current load module. load_name can be the Debug
Tool variable %LOAD.

If required, cu_name is the compile unit name. The cu_name is required only when
you want to change the qualification to other than the currently qualified compile
unit. cu_name can be the Debug Tool variable %CU.

If required, block_name is the program block name. The block_name is required only
when you want to change the qualification to other than the currently qualified
block. block_name can be the Debug Tool variable %BLOCK.

For PL/I only:
In PL/I, the primary entry name of the external procedure is the same as the
compile unit name. When qualifying to the external procedure, the procedure
name of the top procedure in a compile unit fully qualifies the block. Specifying
both the compile unit and block name results in an error. For example:
LM::>PROC1:>variable

is valid.
LM::>PROC1:>PROC1:>variable

is not valid.

For C++ only:
You must specify the full function qualification including formal parameters
where they exist. For example:
1. For function (or block) ICCD2263() declared as void ICCD2263(void) within

CU "USERID.SOURCE.LISTING(ICCD226)" the correct block specification
for C++ would include the parenthesis () as follows:
qualify block %load::>"USERID.SOURCE.LISTING(ICCD226)":>ICCD2263()

2. For CU ICCD0320() declared as int ICCD0320(signed long int SVAR1, signed
long int SVAR2) the correct qualification for AT ENTRY is:
AT ENTRY "USERID.SOURCE.LISTING(ICCD0320)":>ICCD0320(long,long)

Use the Debug Tool command DESCRIBE CUS to give you the correct BLOCK or
CU qualification needed.

Use the LIST NAMES command to show all polymorphic functions of a given
name. For the example above, LIST NAMES "ICCD0320*" would list all
polymorphic functions called ICCD0320.

You do not have to preface variables in the currently executing compile unit. These
are already known to Debug Tool; in other words, they are implicitly qualified.

In order for attempts at qualifying a variable to work, each block must have a
name. Blocks that have not received a name are named by Debug Tool, using the
form: %BLOCKnnn, where nnn is a number that relates to the position of the block in
the program. To find out the Debug Tool’s name for the current block, use the
DESCRIBE PROGRAMS command.

Related references
“Qualifying variables and changing the point of view in C/C++” on page 173

148 Debug Tool User’s Guide and Reference

“Qualifying variables and changing the point of view in COBOL” on page 191
“DESCRIBE command” on page 263
“LIST NAMES” on page 291

Changing the point of view
The point of view is usually the currently executing block. You can get to
inaccessible data by changing the point of view using the SET QUALIFY command
with the following operand.
load_name::>cu_name:>block_name

Each time you update any of the three Debug Tool variables %CU, %PROGRAM, or
%BLOCK, all four variables (%CU, %PROGRAM, %LOAD, and %BLOCK) are automatically
updated to reflect the new point of view. If you change %LOAD using SET QUALIFY
LOAD, only %LOAD is updated to the new point of view. The other three Debug Tool
variables remain unchanged. For example, suppose your program is currently
suspended at loadx::>cux:>blockx. Also, the load module loadz, containing the
compile unit cuz and the block blockz, is known to Debug Tool. The settings
currently in effect are:

%LOAD = loadx
%CU = cux
%PROGRAM = cux
%BLOCK = blockx

If you enter any of the following commands:
SET QUALIFY BLOCK blockz;

SET QUALIFY BLOCK cuz:>blockz;

SET QUALIFY BLOCK loadz::>cuz:>blockz;

the following settings are in effect:
%LOAD = loadz
%CU = cuz
%PROGRAM = cuz
%BLOCK = blockz

If you are debugging a program that has multiple enclaves, SET QUALIFY can be
used to identify references and statement numbers in any enclave by resetting the
point of view to a new block, compile unit, or load module.

Related tasks
“Chapter 6. Debugging across multiple processes and enclaves” on page 121
“Changing the point of view in C/C++” on page 174
“Changing the point of view in COBOL” on page 193

Related references
“SET QUALIFY” on page 335

Handling conditions and exceptions in Debug Tool
To suspend program execution just before your application would terminate
abnormally, start your application with the following options:
TRAP(ON)
TEST(ALL,*,NOPROMPT,*)

Chapter 8. Debug Tool support of programming languages 149

When a condition is signaled in your application, Debug Tool prompts you and
you can then dynamically code around the problem. For example, you can initialize
a pointer, allocate memory, or change the course of the program with the GOTO
command. You can also indicate to Language Environment’s condition handler,
that you have handled the condition by issuing a GO BYPASS command. Be aware
that some of the code that follows the instruction that raised the condition might
rely on data that was not properly stored or handled.

When debugging with Debug Tool, you can (depending on your host system)
either instruct the debugger to handle program exceptions and conditions, or pass
them on to your own exception handler. Programs also have access to Language
Environment services to deal with program exceptions and conditions.

Related tasks
“Handling conditions in Debug Tool”
“Handling exceptions within expressions (C/C++ and PL/I only)” on page 151

Handling conditions in Debug Tool
You can use either or both of the two methods during a debugging session to
ensure that Debug Tool gains control at the occurrence of HLL conditions.

If you specify TEST(ALL) as a run-time option when you begin your debug session,
Debug Tool gains control at the occurrence of most conditions.

Note: Debug Tool recognizes all Language Environment conditions that are
detected by the Language Environment error handling facility.

You can also direct Debug Tool to respond to the occurrence of conditions by using
the AT OCCURRENCE command to define breakpoints. These breakpoints halt
processing of your program when a condition is raised, after which Debug Tool is
given control. It then processes the commands you specified when you defined the
breakpoints.

There are several ways a condition can occur, and several ways it can be handled.

When a condition can occur
A condition can occur during your Debug Tool session when:
v A C++ application throws an object.
v A C/C++ application program executes a raise statement.
v A PL/I application program executes a SIGNAL statement.
v The Debug Tool command TRIGGER is executed.
v Program execution causes a condition to exist. In this case, conditions are not

raised at consistency points (the operations causing them can consist of several
machine instructions, and consistency points usually occur at the beginnings and
ends of statements).

v The setting of WARNING is OFF (for C/C++ and PL/I).

When a condition occurs
When an HLL condition occurs and you have defined a breakpoint with associated
actions, those actions are first performed. What happens next depends on how the
actions end.
v Your program’s execution can be terminated with a QUIT command.

150 Debug Tool User’s Guide and Reference

v Control of your program’s execution can be returned to the HLL exception
handler, so that processing proceeds as if Debug Tool had never been invoked
(even if you have perhaps used it to change some variable values, or taken some
other action).

v Control of your program’s execution can be returned to the program itself,
bypassing any further processing of this exception either by the user program or
the environment.

v PL/I allows GO TO out of block;, so execution control can be passed to some
other point in the program.

v If no circumstances exist explicitly directing the assignment of control, your
primary commands file or terminal is queried for another command.

If, after the execution of any defined breakpoint, control returns to your program
with a GO, the condition is raised again in the program (if possible and still
applicable). If you use a GOTO to bypass the failing statement, you also bypass your
program’s error handling facilities.

Related references
“AT OCCURRENCE” on page 237
“GO command” on page 276
“GOTO command” on page 276
“TEST run-time option” on page 26
“SET WARNING (C/C++ and PL/I)” on page 342
“Language Environment conditions and their C/C++ equivalents” on page 164
“PL/I conditions and condition handling” on page 197
z/OS Language Environment
Programming Guide
COBOL for OS/390 & VM Language Reference

Handling exceptions within expressions (C/C++ and PL/I only)
When an exception such as division by zero is detected in a Debug Tool
expression, you can use the Debug Tool command SET WARNING to control Debug
Tool and program response. During an interactive Debug Tool session, such
exceptions are sometimes due to typing errors and so are probably not intended to
be passed to the program. If you do not want errors in Debug Tool expressions to
be passed to your program, use SET WARNING ON. Expressions containing such
errors are terminated, and a warning message is displayed.

However, you might want to pass an exception to your program, perhaps to test
an error recovery procedure. In this case, use SET WARNING OFF.

Related tasks
“Using SET WARNING PL/I command with built-in functions” on page 201

Related references
“SET WARNING (C/C++ and PL/I)” on page 342

Debugging multilanguage applications
Language Environment simplifies the debugging of multilanguage applications by
providing a single run-time environment and interlanguage communication (ILC).

When the need to debug a multilanguage application arises, you can find yourself
facing one of the following scenarios:

Chapter 8. Debug Tool support of programming languages 151

v You need to debug an application written in more than one language, where
each language is supported by Language Environment and can be debugged by
Debug Tool.

v You need to debug an application written in more than one language, where not
all of the languages are supported by Language Environment, nor can they be
debugged by Debug Tool.

When writing a multilanguage application, a number of special considerations
arise because you must work outside the scope of any single language. The
Language Environment initialization process establishes an environment tailored to
the set of HLLs constituting the main load module of your application program.
This removes the need to make explicit calls to manipulate the environment. Also,
termination of the Language Environment environment is accomplished in an
orderly fashion, regardless of the mixture of HLLs present in the application.

Related tasks
“Debugging an application fully supported by Language Environment”
“Debugging an application partially supported by Language Environment”
“Using session variables across different languages” on page 153

Related references
“Attributes of Debug Tool variables in different languages” on page 372

Debugging an application fully supported by Language
Environment

If you are debugging a program written in a combination of languages supported
by Language Environment and compiled by supported compilers, very little is
required in the way of special actions. Debug Tool normally recognizes a change in
programming languages and automatically switches to the correct language when
a breakpoint is reached. If desired, you can use the SET PROGRAMMING LANGUAGE
command to stay in the language you specify; however, you can only access
variables defined in the currently set programming language.

When defining session variables you want to access from compile units of different
languages, you must define them with compatible attributes.

Related tasks
“Using session variables across different languages” on page 153

Related references
“SET PROGRAMMING LANGUAGE” on page 333
z/OS Language Environment
Programming Guide

Debugging an application partially supported by Language
Environment

Sometimes you might find yourself debugging applications that contain compile
units written in languages not supported by either Debug Tool or Language
Environment. For example, you can run programs containing mixtures of
Assembler, C/C++, COBOL, FORTRAN, and PL/I source code with Debug Tool.
You can invoke Debug Tool and perform testing only for the sections of a
multilanguage program written in a supported language and compiled with a
Language Environment-enabled compiler, or relink-edited to take advantage of
Language Environment library routines. If you are debugging a compile unit

152 Debug Tool User’s Guide and Reference

written in a supported language and the compile unit calls another unsupported
language, a breakpoint set with AT CALL is triggered. Debug Tool determines the
name of the compile unit, but little else. Your compile unit runs unhindered by
Debug Tool. When program execution returns to a compile unit of a known HLL,
Debug Tool once again gains control and execute commands.

Using session variables across different languages
While working in one language, you can declare session variables that you can
continue to use after calling in a load module of a different language. The table
below shows how the attributes of session variables are mapped across
programming languages. Session variables with attributes not shown in the table
cannot be accessed from other programming languages. (Some attributes supported
for C/C++ or PL/I session variables cannot be mapped to other languages; session
variables defined with these attributes cannot be accessed outside the defining
language. However, all of the supported attributes for COBOL session variables
can be mapped to equivalent supported attributes in C/C++ and PL/I, so any
session variable that you declare with COBOL can be accessed from C/C++ and
PL/I.)

Machine attributes PL/I attributes C/C++ attributes COBOL attributes

byte CHAR(1) unsigned char PICTURE X

byte string CHAR(j) unsigned char[j] PICTURE X(j)

halfword FIXED BIN(15,0) signed short int PICTURE S9(j≤4)

USAGE BINARY

fullword FIXED BIN(31,0) signed long int PICTURE S9(4<j≤9)

USAGE BINARY

floating point FLOAT BIN(21) or

FLOAT DEC(6)

float USAGE COMP-1

long floating point FLOAT BIN(53) or

FLOAT DEC(16)

double USAGE COMP-2

extended floating pointFLOAT BIN(109) or

FLOAT DEC(33)

long double n/a

fullword pointer POINTER * USAGE POINTER

Note: When registering session variables in PL/I, the DECIMAL type is always the
default. For example, if C declares a float, PL/I registers the variable as a
FLOAT DEC(6) rather than a FLOAT BIN(21).

When declaring session variables, remember that C/C++ variable names are
case-sensitive. When the current programming language is C/C++, only session
variables that are declared with uppercase names can be shared with COBOL or
PL/I. When the current programming language is COBOL or PL/I, session
variable names in mixed or lowercase are mapped to uppercase. These COBOL or

Chapter 8. Debug Tool support of programming languages 153

PL/I session variables can be declared or referenced using any mixture of
lowercase and uppercase characters and it makes no difference. However, if the
session variable is shared with C/C++, within C/C++, it can only be referred to
with all uppercase characters (since a variable name composed of the same
characters, but with one or more characters in lowercase, is a different variable
name in C/C++).

Session variables with incompatible attributes cannot be shared between other
programming languages, but they do cause session variables with the same names
to be deleted. For example, COBOL has no equivalent to PL/I’s FLOAT DEC(33) or
C’s long double. With the current programming language COBOL, if a session
variable X is declared PICTURE S9(4), it will exist when the current programming
language setting is PL/I with the attributes FIXED BIN(15,0) and when the current
programming language setting is C with the attributes signed short int. If the
current programming language setting is changed to PL/I and a session variable X
is declared FLOAT DEC(33), the X declared by COBOL will no longer exist. The
variable X declared by PL/I will exist when the current programming language
setting is C with the attributes long double.

Related references
“Debug Tool interpretation of HLL variables and constants” on page 146

Debugging a multiple-enclave interlanguage communication (ILC)
application

When you debug a multiple-enclave ILC application with Debug Tool, use the SET
PROGRAMMING LANGUAGE to change the current programming language setting. The
programming language setting is limited to the languages currently known to
Debug Tool (that is, languages contained in the current load module).

Command lists on monitors and breakpoints have an implied programming
language setting, which is the language that was in effect when the monitor or
breakpoint was established. Therefore, if you change the language setting, errors
might result when the monitor is refreshed or the breakpoint is triggered.

Debug Tool sets implicit AT TERMINATION breakpoint by default. This breakpoint
gives Debug Tool control at the end of each enclave. If you want a
multiple-enclave application to run (using the GO command) without stopping at
the termination breakpoint, remove the breakpoint with CLEAR AT TERMINATION.
You can set the AT LOAD breakpoint to give Debug Tool control at the specific
program you want to debug.

For example, consider a CICS application that has five programs called PROG1 to
PROG5 and uses EXEC CICS LINK or EXEC CICS XCTL to pass control between
them. If you want to run the application until PROG4 begins, enter the following
commands:
CLEAR AT TERMINATION
AT LOAD PROG4
GO

Coexistence with other debuggers
Debug Tool can coexist with low-level debugging facilities, such as TSO TEST.
However, coexistence with other HLL debuggers cannot be guaranteed.

154 Debug Tool User’s Guide and Reference

C/C++, COBOL, and PL/I are dependent upon Language Environment to provide
debugging information.

Another debugger might provide limited services for an HLL not yet supported by
Debug Tool, but conditions such as attention interrupts and exceptions cause
Language Environment to pass control to an installed Language Environment
debugger.

Related references
“Coexistence with unsupported HLL modules”

Coexistence with unsupported HLL modules
Compile units or program units written in unsupported high- or low-level
languages, or in older releases of HLLs, are tolerated. See Using CODE/370 with VS
COBOL II and OS PL/I for information about two unsupported HLLs that can be
used with Debug Tool.

Related references
“Coexistence with other debuggers” on page 154

Chapter 8. Debug Tool support of programming languages 155

156 Debug Tool User’s Guide and Reference

Chapter 9. Debugging C/C++ programs

The topics below describe how to use Debug Tool to debug your C/C++ programs.

“Example: referencing variables and setting breakpoints in C/C++ blocks” on
page 171

Related concepts
“C/C++ expressions” on page 161
“Debug Tool evaluation of C/C++ expressions” on page 165
“Scope of objects in C/C++” on page 168
“Blocks and block identifiers for C” on page 170
“Blocks and block identifiers for C++” on page 171
“Monitoring storage in C++” on page 180

Related tasks
“Debugging a C program in full-screen mode” on page 71
“Debugging a C++ program in full-screen mode” on page 81
“Using C/C++ variables with Debug Tool” on page 158
“Declaring session variables with C/C++” on page 160
“Calling C/C++ functions from Debug Tool” on page 162
“Intercepting files when debugging C/C++ programs” on page 166
“Displaying environmental information” on page 172
“Stepping through C++ programs” on page 177
“Setting breakpoints in C++” on page 178
“Examining C++ objects” on page 179
“Qualifying variables in C/C++” on page 173

Related references
“Debug Tool commands that resemble C/C++ commands”
“%PATHCODE values for C/C++” on page 160
“C reserved keywords” on page 163
“C operators and operands” on page 164
“Language Environment conditions and their C/C++ equivalents” on page 164

Debug Tool commands that resemble C/C++ commands
Debug Tool’s command language is a subset of C/C++ commands and has the
same syntactical requirements. Debug Tool allows you to work in a language you
are familiar with so learning a new set of commands is not necessary.

The table below shows the interpretive subset of C/C++ commands recognized by
Debug Tool.

Command Description

“block command (C/C++)” on
page 244 ({})

Composite command grouping

“break command (C/C++)” on
page 245

Termination of loops or switch commands

“Declarations (C/C++)” on
page 257

Declaration of session variables

© Copyright IBM Corp. 1995, 2001 157

Command Description

“do/while command (C/C++)” on
page 267

Iterative looping

“Expression command (C/C++)” on
page 272

Any C expression except the conditional (?) operator

“for command (C/C++)” on page 275 Iterative looping

“if command (C/C++)” on page 279 Conditional execution

“switch command (C/C++)” on
page 347

Conditional execution

This subset of commands is valid only when the current programming language is
C or C++.

In addition to the subset of C/C++ commands that you can use is a list of reserved
keywords used and recognized by C/C++ that you cannot abbreviate, use as
variable names, or use as any other type of identifier.

Related references
“Chapter 13. Debug Tool commands” on page 215
“C reserved keywords” on page 163
z/OS C/C++ Language Reference

Using C/C++ variables with Debug Tool
Debug Tool can process all program variables that are valid in C or C++. You can
assign and display the values of variables during your session. You can also
declare session variables with the recognized C declarations to suit your testing
needs.

Related tasks
“Accessing C/C++ program variables”
“Displaying values of C/C++ variables or expressions”
“Assigning values to C/C++ variables” on page 159

Accessing C/C++ program variables
Debug Tool obtains information about a program variable by name using the
symbol table built by the compiler. If you specify TEST(SYM) at compile time, the
compiler builds a symbol table that allows you to reference any variable in the
program.

Note: There are no suboptions for C++. Symbol information is generated by
default when the TEST compiler option is specified.

Related tasks
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a C++ program with the TEST compiler option” on page 12

Displaying values of C/C++ variables or expressions
To display the values of variables or expressions, use the LIST command. The LIST
command causes Debug Tool to log and display the current values (and names, if
requested) of variables, including the evaluated results of expressions.

158 Debug Tool User’s Guide and Reference

Suppose you want to display the program variables X, row[X], and col[X], and
their values at line 25. If you issue the following command:
AT 25 LIST (X, row[X], col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program (GO),
stops at line 25, and displays the variable names and their values.

If you want to see the result of their addition, enter:
AT 25 LIST (X + row[X] + col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program (GO),
stops at line 25, and displays the result of the expression.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, enter LIST
UNTITLED.

You can also list variables with the printf function call as follows:
printf ("X=%d, row=%d, col=%d\n", X, row[X], col[X]);

The output from printf, however, does not appear in the Log window and is not
recorded in the log file unless you SET INTERCEPT ON FILE stdout.

Related references
“AT STATEMENT” on page 241
“LIST command” on page 284

Assigning values to C/C++ variables
To assign a value to a C/C++ variable, you use an assignment expression.
Assignment expressions assign a value to the left operand. The left operand must
be a modifiable lvalue. An lvalue is an expression representing a data object that
can be examined and altered.

C contains two types of assignment operators: simple and compound. A simple
assignment operator gives the value of the right operand to the left operand.

Note: Only the assignment operators that work for C will work for C++, that is,
there is no support for overloaded operators.

The following example demonstrates how to assign the value of number to the
member employee of the structure payroll:
payroll.employee = number;

Compound assignment operators perform an operation on both operands and give
the result of that operation to the left operand. For example, this expression gives
the value of index plus 2 to the variable index:
index += 2

Debug Tool supports all C operators except the tenary operator, as well as any
other full C language assignments and function calls to user or C library functions.

Related tasks
“Calling C/C++ functions from Debug Tool” on page 162

Chapter 9. Debugging C/C++ programs 159

Related references
“Expression command (C/C++)” on page 272

%PATHCODE values for C/C++
The table below shows the possible values for the Debug Tool variable %PATHCODE
when the current programming language is C/C++.

–1 Debug Tool is not in control as the result of a path or attention situation.

0 Attention function (not ATTENTION condition).

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a user label.

4 Control is being transferred as a result of a function reference. The invoked
routine’s parameters, if any, have been prepared.

5 Control is returning from a function reference. Any return code contained in
register 15 has not yet been stored.

6 Some logic contained by a conditional do/while, for, or while statement is about
to be executed. This can be a single or Null statement and not a block statement.

7 The logic following an if(...) is about to be executed.

8 The logic following an else is about to be executed.

9 The logic following a case within an switch is about to be executed.

10 The logic following a default within a switch is about to be executed.

13 The logic following the end of a switch, do, while, if(...), or for is about to be
executed.

17 A goto, break, continue, or return is about to be executed.

Values in the range 3–17 can only be assigned to %PATHCODE if your program was
compiled with an option supporting path hooks.

Related references
“%PATHCODE” on page 370

Declaring session variables with C/C++
You might want to declare session variables for use during the course of your
session. You cannot initialize session variables in declarations. However, you can
use an assignment statement or function call to initialize a session variable.

As in C, keywords can be specified in any order. Variable names up to 255
characters in length can be used. Identifiers are case-sensitive, but if you want to
use the session variable when the current programming language changes from C
to another HLL, the variable must have an uppercase name and compatible
attributes.

To declare a hexadecimal floating-point variable called maximum, enter the following
C declaration:
double maximum;

You can only declare scalars, arrays of scalars, structures, and unions in Debug
Tool (pointers for the above are allowed as well).

160 Debug Tool User’s Guide and Reference

If you declare a session variable with the same name as a programming variable,
the session variable hides the programming variable. To reference the
programming variable, you must qualify it. For example:
main:>x for the program variable x
x for the session variable x

Session variables remain in effect for the entire debug session, unless they are
cleared using the CLEAR command.

Related tasks
“Using session variables across different languages” on page 153
“Qualifying variables and changing the point of view in C/C++” on page 173

Related references
“CLEAR command” on page 251
“Declarations (C/C++)” on page 257
“Expression command (C/C++)” on page 272

C/C++ expressions
Debug Tool allows evaluation of expressions in your test program. All expressions
available in C/C++ are also available within Debug Tool except for the conditional
expression (? :). That is, all operators such as +, −, %:, and += are fully supported
with the exception of the conditional operator.

C/C++ language expressions are arranged in the following groups based on the
operators they contain and how you use them:

Primary expression
Unary expression
Binary expression
Conditional expression
Assignment expression
Comma expression
lvalue
Constant

An lvalue is an expression representing a data object that can be examined and
altered. For a more detailed description of expressions and operators, see the C
and C++ Program Guides.

The semantics for C/C++ operators are the same as in a compiled C or C++
program. Operands can be a mixture of constants (integer, floating-point,
character, string, and enumeration), C/C++ variables, Debug Tool variables, or
session variables declared during a Debug Tool session. Language constants are
specified as described in the C and C++ Language Reference publications.

The Debug Tool command DESCRIBE ATTRIBUTES can be used to display the
resultant type of an expression, without actually evaluating the expression.

The C/C++ language does not specify the order of evaluation for function call
arguments. Consequently, it is possible for an expression to have a different
execution sequence in compiled code than within Debug Tool. For example, if you
enter the following in an interactive session:

Chapter 9. Debugging C/C++ programs 161

int x;
int y;

x = y = 1;

printf ("%d %d %d%" x, y, x=y=0);

the results can differ from results produced by the same statements located in a C
or C++ program segment. Any expression containing behavior undefined by ANSI
standards can produce different results when evaluated by Debug Tool than when
evaluated by the compiler.

The following examples show you various ways Debug Tool supports the use of
expressions in your programs:
v Debug Tool assigns 12 to a (the result of the printf()) function call, as in:

a = (1,2/3,a++,b++,printf("hello world\n"));

v Debug Tool supports structure and array referencing and pointer dereferencing,
as in:
league[num].team[1].player[1]++;
league[num].team[1].total += 1;
++(*pleague);

v Simple and compound assignment is supported, as in:
v.x = 3;
a = b = c = d = 0;
*(pointer++) −= 1;

v C/C++ language constants in expressions can be used, as in:
pointer_to_c = "abcdef" + 0x2;
*pointer_to_long = 3521L = 0x69a1;
float_val = 3e−11 + 6.6E−10;
char_val = '7';

v The comma expression can be used, as in:
intensity <<= 1, shade * increment, rotate(direction);
alpha = (y>>3, omega % 4);

v Debug Tool performs all implicit and explicit C conversions when necessary.
Conversion to long double is performed in:
long_double_val = unsigned_short_val;
long_double_val = (long double) 3;

Related references
“Debug Tool evaluation of C/C++ expressions” on page 165
“Expression command (C/C++)” on page 272
z/OS C/C++ Language Reference

Calling C/C++ functions from Debug Tool
You can perform calls to user and C library functions within Debug Tool.

You can make calls to C library functions at any time. In addition, you can use the
C library variables stdin, stdout, stderr, __amrc, and errno in expressions
including function calls.

The library function ctdli cannot be called unless it is referenced in a compile unit
in the program, either main or a function linked to main.

162 Debug Tool User’s Guide and Reference

Calls to user functions can be made, provided Debug Tool is able to locate an
appropriate definition for the function within the symbol information in the user
program. These definitions are created when the program is compiled with
TEST(SYM) for C or TEST for C++.

Debug Tool performs parameter conversions and parameter-mismatch checking
where possible. Parameter checking is performed if:
v The function is a library function
v A prototype for the function exists in the current compile unit
v Debug Tool is able to locate a prototype for the function in another compile unit,

or the function itself was compiled with TEST(SYM) for C or with TEST for C++.

You can turn off this checking by specifying SET WARNING OFF.

Calls can be made to any user functions that have linkage supported by the C or
C++ compiler. However, for C++ calls made to any user function, the function
must be declared as:
extern "C"

For example, use this declaration if you want to debug an application signal
handler. When a condition occurs, control passes to Debug Tool which then passes
control to the signal handler.

Debug Tool attempts linkage checking, and does not perform the function call if it
determines there is a linkage mismatch. A linkage mismatch occurs when the target
program has one linkage but the source program believes it has a different linkage.

It is important to note the following regarding function calls:
v The evaluation order of function arguments can vary between the C/C++

program and Debug Tool. No discernible difference exists if the evaluation of
arguments does not have side effects.

v Debug Tool knows about the function return value, and all the necessary
conversions are performed when the return value is used in an expression.

Related tasks
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a C++ program with the TEST compiler option” on page 12

Related references
z/OS C/C++ Language Reference

C reserved keywords
The table below lists all keywords reserved by the C language. When the current
programming language is C or C++, these keywords cannot be abbreviated, used
as variable names, or used as any other type of identifiers.

auto else long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed void
continue goto sizeof volatile
default if static while

Chapter 9. Debugging C/C++ programs 163

do int struct _Packed
double

C operators and operands
The table below lists the C language operators in order of precedence and shows
the direction of associativity for each operator. The primary operators have the
highest precedence. The comma operator has the lowest precedence. Operators in
the same group have the same precedence.

Precedence level Associativity Operators

Primary left to right () [] . –>

Unary right to left ++ -- - + ! ˜ &
* (typename) sizeof

Multiplicative left to right * / %

Additive left to right + −

Bitwise shift left to right << >>

Relational left to right < > <= >=

Equality left to right ++ !=

Bitwise logical AND left to right &

Bitwise exclusive OR left to right ^ or ¬

Bitwise inclusive OR left to right |

Logical AND left to right &&

Logical OR left to right ||

Assignment right to left = += −= *= /=
<<= >>= %= &= ^= |=

Comma left to right ,

Language Environment conditions and their C/C++ equivalents
Language Environment condition names (the symbolic feedback codes CEExxx) can
be used interchangeably with the equivalent C/C++ conditions listed in the
following table. For example, AT OCCURRENCE CEE341 is equivalent to AT OCCURRENCE
SIGILL. Raising a CEE341 condition triggers an AT OCCURRENCE SIGILL breakpoint
and vice versa.

Language Environment
condition

Description Equivalent C/C++
condition

CEE341 Operation exception SIGILL

CEE342 Privileged operation exception SIGILL

CEE343 Execute exception SIGILL

CEE344 Protection exception SIGSEGV

CEE345 Addressing exception SIGSEGV

CEE346 Specification exception SIGILL

CEE347 Data exception SIGFPE

CEE348 Fixed point overflow exception SIGFPE

CEE349 Fixed point divide exception SIGFPE

164 Debug Tool User’s Guide and Reference

Language Environment
condition

Description Equivalent C/C++
condition

CEE34A Decimal overflow exception SIGFPE

CEE34B Decimal divide exception SIGFPE

CEE34C Exponent overflow exception SIGFPE

CEE34D Exponent underflow exception SIGFPE

CEE34E Significance exception SIGFPE

CEE34F Floating-point divide exception SIGFPE

Debug Tool evaluation of C/C++ expressions
Debug Tool interprets most input as a collection of one or more expressions. You
can use expressions to alter a program variable or to extend the program by
adding expressions at points that are governed by AT breakpoints.

Debug Tool evaluates C/C++ expressions following the rules presented in C/C++
Language Reference. The result of an expression is equal to the result that would
have been produced if the same expression had been part of your compiled
program.

Implicit string concatenation is supported. For example, "abc" "def" is accepted for
"abcdef" and treated identically. Concatenation of wide string literals to string
literals is not accepted. For example, L"abc"L"def" is valid and equivalent to
L"abcdef", but "abc" L"def" is not valid.

Expressions you use during your session are evaluated with the same sensitivity to
enablement as are compiled expressions. Conditions that are enabled are the same
ones that exist for program statements.

During a Debug Tool session, if the current setting for WARNING is ON, the occurrence
in your C or C++ program of any one of the conditions listed below causes the
display of a diagnostic message.
v Division by zero
v Remainder (%) operator for a zero value in the second operand
v Array subscript out of bounds for a defined array
v Bit shifting by a number that is either negative or greater than 32
v Incorrect number of parameters, or parameter type mismatches for a function

call
v Differing linkage calling conventions for a function call
v Assignment of an integer value to a variable of enumeration data type where the

integer value does not correspond to an integer value of one of the enumeration
constants of the enumeration data type

v Assignment to an lvalue that has the const attribute
v Attempt to take the address of an object with register storage class
v A signed integer constant not in the range −2**31 to 2**31
v A real constant not having an exponent of 3 or fewer digits
v A float constant not larger than 5.39796053469340278908664699142502496E-79 or

smaller than 7.2370055773322622139731865630429929E+75
v A hex escape sequence that does not contain at least one hexadecimal digit

Chapter 9. Debugging C/C++ programs 165

v An octal escape sequence with an integer value of 256 or greater
v An unsigned integer constant greater than the maximum value of 4294967295.

Related references
“C/C++ expressions” on page 161
“Chapter 17. Debug Tool messages” on page 377
z/OS C/C++ Language Reference

Intercepting files when debugging C/C++ programs
Several considerations must be kept in mind when using the SET INTERCEPT
command to intercept files while you are debugging a C application.

For CICS only: SET INTERCEPT is not supported for CICS.

For C++, there is no specific support for intercepting IOStreams. IOStreams is
implemented using C I/O which implies that:
v If you intercept I/O for a C standard stream, this implicitly intercepts I/O for

the corresponding IOStreams’ standard stream.
v If you intercept I/O for a file, by name, and define an IOStream object

associated with the same file, IOStream I/O to that file will be intercepted.

Note: Although you can intercept IOStreams indirectly via C/370™ I/O, the
behaviors might be different or undefined in C++.

You can use the following names with the SET INTERCEPT command during a
debug session:
v stdout, stderr, and stdin (lowercase only)
v any valid fopen() file specifier.

The behavior of I/O interception across system() call boundaries is global. This
implies that the setting of INTERCEPT ON for xx in Program A is also in effect for
Program B (when Program A system() calls to Program B). Correspondingly,
setting INTERCEPT OFF for xx in Program B turns off interception in Program A
when Program B returns to A. This is also true if a file is intercepted in Program B
and returns to Program A. This model applies to disk files, memory files, and
standard streams.

When a stream is intercepted, it inherits the text/binary attribute specified on the
fopen statement. The output to and input from the Debug Tool log file behaves like
terminal I/O, with the following considerations:
v Intercepted input behaves as though the terminal was opened for record I/O.

Intercepted input is truncated if the data is longer than the record size and the
truncated data is not available to subsequent reads.

v Intercepted output is not truncated. Data is split across multiple lines.
v Some situations causing an error with the real file might not cause an error

when the file is intercepted (for example, truncation errors do not occur). Files
expecting specific error conditions do not make good candidates for interception.

v Only sequential I/O can be performed on an intercepted stream, but file
positioning functions are tolerated and the real file position is not changed.
fseek, rewind, ftell, fgetpos, and fsetpos do not cause an error, but have no
effect.

166 Debug Tool User’s Guide and Reference

|
|

|
|
|

v The '\a' character does not cause a beep when running under VM as it does for
terminal output.

v The logical record length of an intercepted stream reflects the logical record
length of the real file.

v When an unintercepted memory file is opened, the record format is always fixed
and the open mode is always binary. These attributes are reflected in the
intercepted stream.

v Files opened to the terminal for write are flushed before an input operation
occurs from the terminal. This is not supported for intercepted files.

Other characteristics of intercepted files are:
v When an fclose() occurs or INTERCEPT is set OFF for a file that was intercepted,

the data is flushed to the session log file before the file is closed or the SET
INTERCEPT OFF command is processed.

v When an fopen() occurs for an intercepted file, an open occurs on the real file
before the interception takes effect. If the fopen() fails, no interception occurs for
that file and any assumptions about the real file, such as the ddname allocation
and data set defaults, take effect.

v The behavior of the ASIS suboption on the fopen() statement is not supported
for intercepted files.

v When the clrmemf() function is invoked and memory files have been
intercepted, the buffers are flushed to the session log file before the files are
removed.

v If the fldata() function is invoked for an intercepted file, the characteristics of
the real file are returned.

v If stderr is intercepted, the interception overrides the Language Environment
message file (the default destination for stderr). A subsequent SET INTERCEPT
OFF command returns stderr to its MSGFILE destination.

v If a file is opened with a ddname, interception occurs only if the ddname is
specified on the INTERCEPT command. Intercepting the underlying file name does
not cause interception of the stream.

v When running under VM, if a file mode of "*" is specified on the INTERCEPT
command, all files opened with the specified file name and type are intercepted.
If a file mode is not specified, "*" is assumed.

v User prefix qualifications are included in MVS data set names entered in the
INTERCEPT command, using the same rules as defined for the fopen() function.

v If library functions are invoked when Debug Tool is waiting for input for an
intercepted file (for example, if you interactively enter fwrite(..) when Debug
Tool is waiting for input), subsequent behavior is undefined.

v I/O intercepts remain in effect for the entire debug session, unless you terminate
them by selecting SET INTERCEPT OFF.

Command line redirection of the standard streams is supported under Debug Tool,
as shown below.

1>&2 If stderr is the target of the interception command, stdout is also
intercepted. If stdout is the target of the INTERCEPT command, stderr is
not intercepted. When INTERCEPT is set OFF for stdout, the stream is
redirected to stderr.

2>&1 If stdout is the target of the INTERCEPT command, stderr is also

Chapter 9. Debugging C/C++ programs 167

intercepted. If stderr is the target of the INTERCEPT command, stdout is
not intercepted. When INTERCEPT is set OFF for stderr, the stream is
redirected to stdout again.

1>file.name
stdout is redirected to file.name. For interception of stdout to occur,
stdout or file.name can be specified on the interception request. This also
applies to 1>>file.name

2>file.name
stderr is redirected to file.name. For interception of stderr to occur,
stderr or file.name can be specified on the interception request. This also
applies to 2>>file.name

2>&1 1>file.name
stderr is redirected to stdout, and both are redirected to file.name. If
file.name is specified on the interception command, both stderr and
stdout are intercepted. If you specify stderr or stdout on the INTERCEPT
command, the behavior follows rule 1b above.

1>&2 2>file.name
stdout is redirected to stderr, and both are redirected to file.name. If you
specify file.name on the INTERCEPT command, both stderr and stdout are
intercepted. If you specify stdout or stderr on the INTERCEPT command,
the behavior follows rule 1a above.

The same standard stream cannot be redirected twice on the command line.
Interception is undefined if this is violated, as shown below.

2>&1 2>file.name
Behavior of stderr is undefined.

1>&2 1>file.name
Behavior of stdout is undefined.

Related references
z/OS C/C++ Programming Guide

Scope of objects in C/C++
An object is visible in a block or source file if its data type and declared name are
known within the block or source file. The region where an object is visible is
referred to as its scope. In Debug Tool, an object can be a variable or function and
is also used to refer to line numbers.

Note: The use of an object here is not to be confused with a C++ object. Any
reference to C++ will be qualified as such.

In ANSI C, the four kinds of scope are:
Block
File
Function
Function prototype

For C++, in addition to the scopes defined for C, it also has the class scope.

An object has block scope if its declaration is located inside a block. An object with
block scope is visible from the point where it is declared to the closing brace (})
that terminates the block.

168 Debug Tool User’s Guide and Reference

An object has file scope if its definition appears outside of any block. Such an
object is visible from the point where it is declared to the end of the source file. In
Debug Tool, if you are qualified to the compilation unit with the file static
variables, file static and global variables are always visible.

The only type of object with function scope is a label name.

An object has function prototype scope if its declaration appears within the list of
parameters in a function prototype.

A class member has class scope if its declaration is located inside a class.

You cannot reference objects that are visible at function prototype scope, but you
can reference ones that are visible at file or block scope if:
v For C variables and functions, the source file was compiled with TEST(SYM) and

the object was referenced somewhere within the source.
v For C variables declared in a block that is nested in another block, the source file

was compiled with TEST(SYM, BLOCK).
v For line numbers, the source file was compiled with TEST(LINE) GONUMBER.
v For labels, the source file was compiled with TEST(SYM, PATH). In some cases

(for example, when using GOTO), labels can be referenced if the source file was
compiled with TEST(SYM, NOPATH).

Debug Tool follows the same scoping rules as ANSI, except that it handles objects
at file scope differently. An object at file scope can be referenced from within
Debug Tool at any point in the source file, not just from the point in the source file
where it is declared. Debug Tool session variables always have a higher scope than
program variables, and consequently have higher precedence than a program
variable with the same name. The program variable can always be accessed
through qualification.

In addition, Debug Tool supports the referencing of variables in multiple load
modules. Multiple load modules are managed through the C library functions
dllload(), dllfree(), fetch(), and release().

“Example: referencing variables and setting breakpoints in C/C++ blocks” on
page 171

Related concepts
“Storage classes in C/C++”

Storage classes in C/C++
Debug Tool supports the change and reference of all objects declared with the
following storage classes:

auto
register
static
extern

Session variables declared during the Debug Tool session are also available for
reference and change.

An object with auto storage class is available for reference or change in Debug
Tool, provided the block where it is defined is active. Once a block finishes

Chapter 9. Debugging C/C++ programs 169

executing, the auto variables within this block are no longer available for change,
but can still be examined using DESCRIBE ATTRIBUTES.

An object with register storage class might be available for reference or change in
Debug Tool, provided the variable has not been optimized to a register.

An object with static storage class is always available for change or reference in
Debug Tool. If it is not located in the currently qualified compile unit, you must
specifically qualify it.

An object with extern storage class is always available for change or reference in
Debug Tool. It might also be possible to reference such a variable in a program
even if it is not defined or referenced from within this source file. This is possible
provided Debug Tool can locate another compile unit (compiled with TEST(SYM))
with the appropriate definition.

Related references
“DESCRIBE command” on page 263

Blocks and block identifiers for C
It is often necessary to set breakpoints on entry into or exit from a given block or
to reference variables that are not immediately visible from the current block.
Debug Tool can do this, provided that all blocks are named. It uses the following
naming convention:
v The outermost block of a function has the same name as the function.
v Blocks enclosed in this outermost block are sequentially named: %BLOCK2,

%BLOCK3, %BLOCK4, and so on in order of their appearance in the function.

When these block names are used in the Debug Tool commands, you might need
to distinguish between nested blocks in different functions within the same source
file. This can be done by naming the blocks in one of two ways:

Short form
function_name:>%BLOCKzzz

Long form
function_name:>%BLOCKxxx :>%BLOCKyyy: ... :>%BLOCKzzz

%BLOCKzzz is contained in %BLOCKyyy, which is contained in %BLOCKxxx. The short
form is always allowed; it is never necessary to specify the long form.

The currently active block name can be retrieved from the Debug Tool variable
%BLOCK. You can display the names of blocks by entering:
DESCRIBE CU;

Related references
“DESCRIBE command” on page 263
“%BLOCK” on page 365

170 Debug Tool User’s Guide and Reference

Blocks and block identifiers for C++
Block Identifiers tend to be longer for C++ than C because C++ functions can be
overloaded. In order to distinguish one function name from the other, each block
identifier is like a prototype. For example, a function named shapes(int,int) in C
would have a block named shapes; however, in C++ the block would be called
shapes(int,int).

You must always refer to a C++ block identifier in its entirety, even if the function
is not overloaded. That is, you cannot refer to shapes(int,int) as shapes only.

Note: The block name for main() is always main (without the qualifying
parameters after it) even when compiled with C++ because main() has
extern C linkage.

Since block names can be quite long, it is not unusual to see the name truncated in
the LOCATION field on the first line of the screen. If you want to find out where you
are, enter:
QUERY LOCATION

and the name will be shown in its entirety (wrapped) in the session log.

Block identifiers are restricted to a length of 255 characters. Any name longer than
255 characters is truncated.

Example: referencing variables and setting breakpoints in C/C++
blocks

The program below is used as the basis for several examples, described after the
program listing.
#pragma runopts(EXECOPS)
#include <stdlib.h>

main()
{

>>> Debug Tool is given <<<
>>> control here. <<<

init();
sort();

}

short length = 40;
static long *table;

init()
{

table = malloc(sizeof(long)*length);...

}

sort ()
{ /* Block sort */

int i;
for (i = 0; i < length–1; i++) { /* Block %BLOCK2 */

int j;
for (j = i+1; j < length; j++) { /* Block %BLOCK3 */

static int temp;
temp = table[i];
table[i] = table[j];

Chapter 9. Debugging C/C++ programs 171

table[j] = temp;
}

}
}

Scope and visibility of objects
Let’s assume the program shown above is compiled with TEST(SYM). When Debug
Tool gains control, the file scope variables length and table are available for
change, as in:
length = 60;

The block scope variables i, j, and temp are not visible in this scope and cannot be
directly referenced from within Debug Tool at this time. You can list the line
numbers in the current scope by entering:
LIST LINE NUMBERS;

Now let’s assume the program is compiled with TEST(SYM, NOBLOCK). Since the
program is explicitly compiled using NOBLOCK, Debug Tool will never know about
the variables j and temp because they are defined in a block that is nested in
another block. Debug Tool does know about the variable i since it is not in a scope
that is nested.

Blocks and block identifiers
In the program above, the function sort has three blocks:

sort
%BLOCK2
%BLOCK3

The following example sets a breakpoint on entry to the second block of sort:
at entry sort:>%BLOCK2;

The following example sets a breakpoint on exit of the first block of main and lists
the entries of the sorted table.
at exit main {

for (i = 0; i < length; i++)
printf("table entry %d is %d\n", i, table[i]);

}

The following example lists the variable temp in the third block of sort. This is
possible since temp has the static storage class.
LIST sort:>%BLOCK3:temp;

Displaying environmental information
You can also use the DESCRIBE command to display a list of attributes applicable to
the current run-time environment. The type of information displayed varies from
language to language.

Issuing DESCRIBE ENVIRONMENT displays a list of open files and conditions being
monitored by the run-time environment. For example, if you enter DESCRIBE
ENVIRONMENT while debugging a C or C++ program, you might get the following
output:
Currently open files

stdout
sysprint

172 Debug Tool User’s Guide and Reference

|
|

The following conditions are enabled:
SIGFPE
SIGILL
SIGSEGV
SIGTERM
SIGINT
SIGABRT
SIGUSR1
SIGUSR2
SIGABND

Related references
“DESCRIBE command” on page 263

Qualifying variables and changing the point of view in C/C++
Qualification is a method of:
v Specifying an object through the use of qualifiers
v Changing the point of view

Qualification is often necessary due to name conflicts, or when a program consists
of multiple load modules, compile units, and/or functions.

When program execution is suspended and Debug Tool receives control, the
default, or implicit qualification is the active block at the point of program
suspension. All objects visible to the C or C++ program in this block are also
visible to Debug Tool. Such objects can be specified in commands without the use
of qualifiers. All others must be specified using explicit qualification.

Qualifiers depend, of course, upon the naming convention of the system where
you are working.

Related concepts
“Example: using qualification in C under MVS” on page 174
“Example: using qualification in C under VM” on page 176

Related tasks
“Qualifying variables in C/C++”
“Changing the point of view in C/C++” on page 174

Qualifying variables in C/C++
You can precisely specify an object, provided you know the following:
v Load module or DLL name
v Source file (compilation unit) name
v Block name (must include function prototype for C++ block qualification).

These are known as qualifiers and some, or all, might be required when
referencing an object in a command. Qualifiers are separated by a combination of
greater than signs (>) and colons and precede the object they qualify. For example,
the following is a fully qualified object:
load_name::>cu_name:>block_name:>object

If required, load_name is the name of the load module. It is required only when the
program consists of multiple load modules and when you want to change the
qualification to other than the current load module. load_name is enclosed in
double quotation marks. If it is not, it must be a valid identifier in the C or C++
programming language. load_name can also be the Debug Tool variable %LOAD.

Chapter 9. Debugging C/C++ programs 173

If required, CU_NAME is the name of the compilation unit or source file. The
cu_name must be the fully qualified source file name or an absolute pathname. It is
required only when you want to change the qualification to other than the
currently qualified compilation unit. It can be the Debug Tool variable %CU. If there
appears to be an ambiguity between the compilation unit name, and (for example),
a block name, you must enclose the compilation unit name in double quotation
marks (").

If required, block_name is the name of the block. block_name can be the Debug Tool
variable %BLOCK.

“Example: using qualification in C under MVS”
“Example: using qualification in C under VM” on page 176

Related concepts
“Blocks and block identifiers for C” on page 170

Related references
“%BLOCK” on page 365
“%CU or %PROGRAM” on page 366

Changing the point of view in C/C++
To change the point of view from the command line or a command file, use
qualifiers in conjunction with the SET QUALIFY command. This can be necessary to
get to data that is inaccessible from the current point of view, or can simplify
debugging when a number of objects are being referenced.

It is possible to change the point of view to another load module or DLL, to
another compilation unit, to a nested block, or to a block that is not nested. The
SET keyword is optional.

“Example: using qualification in C under MVS”
“Example: using qualification in C under VM” on page 176

Example: using qualification in C under MVS
The examples below use the following program.
LOAD MODULE NAME: MAINMOD
SOURCE FILE NAME: MVSID.SORTMAIN.C

short length = 40;
main ()
{

long *table;
void (*pf)();

table = malloc(sizeof(long)*length);...

pf = fetch("SORTMOD");
(*pf)(table);...

release(pf);...

}

LOAD MODULE NAME: SORTMOD

174 Debug Tool User’s Guide and Reference

SOURCE FILE NAME: MVSID.SORTSUB.C

short length = 40;
short sn = 3;
void (long table[])
{

short i;
for (i = 0; i < length-1; i++) {

short j;
for (j = i+1; j < length; j++) {

float sn = 3.0;
short temp;
temp = table[i];...

>>> Debug Tool is given <<<
>>> control here. <<<...

table[i] = table[j];
table[j] = temp;

}
}

}

When Debug Tool receives control, variables i, j, temp, table, and length can be
specified without qualifiers in a command. If variable sn is referenced, Debug Tool
uses the variable that is a float. However, the names of the blocks and compile
units differ, maintaining compatibility with the operating system.

Qualifying variables
v Change the file scope variable length defined in the compilation unit

MVSID.SORTSUB.C in the load module SORTMOD:
"SORTMOD"::>"MVSID.SORTSUB.C":>length = 20;

v Assume Debug Tool gained control from main(). The following changes the
variable length:
%LOAD::>"MVSID.SORTMAIN.C":>length = 20;

Because length is in the current load module and compilation unit, it can also
be changed by:
length = 20;

v Assume Debug Tool gained control as shown in the example program above.
You can break whenever the variable temp in load module SORTMOD changes
in any of the following ways:
AT CHANGE temp;
AT CHANGE %BLOCK3:>temp;
AT CHANGE sort:%BLOCK3:>temp;
AT CHANGE %BLOCK:>temp;
AT CHANGE %CU:>sort:>%BLOCK3:>temp;
AT CHANGE "MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;
AT CHANGE "SORTMOD"::>"MVSID.SORTSUB.C":>sort:>%BLOCK3:>temp;

Changing the point of view
v Qualify to the second nested block in the function sort() in sort.

SET QUALIFY BLOCK %BLOCK2;

You can do this in a number of other ways, including:
QUALIFY BLOCK sort:>%BLOCK2;

Chapter 9. Debugging C/C++ programs 175

Once the point of view changes, Debug Tool has access to objects accessible from
this point of view. You can specify these objects in commands without qualifiers,
as in:
j = 3;
temp = 4;

v Qualify to the function main in the load module MAINMOD in the compilation
unit MVSID.SORTMAIN.C and list the entries of table.
QUALIFY BLOCK "MAINMOD"::>"MVSID.SORTMAIN.C":>main;
LIST table[i];

Example: using qualification in C under VM
The examples below use the following program.
LOAD MODULE NAME: MAINMOD
SOURCE FILE NAME: SORTMAIN C A

short length = 40;
main ()
{

long *table;
void (*pf)();

table = malloc(sizeof(long)*length);...

pf = fetch("SORTMOD");
(*pf)(table);...

release(pf);...

}

LOAD MODULE NAME: SORTMOD
SOURCE FILE NAME: SORTSUB C A

short length = 40;
short sn = 3;
void sort(long table[])
{

short i;
for (i = 0; i < length-1; i++) {

short j;
for (j = i+1; j < length; j++) {

float sn = 3.0;
short temp;
temp = table[i];...

>>> Debug Tool is given <<<
>>> control here. <<<...

table[i] = table[j];
table[j] = temp;

}
}

}

When Debug Tool receives control, variables i, j, temp, table, and length can be
specified without qualifiers in a command. If variable sn is referenced, Debug Tool

176 Debug Tool User’s Guide and Reference

uses the variable that is a float. However, the names of the blocks and compile
units differ, maintaining compatibility with the operating system.

Qualifying variables
v Change the file scope variable length defined in the compilation unit SORTSUB:

"SORTMOD"::>"SORTSUB":>length = 20;

v Assume Debug Tool gained control from main(). The following changes the
variable length:
%LOAD::>"SORTMAIN":>length = 20;

Because length is in the current load module and compilation unit, it can also
be changed by:
length = 20;

v Assume Debug Tool gained control as shown in the example program above.
You can break whenever the variable temp in load module SORTMOD changes
in any of the following ways:
AT CHANGE temp;
AT CHANGE %BLOCK3:>temp;
AT CHANGE sort:>%BLOCK3:>temp;
AT CHANGE %BLOCK:>temp;
AT CHANGE %CU:>sort:>%BLOCK3:>temp;
AT CHANGE "SORTSUB":>sort:>%BLOCK3:>temp;
AT CHANGE "SORTMOD"::>"SORTSUB":>sort:>%BLOCK3:>temp;

Changing the point of view
v Qualify to the second nested block in the function sort() while in sort.

SET QUALIFY BLOCK %BLOCK2;

You can do this in a number of other ways, including:
QUALIFY BLOCK sort:>%BLOCK2;

Once the point of view changes, Debug Tool has access to objects accessible from
this point of view. You can specify these objects in commands without qualifiers,
as in:
j = 3;
temp = 4;

v Qualify to the function main in the load module MAINMOD in the compilation
unit SORTMAIN and list the entries of table.
QUALIFY BLOCK "MAINMOD"::>"SORTMAIN":>main();
LIST table[i];

Stepping through C++ programs
You can step through methods as objects are constructed and destructed. In
addition, you can step through static constructors and destructors. These are
methods of objects that are executed before and after main() respectively.

If you are debugging a program that calls a function that resides in a header file,
the cursor moves to the applicable header file. You can then view the function
source as you step through it. Once the function returns, debugging continues at
the line following the original function call.

You can step around a header file function by issuing the STEP OVER command.
This is useful in stepping over Library functions (for example, string functions
defined in string.h) that you cannot debug anyway.

Chapter 9. Debugging C/C++ programs 177

Related references
“STEP command” on page 345

Setting breakpoints in C++
The differences between setting breakpoints in C++ and C are described below.

Setting breakpoints in C++ using AT ENTRY/EXIT
AT ENTRY/EXIT sets a breakpoint in the specified block. You can set a breakpoint on
methods, methods within nested classes, templates, and overloaded operators. An
example is given for each below.

A block identifier can be quite long, especially with templates, nested classes, or
class with many levels of inheritance. In fact, it might not even be obvious at first
as to the block name for a particular function. To set a breakpoint for these
nontrivial blocks can be quite cumbersome. Therefore, it is recommended that you
make use of DESCRIBE CU and retrieve the block identifier from the session log.

When you do a DESCRIBE CU, the methods are always shown qualified by their
class. If a method is unique, you can set a breakpoint by using just the method
name. Otherwise, you must qualify the method with its class name. The following
two examples are equivalent:
AT ENTRY method()

AT ENTRY classname::method()

The following examples are valid:

AT ENTRY square(int,int) 'simple' method square
AT ENTRY shapes::square(int) Method square qualified by its class

shapes.
AT EXIT outer::inner::func() Nested classes. Outer and inner are

classes. func() is within class inner.
AT EXIT Stack<int,5>::Stack() Templates.
AT ENTRY Plus::operator++(int) Overloaded operator.
AT ENTRY ::fail() Functions defined at file scope must

be referenced by the global scope
operator ::

The following examples are invalid:

AT ENTRY shapes Where shapes is a class. Cannot set
breakpoint on a class. (There is no
block identifier for a class.)

AT ENTRY shapes::square Invalid since method square must
be followed by its parameter list.

AT ENTRY shapes:>square(int) Invalid since shapes is a class name,
not a block name.

Setting breakpoints in C++ using AT CALL
AT CALL gives Debug Tool control when the application code attempts to call the
specified entry point. The entry name must be a fully qualified name. That is, the
name shown in DESCRIBE CU must be used. Using the example
AT ENTRY shapes::square(int)

178 Debug Tool User’s Guide and Reference

to set a breakpoint on the method square, you must enter:
AT CALL shapes::square(int)

even if square is uniquely identified.

Related tasks
“Retrieving commands from the Log and Source windows” on page 63

Related references
“AT CALL” on page 225
“AT ENTRY/EXIT” on page 231
“DESCRIBE command” on page 263

Examining C++ objects
When displaying an object, only the local member variables are shown. Access
types (public, private, protected) are not distinguished among the variables. The
member functions are not displayed. If you want to see their attributes, you can
display them individually, but not in the context of a class. When displaying a
derived class, the base class within it is shown as type class and will not be
expanded.

Related tasks
“Example: displaying attributes of C++ objects”

Example: displaying attributes of C++ objects
The examples below use the following definitions.
class shape { ... };

class line : public shape {
member variables of class line...

}

line edge;

Displaying object attributes
To describe the attributes of the object edge, enter the following command.
DESCRIBE ATTRIBUTES edge;

The Log window displays the following output.
DESCRIBE ATTRIBUTES edge;
ATTRIBUTES for edge

Its address is yyyyyyyy and its length is xx
class line

class shape
member variables of class shape....

Note that the base class is shown as class shape _shape.

Displaying class attributes
To display the attributes of class shape, enter the following command.
DESCRIBE ATTRIBUTES class shape;

The Log window displays the following output.
DESCRIBE ATTRIBUTES class shape ;
ATTRIBUTES for class shape

const class shape...

Chapter 9. Debugging C/C++ programs 179

Displaying static data
If a class contains static data, the static data will be shown as part of the class
when displayed. For example:
class A {

int x;
static int y;

}

A obj;

You can also display the static member by referencing it as A::y since each object
of class A has the same value.

Displaying global data
To avoid ambiguity, variables declared at file scope can be referenced using the
global scope operator ::. For example:
int x;
class A {

int x;...

}
}

If you are within a member function of A and want to display the value of x at file
scope, enter LIST ::x. If you do not use ::, entering LIST x will display the value
of x for the current object (i.e., this–>x).

Monitoring storage in C++
Debug Tool is not an assembly-level debugger, but you might find it useful to
monitor registers (general-purpose and floating-point) while stepping through your
code and assembly listing by using the LIST REGISTERS command. The compiler
listing displays the pseudo assembly code, including Debug Tool hooks. You can
watch the hooks that you stop on and watch expected changes in register values
step by step in accordance with the pseudo assembly instructions between the
hooks. You can also modify the value of machine registers while stepping through
your code.

You can list the contents of storage in various ways. Using the LIST REGISTERS
command, you can receive a list of the contents of the general-purpose registers or
the floating-point registers.

You can also monitor the contents of storage by specifying a dump-format display
of storage. To accomplish this, use the LIST STORAGE command. You can specify the
address of the storage that you want to view, as well as the number of bytes.

Related references
“LIST REGISTERS” on page 293
“LIST STORAGE” on page 295

Example: monitoring and modifying registers and storage in C
The examples below use the following C program to demonstrate how to monitor
and modify registers and storage.
int dbl(int j) /* line 1 */
{ /* line 2 */

return 2*j; /* line 3 */

180 Debug Tool User’s Guide and Reference

} /* line 4 */
int main(void)
{

int i;
i = 10;
return dbl(i);

}

If you compile the program above using the compiler options TEST(ALL),LIST, then
your pseudo assembly listing will be similar to the listing shown below.
* int dbl(int j)

ST r1,152(,r13)
* {

EX r0,HOOK..PGM-ENTRY
* return 2*j;

EX r0,HOOK..STMT
L r15,152(,r13)
L r15,0(,r15)
SLL r15,1
B @5L2
DC A@5L2-ep)
NOPR

@5L1 DS 0D
* }
@5L2 DS 0D

EX r0,HOOK..PGM-EXIT

To display a continuously updated view of the registers in the Monitor window,
enter the following command:
MONITOR LIST REGISTERS

After a few steps, Debug Tool halts on line 1 (the program entry hook, shown in
the listing above). Another STEP takes you to line 3, and halts on the statement
hook. The next STEP takes you to line 4, and halts on the program exit hook. As
indicated by the pseudo assembly listing, only register 15 has changed during this
STEP, and it contains the return value of the function. In the Monitor window,
register 15 now has the value 0x00000014 (decimal 20), as expected.

You can change the value from 20 to 8 just before returning from dbl() by issuing
the command:
%GPR15 = 8 ;

Related references
“%GPRn” on page 367
“LIST REGISTERS” on page 293

Chapter 9. Debugging C/C++ programs 181

182 Debug Tool User’s Guide and Reference

Chapter 10. Debugging COBOL programs

The topics below describe how to use Debug Tool to debug your COBOL
programs.

Related concepts
“Qualifying variables and changing the point of view in COBOL” on page 191
“Debug Tool evaluation of COBOL expressions” on page 189

Related tasks
“Debugging a COBOL program in full-screen mode” on page 92
“Using COBOL variables with Debug Tool” on page 185
“Using DBCS characters in COBOL” on page 187
“Using Debug Tool functions with COBOL” on page 190

Related references
“COBOL source listing must be fixed block format”
“Debug Tool commands that resemble COBOL commands”
“%PATHCODE values for COBOL” on page 187

COBOL source listing must be fixed block format
COBOL source listings can be in a PDS, a sequential file, or an HFS file. If the
listing is stored in a PDS or a sequential file, the PDS or sequential file can be one
of the following:
v variable block.
v fixed or fixed block with a record length of 133.

The separate debug file (available only in COBOL for OS/390) can be in a PDS,
sequential file, or an HFS file. If the separate debug file is stored in a PDS or
sequential file, the PDS or sequential file can be on of the following:
v variable block.
v fixed or fixed block with a record length between 80 and 1024.

Debug Tool commands that resemble COBOL commands
To make testing COBOL programs easier, Debug Tool allows you to write
debugging commands that resemble COBOL commands. It does this by providing
an interpretive subset of COBOL language commands that is recognized by Debug
Tool and either closely resembles or duplicates the syntax and action of the
appropriate COBOL commands. This not only allows you to work with familiar
commands, but also simplifies the insertion into your source code of program
patches developed while in your Debug Tool session.

The table below shows the interpretive subset of COBOL commands recognized by
Debug Tool.

Command Description

“CALL entry_name (COBOL)” on
page 250

Subroutine call

© Copyright IBM Corp. 1995, 2001 183

|
|
|

|

|

|
|
|

|

|

Command Description

“COMPUTE command (COBOL)” on
page 256

Computational assignment (including expressions)

“Declarations (COBOL)” on
page 260

Declaration of session variables

“EVALUATE command (COBOL)” on
page 271

Multiway switch

“IF command (COBOL)” on page 279 Conditional execution

“MOVE command (COBOL)” on
page 298

Noncomputational assignment

“PERFORM command (COBOL)” on
page 304

Iterative looping

“SET command (COBOL)” on page 343 INDEX and POINTER assignment

This subset of commands is valid only when the current programming language is
COBOL.

COBOL command format
When you are entering commands directly at your terminal or workstation, the
format is free-form, because you can begin your commands in column 1 and
continue long commands using the appropriate method. You can continue on the
next line during your Debug Tool session by using an SBCS hyphen (-) as a
continuation character.

However, when you use a file as the source of command input, the format for your
commands is similar to the source format for the COBOL compiler. The first six
positions are ignored, and an SBCS hyphen in column 7 indicates continuation
from the previous line. You must start the command text in column 8 or later, and
end it in column 72.

The continuation line (with a hyphen in column 7) optionally has one or more
blanks following the hyphen, followed by the continuing characters. In the case of
the continuation of a literal string, an additional quote is required. When the token
being continued is not a literal string, blanks following the last nonblank character
on the previous line are ignored, as are blanks following the hyphen.

When Debug Tool copies commands to the log file, they are formatted according to
the rules above so that you can use the log file during subsequent Debug Tool
sessions.

Continuation is not allowed within a DBCS name or literal string. This restriction
applies to both interactive and command file input.

Related references
“COBOL compiler options in effect for Debug Tool commands”
“COBOL reserved keywords” on page 185
COBOL for OS/390 & VM Language Reference

COBOL compiler options in effect for Debug Tool commands
While Debug Tool allows you to use many commands that are either similar or
equivalent to COBOL commands, Debug Tool does not necessarily interpret these

184 Debug Tool User’s Guide and Reference

commands according to the compiler options you chose when compiling your
program. This is due to the fact that, in the Debug Tool environment, the following
settings are in effect:

DYNAM
NOCMPR2
NODBCS
NOWORD
NUMPROC(NOPFD)
QUOTE
TRUNC(BIN)
ZWB

Related references
COBOL for OS/390 & VM Language Reference

COBOL reserved keywords
In addition to the subset of COBOL commands you can use while in Debug Tool,
there are reserved keywords used and recognized by COBOL that cannot be
abbreviated, used as a variable name, or used as any other type of identifier.

Related references
COBOL for OS/390 & VM Language Reference

Using COBOL variables with Debug Tool
Debug Tool can process all variable types valid in the COBOL language.

In addition to being allowed to assign values to variables and display the values of
variables during your session, you can declare session variables to suit your testing
needs.

“Example: assigning values to COBOL variables” on page 186

Related tasks
“Accessing COBOL variables”
“Assigning values to COBOL variables”
“Displaying values of COBOL variables” on page 186
“Declaring session variables in COBOL” on page 188

Accessing COBOL variables
Debug Tool obtains information about a program variable by name, using
information that is contained in the symbol table built by the compiler. You make
the symbol table available to Debug Tool by compiling with the TEST compiler
option.

Related tasks
“Compiling a COBOL program with the TEST compiler option” on page 14

Assigning values to COBOL variables
Debug Tool provides three COBOL-like commands to use when assigning values to
variables: COMPUTE, MOVE, and SET.

Chapter 10. Debugging COBOL programs 185

Related references
“COMPUTE command (COBOL)” on page 256
“MOVE command (COBOL)” on page 298
“SET command (COBOL)” on page 343

Example: assigning values to COBOL variables
The examples for the COMPUTE, MOVE, and SET commands use the declarations
defined in the following COBOL program segment.
01 GRP.

02 ITM-1 OCCURS 3 TIMES INDEXED BY INX1.
03 ITM-2 PIC 9(3) OCCURS 3 TIMES INDEXED BY INX2.

01 B.
02 A PIC 9(10).

01 D.
02 C PIC 9(10).

01 F.
02. E PIC 9(10) OCCURS 5 TIMES.

77 AA PIC X(5) VALUE 'ABCDE'.
77 BB PIC X(5).
77 XX PIC 9(9) COMP.
77 ONE PIC 99 VALUE 1.
77 TWO PIC 99 VALUE 2.
77 PTR POINTER

Related references
“COMPUTE command (COBOL)” on page 256
“MOVE command (COBOL)” on page 298
“SET command (COBOL)” on page 343

Displaying values of COBOL variables
To display the values of variables, issue the LIST command. The LIST command
causes Debug Tool to log and display the current values (and names, if requested)
of variables. For example, if you want to display the variables aa, bb, one, and
their respective values at statement 52 of your program, issue the following
command:
AT 52 LIST TITLED (aa, bb, one); GO;

Debug Tool sets a breakpoint at statement 52 (AT), begins execution of the program
(GO), stops at statement 52, and displays the variable names (TITLED) and their
values.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, issue LIST
UNTITLED instead of LIST TITLED.

The value displayed for a variable is always the value that was saved in storage
for that variable. In an optimized program, a variable can be temporarily assigned
to a register, and the value shown for that variable might differ from the value
being used by the program.

Related references
“AT STATEMENT” on page 241
“LIST expression” on page 288

186 Debug Tool User’s Guide and Reference

Using DBCS characters in COBOL
Programs you run with Debug Tool can contain variables and character strings
written using the double-byte character set (DBCS). Debug Tool also allows you to
issue commands containing DBCS variables and strings. For example, you can
display the value of a DBCS variable (LIST), assign it a new value, monitor it in
the monitor window (MONITOR), or search for it in a window (FIND).

To use DBCS with Debug Tool, enter:
SET DBCS ON;

The DBCS default for COBOL is OFF.

The DBCS syntax and continuation rules you must follow to use DBCS variables in
Debug Tool commands are the same as those for the COBOL language.

For COBOL you must type a DBCS literal, such as G, in front of a DBCS value in a
Monitor or Data pop-up window if you want to update the value.

Related references
“SET DBCS” on page 321
COBOL for OS/390 & VM Language Reference

%PATHCODE values for COBOL
The table below shows the possible values for the Debug Tool variable %PATHCODE
when the current programming language is COBOL.

–1 Debug Tool is not in control as the result of a path or attention situation.

0 Attention function (not ATTENTION condition).

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a label coded in the program (a paragraph name or section
name).

4 Control is being transferred as a result of a CALL or INVOKE. The invoked routine’s
parameters, if any, have been prepared.

5 Control is returning from a CALL or INVOKE. If GPR 15 contains a return code, it
has already been stored.

6 Some logic contained by an inline PERFORM is about to be executed. (Out-of-line
PERFORM ranges must start with a paragraph or section name, and are identified
by %PATHCODE = 3.)

7 The logic following an IF...THEN is about to be executed.

8 The logic following an ELSE is about to be executed.

9 The logic following a WHEN within an EVALUATE is about to be executed.

10 The logic following a WHEN OTHER within an EVALUATE is about to be executed.

11 The logic following a WHEN within a SEARCH is about to be executed.

12 The logic following an AT END within a SEARCH is about to be executed.

13 The logic following the end of one of the following structures is about to be
executed:
v An IF statement (with or without an ELSE clause)
v An EVALUATE or SEARCH
v A PERFORM

Chapter 10. Debugging COBOL programs 187

14 Control is about to return from a declarative procedure such as USE AFTER ERROR.
(Declarative procedures must start with section names, and are identified by
%PATHCODE = 3.)

15 The logic associated with one of the following phrases is about to be run:
v [NOT] ON SIZE ERROR
v [NOT] ON EXCEPTION
v [NOT] ON OVERFLOW
v [NOT] AT END (other than SEARCH AT END)
v [NOT] AT END-OF-PAGE
v [NOT] INVALID KEY

16 The logic following the end of a statement containing one of the following
phrases is about to be run:
v [NOT] ON SIZE ERROR
v [NOT] ON EXCEPTION
v [NOT] ON OVERFLOW
v [NOT] AT END (other than SEARCH AT END)
v [NOT] AT END-OF-PAGE
v [NOT] INVALID KEY.

Note: Values in the range 3–16 can be assigned to %PATHCODE only if your program
was compiled with an option supporting path hooks.

Related tasks
“Compiling a COBOL program with the TEST compiler option” on page 14

Related references
“%PATHCODE” on page 370

Declaring session variables in COBOL
You might want to declare session variables during your Debug Tool session. The
relevant variable assignment commands are similar to their counterparts in the
COBOL language. The rules used for forming variable names in COBOL also apply
to the declaration of session variables during a Debug Tool session.

The following declarations are for a string variable, a decimal variable, a pointer
variable, and a floating-point variable. To declare a string named description,
enter:
77 description PIC X(25)

To declare a variable named numbers, enter:
77 numbers PIC 9(4) COMP

To declare a pointer variable named pinkie, enter:
77 pinkie POINTER

To declare a floating-point variable named shortfp, enter:
77 shortfp COMP-1

Session variables remain in effect for the entire debug session.

Related tasks
“Using session variables across different languages” on page 153

188 Debug Tool User’s Guide and Reference

Related references
“Declarations (COBOL)” on page 260
COBOL for OS/390 & VM Language Reference

Debug Tool evaluation of COBOL expressions
Debug Tool interprets COBOL expressions according to COBOL rules. Some
restrictions do apply. For example, the following restrictions apply when arithmetic
expressions are specified:
v Floating-point operands are not supported (COMP-1, COMP-2, external floating

point, floating-point literals).
v Only integer exponents are supported.
v Intrinsic functions are not supported.
v Windowed date-field operands are not supported in arithmetic expressions in

combination with any other operands.

When arithmetic expressions are used in relation conditions, both comparand
attributes are considered. Relation conditions follow the IF rules rather than the
EVALUATE rules.

Only simple relation conditions are supported. Sign conditions, class conditions,
condition-name conditions, switch-status conditions, complex conditions, and
abbreviated conditions are not supported. When either of the comparands in a
relation condition is stated in the form of an arithmetic expression (using operators
such as plus and minus), the restriction concerning floating-point operands applies
to both comparands.

Windowed date fields are not supported in relation conditions.

Related tasks
“Displaying the results of COBOL expression evaluation”
“Using constants in COBOL expressions” on page 190

Related references
“EVALUATE command (COBOL)” on page 271
“Allowable comparisons for the IF command (COBOL)” on page 280

Displaying the results of COBOL expression evaluation
Use the LIST command to display the results of your expressions. For example, to
evaluate the expression and displays the result in the Log window, enter:
LIST a + (a − 10) + one;

You can also use structure elements in expressions. If e is an array, the following
two examples are valid:
LIST a + e(1) / c * two;

LIST xx / e(two + 3);

Conditions for expression evaluation are the same ones that exist for program
statements.

Related references
“LIST expression” on page 288
“COBOL compiler options in effect for Debug Tool commands” on page 184
COBOL for OS/390 & VM Language Reference

Chapter 10. Debugging COBOL programs 189

Using constants in COBOL expressions
During your Debug Tool session you can use expressions that use string constants
as one operand, as well as expressions that include variable names or number
constants as single operands. All COBOL string constant types discussed in the
COBOL for OS/390 & VM Language Reference are valid in Debug Tool, with the
following restrictions:
v When you specify a hexadecimal (X'n') constant, no padding takes place. If you

need a fullword value, you must specify a full word.
v The following COBOL figurative constants are supported:

ZERO, ZEROS, ZEROES
SPACE, SPACES
HIGH-VALUE, HIGH-VALUES
LOW-VALUE, LOW-VALUES
QUOTE, QUOTES
NULL, NULLS
Any of the above preceded by ALL
Symbolic-character (whether or not preceded by ALL).

Additionally, Debug Tool allows the use of a hexadecimal constant. This H-constant
is a fullword value that can be specified in hex using numeric-hex-literal format
(hexadecimal characters only, delimited by either quotation marks (") or
apostrophes (') and preceded by H). The value is right-justified and padded on the
left with zeros. The following example:
LIST STORAGE (H'20cd0');

displays the contents at a given address in hexadecimal format. You can use this
type of constant with the SET command. The following example:
SET ptr TO H'124bf';

assigns a hexadecimal value of 124bf to the variable ptr.

Related references
“Declarations (COBOL)” on page 260
“MOVE command (COBOL)” on page 298
“SET command (COBOL)” on page 343

Using Debug Tool functions with COBOL
Debug Tool provides certain functions you can use to find out more information
about program variables and storage.

Using %HEX with COBOL
You can use the %HEX function with the LIST command to display the hexadecimal
value of an operand. For example, to display the external representation of the
packed decimal pvar3, defined as PIC 9(9), from 1234 as its hexadecimal (or
internal) equivalent, enter:
LIST %HEX (pvar3);

The Log window displays the hexadecimal string 01234F.

Using the %STORAGE function with COBOL
This Debug Tool function allows you to reference storage by address and length.
By using the %STORAGE function as the reference when setting a CHANGE breakpoint,

190 Debug Tool User’s Guide and Reference

you can watch specific areas of storage for changes. For example, to monitor eight
bytes of storage at the hex address 22222 for changes, enter:
AT CHANGE %STORAGE (H'00022222', 8)

LIST 'Storage has changed at Hex address 22222'

Related references
“Chapter 14. Debug Tool built-in functions” on page 359
“%HEX” on page 359
“AT CHANGE” on page 226

Qualifying variables and changing the point of view in COBOL
Qualification is a method of specifying an object through the use of qualifiers, and
changing the point of view from one block to another so you can manipulate data
not known to the currently executing block. For example, the assignment MOVE 5
TO x; does not appear to be difficult for Debug Tool to process. However, you
might have more than one variable named x. You must tell Debug Tool which
variable x to assign the value of five.

You can use qualification to specify to what compile unit or block a particular
variable belongs. When Debug Tool is invoked, there is a default qualification
established for the currently executing block; it is implicitly qualified. Thus, you
must explicitly qualify your references to all statement numbers and variable
names in any other block. It is necessary to do this when you are testing a compile
unit that calls one or more blocks or compile units. You might need to specify
what block contains a particular statement number or variable name when issuing
commands.

Qualifying variables in COBOL
Qualifiers are combinations of load modules, compile units, blocks, section names,
or paragraph names punctuated by a combination of greater-than signs (>), colons,
and the COBOL data qualification notation, OF or IN, that precede referenced
statement numbers or variable names.

When qualifying objects on a block level, use only the COBOL form of data
qualification. If data names are unique, or defined as GLOBAL, they do not need to
be qualified to the block level.

The following is a fully qualified object:
load_name::>cu_name:>block_name:>object;

If required, load_name is the name of the load module. It is required only when the
program consists of multiple load modules and you want to change the
qualification to other than the current load module. load_name can also be the
Debug Tool variable %LOAD.

If required, cu_name is the name of the compile unit. The cu_name must be the fully
qualified compile unit name. It is required only when you want to change the
qualification to other than the currently qualified compile unit. It can be the Debug
Tool variable %CU.

If required, block_name is the name of the block. The block_name is required only
when you want to change the qualification to other than the currently qualified
block. It can be the Debug Tool variable %BLOCK. Remember to enclose the block

Chapter 10. Debugging COBOL programs 191

name in double (") or single (') quotes if case sensitive. If the name is not inside
quotes, Debug Tool converts the name to upper case.

Below are two similar COBOL programs (blocks).
MAIN...

01 VAR1.
02 VAR2.

O3 VAR3 PIC XX.
01 VAR4 PIC 99..

****************MOVE commands entered here****************

SUBPROG...

01 VAR1.
02 VAR2.

O3 VAR3 PIC XX.
01 VAR4 PIC 99.
01 VAR5 PIC 99.

****************LIST commands entered here****************

You can distinguish between the main and subprog blocks using qualification. If
you enter the following MOVE commands when main is the currently executing
block:
MOVE 8 TO var4;
MOVE 9 TO subprog:>var4;
MOVE 'A' TO var3 OF var2 OF var1;
MOVE 'B' TO subprog:>var3 OF var2 OF var1;

and the following LIST commands when subprog is the currently executing block:
LIST TITLED var4;
LIST TITLED main:>var4;
LIST TITLED var3 OF var2 OF var1;
LIST TITLED main:>var3 OF var2 OF var1;

each LIST command results in the following output (without the commentary) in
your Log window:

VAR4 = 9; /* var4 with no qualification refers to a variable */
/* in the currently executing block (subprog). */
/* Therefore, the LIST command displays the value of 9.*/

MAIN:>VAR4 = 8 /* var4 is qualified to main. */
/* Therefore, the LIST command displays 8, */
/* the value of the variable declared in main. */

VAR3 OF VAR2 OF VAR1 = 'B';
/* In this example, although the data qualification */
/* of var3 is OF var2 OF var1, the */
/* program qualification defaults to the currently */
/* executing block and the LIST command displays */
/* 'B', the value declared in subprog. */

VAR3 OF VAR2 OF VAR1 = 'A'
/* var3 is again qualified to var2 OF var1 */
/* but further qualified to main. */
/* Therefore, the LIST command displays */
/* 'A', the value declared in main. */

The above method of qualifying variables is necessary for command files.

192 Debug Tool User’s Guide and Reference

Related references
“%BLOCK” on page 365
“%CU or %PROGRAM” on page 366
“%LOAD” on page 369
“LIST expression” on page 288

Changing the point of view in COBOL
The point of view is usually the currently executing block. You can also get to
inaccessible data by changing the point of view using the SET QUALIFY command.
The SET keyword is optional. For example, if the point of view (current execution)
is in main and you want to issue several commands using variables declared in
subprog, you can change the point of view by issuing the following:
QUALIFY BLOCK subprog;

You can then issue commands using the variables declared in subprog without
using qualifiers. Debug Tool does not see the variables declared in procedure main.
For example, the following assignment commands are valid with the subprog point
of view:
MOVE 10 TO var5;

However, if you want to display the value of a variable in main while the point of
view is still in subprog, you must use a qualifier, as shown in the following
example:
LIST (main:>var-name);

The above method of changing the point of view is necessary for command files.

Related references
“SET QUALIFY” on page 335
“MOVE command (COBOL)” on page 298
“LIST expression” on page 288

Chapter 10. Debugging COBOL programs 193

194 Debug Tool User’s Guide and Reference

Chapter 11. Debugging PL/I programs

The topics below describe how to use Debug Tool to debug your PL/I programs.

Related concepts
“Debug Tool evaluation of PL/I expressions” on page 200

Related tasks
“Debugging a PL/I program in full-screen mode” on page 103
“Chapter 11. Debugging PL/I programs”
“Accessing PL/I program variables” on page 198

Related references
“Debug Tool subset of PL/I commands”
“Supported PL/I built-in functions” on page 200

Debug Tool subset of PL/I commands
The table below lists the Debug Tool interpretive subset of PL/I commands. This
subset is a list of commands recognized by Debug Tool that either closely resemble
or duplicate the syntax and action of the corresponding PL/I command. This
subset of commands is valid only when the current programming language is
PL/I.

Command Description

Assignment Scalar and vector assignment

BEGIN Composite command grouping

CALL Debug Tool procedure call

DECLARE or DCL Declaration of session variables

DO Iterative looping and composite command grouping

IF Conditional execution

ON Define an exception handler

SELECT Conditional execution

PL/I language statements
PL/I statements are entered as Debug Tool commands. Debug Tool makes it
possible to issue commands in a manner similar to each language.

The following types of Debug Tool commands will support the syntax of the PL/I
statements:

Expression
This command evaluates an expression.

Block BEGIN/END, DO/END, PROCEDURE/END

These commands provide a means of grouping any number of Debug Tool
commands into ″one″ command.

© Copyright IBM Corp. 1995, 2001 195

Conditional
IF/THEN, SELECT/WHEN/END

These commands evaluate an expression and control the flow of execution
of Debug Tool commands according to the resulting value.

Declaration
DECLARE or DCL

These commands provide a means for declaring session variables.

Looping
DO/WHILE/UNTIL/END

These commands provide a means to program an iterative or conditional
loop as a Debug Tool command.

Transfer of Control
GOTO, ON

These commands provide a means to unconditionally alter the flow of
execution of a group of commands.

The table below shows the commands that are new or changed for this release of
Debug Tool when the current programming language is PL/I.

Command Description or changes

ANALYZE Displays the PL/I style of evaluating an expression, and the
precision and scale of the final and intermediate results.

ON Performs as the AT OCCURRENCE command except it takes PL/I
conditions as operands.

BEGIN BEGIN/END blocks of logic.

DECLARE Session variables can now include COMPLEX (CPLX), POINTER,
BIT, BASED, ALIGNED, UNALIGNED, etc. Arrays can be declared
to have upper and lower bounds. Variables can have precisions
and scales.

DO The three forms of DO are added; one is an extension of C’s do.
1. DO; command(s); END;
2. DO WHILE | UNTIL expression; command(s); END;
3. DO reference=specifications; command(s); END;

IF The IF / ELSE does not require the ENDIF.

SELECT The SELECT / WHEN / OTHERWISE / END programming structure
is added.

%PATHCODE values for PL/I
The table below shows the possible values for the Debug Tool variable %PATHCODE
when the current programming language is PL/I.

0 An attention interrupt occurred.

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a label constant.

4 Control is being sent somewhere else as the result of a CALL or a function
reference.

196 Debug Tool User’s Guide and Reference

5 Control is returning from a CALL invocation or a function reference. Register 15, if
it contains a return code, has not yet been stored.

6 Some logic contained in a complex DO statement is about to be executed.

7 The logic following an IF..THEN is about to be executed.

8 The logic following an ELSE is about to be executed.

9 The logic following a WHEN within a select-group is about to be executed.

10 The logic following an OTHERWISE within a select-group is about to be executed.

PL/I conditions and condition handling
All PL/I conditions are recognized by Debug Tool. They are used with the AT
OCCURRENCE and ON commands.

When an OCCURRENCE breakpoint is triggered, the Debug Tool %CONDITION variable
holds the following values:

Triggered condition %CONDITION value

AREA AREA

ATTENTION CEE35J

COND (CC#1) CONDITION

CONVERSION CONVERSION

ENDFILE (MF) ENDFILE

ENDPAGE (MF) ENDPAGE

ERROR ERROR

FINISH CEE066

FOFL CEE348

KEY (MF) KEY

NAME (MF) NAME

OVERFLOW CEE34C

PENDING (MF) PENDING

RECORD (MF) RECORD

SIZE SIZE

STRG STRINGRANGE

STRINGSIZE STRINGSIZE

SUBRG SUBSCRIPTRANGE

TRANSMIT (MF) TRANSMIT

UNDEFINEDFILE (MF) UNDEFINEDFILE

UNDERFLOW CEE34D

ZERODIVIDE CEE349

Note: The Debug Tool condition ALLOCATE raises the ON ALLOCATE condition when a
PL/I program encounters an ALLOCATE statement for a controlled variable.

These PL/I language-oriented commands are only a subset of all the commands
that are supported by Debug Tool.

Chapter 11. Debugging PL/I programs 197

Related references
“AT OCCURRENCE” on page 237
“ON command (PL/I)” on page 300

Entering commands in PL/I DBCS freeform format
Statements can be entered in PL/I’s DBCS freeform. This means that statements
can freely use shift codes as long as the statement is not ambiguous.

This will change the description or characteristics of LIST NAMES in that:
LIST NAMES db<.c.skk.w>ord

will search for
<.D.B.C.Skk.W.O.R.D>

This will result in different behavior depending upon the language. For example,
the following will find a<kk>b in C and <.Akk.b> in PL/I.
LIST NAMES a<kk>*

where <kk> is shiftout-kanji-shiftin.

Freeform will be added to the parser and will be in effect while the current
programming language is PL/I.

Initializing Debug Tool when TEST(ERROR, ...) run-time option is in
effect

With the run-time option, TEST(ERROR, ...) only the following can initialize
Debug Tool:
v The ERROR condition
v Attention recognition
v CALL PLITEST
v CALL CEETEST

Debug Tool enhancements to LIST STORAGE PL/I command
LIST STORAGE address has been enhanced so that the address can be a POINTER, a
Px constant, or the ADDR built-in function.

PL/I support for Debug Tool session variables
PL/I will support all Debug Tool scalar session variables. In addition, arrays and
structures can be declared.

Related tasks
“Using session variables across different languages” on page 153

Accessing PL/I program variables
Debug Tool obtains information about a program variable by name using
information that is contained in the symbol table built by the compiler. The symbol
table is made available to the compiler by compiling with TEST(SYM).

Debug Tool uses the symbol table to obtain information about program variables,
controlled variables, automatic variables, and program control constants such as

198 Debug Tool User’s Guide and Reference

|
|

file and entry constants and also CONDITION condition names. Based variables,
controlled variables, automatic variables and parameters can be used with Debug
Tool only after storage has been allocated for them in the program. An exception to
this is DESCRIBE ATTRIBUTES, which can be used to display attributes of a variable.

Variable that are based on:
v An OFFSET variable,
v An expression, or
v A pointer that either is based or defined, a parameter, or member of either an

array or a structure

must be explicitly qualified when used in expressions. For example, assume you
made the following declaration:
DECLARE P1 POINTER;
DECLARE P2 POINTER;
DECLARE DX FIXED BIN(31) BASED(P2);

You would not be able to reference the variable directly by name. You can only
reference it by specifying either:
P2->DX

or
P1->P2->DX

The following types of program variables cannot be used with Debug Tool:
v iSUB defined variables
v Variables defined:

– On a controlled variable
– On an array with one or more adjustable bounds
– With a POSITION attributed that specifies something other than a constant

v Variables that are members of a based structure declared with the REFER options.

Related tasks
“Compiling a PL/I program with the TEST compiler option” on page 18

Accessing PL/I structures
You cannot reference elements of arrays of structures. For example, suppose a
structure called PAYROLL is declared as follows:
Declare 1 Payroll(100),

2 Name,
4 Last char(20),
4 First char(15),

2 Hours,
4 Regular Fixed Decimal(5,2),
4 Overtime Fixed Decimal(5,2);

Given the way PAYROLL is declared, the following examples of commands are
valid in Debug Tool:
LIST (PAYROLL(1).NAME.LAST, PAYROLL(1).HOURS.REGULAR);

LIST (ADDR (PAYROLL)) ;

LIST STORAGE (PAYROLL.HOURS, 128);

Given the way PAYROLL is declared, the following examples of commands are
invalid in Debug Tool:

Chapter 11. Debugging PL/I programs 199

LIST (PAYROLL(1));

LIST (ADDR (PAYROLL(5)));

LIST STORAGE (PAYROLL(15).HOURS, 128));

Debug Tool evaluation of PL/I expressions
When the current programming language is PL/I, expression interpretation is
similar to that defined in the PL/I language, except for the PL/I language elements
not supported in Debug Tool.

The Debug Tool expression is similar to the PL/I expression. If the source of the
command is a variable-length record source (such as your terminal) and if the
expression extends across more than one line, a continuation character (an SBCS
hyphen) must be specified at the end of all but the last line.

All PL/I constant types are supported, plus the Debug Tool PX constant.

Related references
“Unsupported PL/I language elements” on page 201

Supported PL/I built-in functions
Debug Tool supports the following PL/I built-in functions:

ABS
ACOS
ADDR
ALL
ALLOCATION
ANY
ASIN
ATAN
ATAND
ATANH
BINARYVALUE
BINVALUE1

BIT
BOOL
CHAR
COMPLETION
COS
COSD
COSH
COUNT

CSTG2

CURRENTSTORAGE
DATAFIELD
DATE
DATETIME
DIM
EMPTY
ENTRYADDR
ERF
ERFC
EXP
GRAPHIC
HBOUND
HEX
HIGH
IMAG
LBOUND
LENGTH
LINENO
LOG

LOG1
LOG2
LOW
MPSTR
NULL
OFFSET
ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
PLIRETV
POINTER
POINTERADD
POINTERVALUE
PTRADD3

PTRVALUE4

REAL
REPEAT
SAMEKEY
SIN
SIND
SINH
SQRT
STATUS
STORAGE
STRING
SUBSTR
SYSNULL
TAN
TAND
TANH
TIME
TRANSLATE
UNSPEC
VERIFY

Notes:

1. Abbreviation for BINARYVALUE

2. Abbreviation for CURRENTSTORAGE

3. Abbreviation for POINTERADD

4. Abbreviation for POINTERVALUE

Related tasks
“Using SET WARNING PL/I command with built-in functions” on page 201

200 Debug Tool User’s Guide and Reference

Using SET WARNING PL/I command with built-in functions
Certain checks are performed when the Debug Tool SET WARNING command setting
is ON and a built-in function (BIF) is evaluated:
v Division by zero
v The remainder (%) operator for a zero value in the second operand
v Array subscript out of bounds for defined arrays
v Bit shifting by a number that is negative or greater than 32
v On a built-in function call for an incorrect number of parameters or for

parameter type mismatches
v On a built-in function call for differing linkage calling conventions

These checks are restrictions that can be removed by issuing SET WARNING OFF.

Unsupported PL/I language elements
The following list summarizes PL/I functions not available:
v Use of iSUB
v Interactive declaration or use of user-defined functions
v All preprocessor directives
v Multiple assignments
v BY NAME assignments
v LIKE attribute
v FILE, PICTURE, and ENTRY data attributes
v All I/O statements, including DISPLAY
v INIT attribute
v Structures with the built-in functions CSTG, CURRENTSTORAGE, and STORAGE
v The repetition factor is not supported for string constants
v GRAPHIC string constants are not supported for expressions involving other data

types
v Declarations cannot be made as sub-commands (for example in a BEGIN, DO, or

SELECT command group)

Chapter 11. Debugging PL/I programs 201

202 Debug Tool User’s Guide and Reference

Chapter 12. Entering Debug Tool commands

Debug Tool commands can be issued in three modes: full-screen, line, and batch.
Some Debug Tool commands are valid only in certain modes or programming
languages. Unless otherwise noted, Debug Tool commands are valid in all modes,
and for all supported languages.

For input typed directly at the terminal, input is free-form, optionally starting in
column 1.

To separate multiple commands on a line, use a semicolon (;). This terminating
semicolon is optional for a single command, or the last command in a sequence of
commands.

For input that comes from a commands file or USE file, all of the Debug Tool
commands must be terminated with a semicolon, except for the C block command.

Related tasks
“Entering commands on the session panel” on page 59
“Abbreviating Debug Tool keywords” on page 204
“Entering multiline commands in full-screen and line mode” on page 205
“Entering multiline commands in a command file” on page 205
“Entering multiline commands without continuation” on page 206
“Using blanks in Debug Tool commands” on page 206
“Entering comments in Debug Tool commands” on page 206
“Using constants in Debug Tool commands” on page 207
“Getting online help for Debug Tool command syntax” on page 207

Related references
“Common syntax elements in Debug Tool commands” on page 208

Using uppercase, lowercase, and DBCS in Debug Tool commands
The character set and case vary with the double-byte character set (DBCS) or the
current programming language setting in a Debug Tool session.

DBCS
When the DBCS setting is ON, you can specify DBCS characters in the following
portions of all the Debug Tool commands:
v Commentary text
v Character data valid in the current programming language
v Symbolic identifiers such as variable names (for COBOL, this includes session

variables), entry names, block names, and so forth (if the names contain DBCS
characters in the application program).

When the DBCS setting is OFF, double-byte data is not correctly interpreted or
displayed. However, if you use the shift-in and shift-out codes as data instead of
DBCS indicators, you should issue SET DBCS OFF.

© Copyright IBM Corp. 1995, 2001 203

Character case and DBCS in C/C++
For both C and C++, Debug Tool sets the programming language to C. When the
current programming language setting is C:
v All keywords and identifiers must be the correct case. Debug Tool does not do

conversion to uppercase.
v DBCS characters are allowed only within comments and literals.
v Either trigraphs or the equivalent special characters can be used. Trigraphs are

treated as their equivalents at all times. For example, FIND "??<" would find not
only "??<" but also "{".

v The vertical bar (|) can be entered for the following C/C++ operations: bitwise
or (|), logical or (||), and bitwise assignment or (|=).

v There are alternate code points for the following C/C++ characters: vertical bar
(|), left brace ({), right brace (}), left bracket ([), and right bracket (]) . Although
alternate code points will be accepted as input for the braces and brackets, the
primary code points will always be logged.

Character case in COBOL and PL/I
When the current programming language setting is not C, commands can generally
be either uppercase, lowercase, or mixed. Characters in the range a through z are
automatically converted to uppercase except within comments and quoted literals.
Also, in PL/I, only "|" and "¬" can be used as the boolean operators for OR and
NOT.

Related references
“SET DBCS” on page 321

Abbreviating Debug Tool keywords
When you issue the Debug Tool commands, you can truncate most command
keywords. You cannot truncate reserved keywords for the different programming
languages, system keywords (that is, CMS, SYS, SYSTEM, or TSO) or special case
keywords such as BEGIN, CALL, COMMENT, COMPUTE, END, FILE (in the SET INTERCEPT
and SET LOG commands), GOTO, INPUT, LISTINGS (in the SET DEFAULT LISTINGS
command), or USE. In addition, PROCEDURE can only be abbreviated as PROC.

The system keywords, and COMMENT, INPUT, and USE keywords, take precedence
over other keywords and identifiers. If one of these keywords is followed by a
blank, it is always parsed as the corresponding command. Hence, if you want to
assign the value 2 to a variable named CMS and the current programming
language setting is C, the "=" must be abutted to the reference, as in "CMS<no
space>= 2;" not "CMS<space>= 2;". If you want to define a procedure named USE,
you must enter "USE<no space>: procedure;" not "USE<space>:: procedure;".

When you truncate, you need only enter enough characters of the command to
distinguish the command from all other valid Debug Tool commands. You should
not use truncations in a commands file or compile them into programs because
they might become ambiguous in a subsequent release. The following shows
examples of Debug Tool command truncations:

If you enter the following command... It will be interpreted as...

A 3 AT 3

G GO

Q B B QUALIFY BLOCK B

204 Debug Tool User’s Guide and Reference

If you enter the following command... It will be interpreted as...

Q Q QUERY QUALIFY

Q QUIT

If you specify a truncation that is also a variable in your program, the keyword is
chosen if this is the only ambiguity. For example, LIST A does not display the
value of variable A, but executes the LIST AT command, listing your current AT
breakpoints. To display the value of A, issue LIST (A).

In addition, ambiguous commands that cannot be resolved cause an error message
and are not performed. That is, there are two commands that could be interpreted
by the truncation specified. For example, D A A; is an ambiguous truncation since
it could either be DESCRIBE ATTRIBUTES a; or DISABLE AT APPEARANCE;. Instead, you
would have to enter DE A A; if you wanted DESCRIBE ATTRIBUTES a; or DI A A; if
you wanted DISABLE AT APPEARANCE;. There are, of course, other variations that
would work as well (for example, D ATT A;).

Entering multiline commands in full-screen and line mode
If you need to use more than one line when entering a command, you must use a
continuation character.

When you are entering a command in interactive mode, the continuation character
must be the last nonblank character in each line that is to be continued. In the
following example:
LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvvvvvvvv –
very long string");

the continuation character is the single-byte character set (SBCS) hyphen (-).

If you want to end a line with a character that would be interpreted as a
continuation character, follow that character with another valid nonblank character.
For example, in C/C++, if you want to enter "i––", you could enter "(i––)" or "i––;".
When the current programming language setting is C/C++, the back slash
character (\) can also be used.

When Debug Tool is awaiting the continuation of a command in full-screen mode,
you receive a continuation prompt of "MORE..." until the command is completely
entered and processed. When continuation is indicated in line mode, you receive a
continuation prompt of "PENDING..." until the command is completely entered
and processed.

Entering multiline commands in a command file
The rules for line continuation when input comes from a commands file are
language-specific:
v When the current programming language setting is C/C++, identifiers,

keywords, and literals can be continued from one line to the next if the back
slash continuation character is used. The following is an example of the
continuation character for C:
LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvvvvvvvv\
very long string");

v When the current programming language setting is COBOL, columns 1-6 are
ignored by Debug Tool and input can be continued from one line to the next if

Chapter 12. Entering Debug Tool commands 205

the SBCS hyphen (-) is used in column 7 of the next line. Command text must
begin in column 8 or later and end in or before column 72.
In literal string continuation, an additional double (") or single (') quote is
required in the continuation line, and the character following the quote is
considered to follow immediately after the last character in the continued line.
The following is an example of line continuation for COBOL:
123456 LIST (" this is a very very very vvvvvvvvvvvvvvvvvvvvvvv"
123456-"very long string");

Continuation is not allowed within a DBCS name or literal string when the
current programming language setting is COBOL.

Entering multiline commands without continuation
You can enter the following command parts on separate lines without using the
SBCS hyphen (-) continuation character:
v Subcommands and the END keyword in the PROCEDURE command
v When the current programming language setting is C, statements that are part of

a compound or block statement
v When the current programming language setting is COBOL:

– EVALUATE
- Subcommands in WHEN and OTHER clauses
- END-EVALUATE keyword

– IF
- Subcommands in THEN and ELSE clauses
- END-IF keyword

– PERFORM
- Subcommands
- Subcommands in UNTIL clause
- END-PERFORM keyword

Using blanks in Debug Tool commands
Blanks cannot occur within keywords, identifiers, and numeric constants; however,
they can occur within character strings. Blanks between keywords, identifiers, or
constants are ignored except as delimiters. Blanks are required when no other
delimiter exists and ambiguity is possible.

Entering comments in Debug Tool commands
Debug Tool lets you insert descriptive comments into the command stream (except
within constants and other comments); however, the comment format depends on
the current programming language.

For C++ only: Comments in the form "//" are not processed by Debug Tool in
C++.
v For all supported programming languages, comments can be entered by:

– Enclosing the text in comment brackets "/*" and "*/". Comments can occur
anywhere a blank can occur between keywords, identifiers, and numeric
constants. Comments entered in this manner do not appear in the session log.

– Using the COMMENT command to insert commentary text in the session log.
Comments entered in this manner cannot contain embedded semicolons.

206 Debug Tool User’s Guide and Reference

v When the current programming language setting is COBOL, comments can also
be entered by using an asterisk (*) in column 7. This is valid for file input only.

Comments are most helpful in file input. For example, you can insert comments in
a USE file to explain and describe the actions of the commands.

Using constants in Debug Tool commands
Constants are entered as required by the current programming language setting.
Most constants defined for each of the supported HLLs are also supported by
Debug Tool.

Additionally, Debug Tool allows the use of hexadecimal constants in COBOL and
PL/I.

The COBOL H constant is a fullword value that can be specified in hex using
numeric-hex-literal format (hexadecimal characters only, delimited by either double
(") or single (') quotes and preceded by H). The value is right-justified and padded
on the left with zeros.

Note: The H constant can only be used where an address or POINTER variable can
be used. The COBOL hexadecimal notation for nonnumeric literals, such as
MOVE X'C1C2C3C4' TO NON-PTR-VAR, should be used for all other situations
where a hexadecimal value is needed.

The PL/I PX constant is a hexadecimal value, delimited by single quotes (') and
followed by PX. The value is right-justified and can be used in any context in
which a pointer value is allowed. For example, to display the contents at a given
address in hexadecimal format, specify:
LIST STORAGE (H'20CD0');

For COBOL only: You can use this type of constant with the SET command. For
example, to assign a hexadecimal value of 124BF to the variable ptr, specify:
SET ptr TO H"124BF";

Related tasks
“Using constants in COBOL expressions” on page 190

Related references
“C/C++ expressions” on page 161
“SET command (COBOL)” on page 343

Getting online help for Debug Tool command syntax
You can get help with Debug Tool command syntax by either pressing PF1 or
entering a question mark (?) on the command line. This lists all Debug Tool
commands in the Log window.

To get a list of options for a command, enter a partial command followed by a
question mark.

For example, in full-screen mode, enter on the command line:
?
WINDOW ?
WINDOW CLOSE ?
WINDOW CLOSE SOURCE

Chapter 12. Entering Debug Tool commands 207

Now reopen the Source window with:
WINDOW OPEN SOURCE

to see the results.

The Debug Tool CMS, SYSTEM, and TSO commands followed by ? do not invoke the
syntax help; instead the ? is sent to the host as part of the system command. The
COMMENT command followed by ? also does not invoke the syntax help.

Common syntax elements in Debug Tool commands
Several syntax elements are used in many Debug Tool commands. These elements
are described in the following topics. Some of the these syntax elements are generic
and do not include a syntax diagram.

Related references
“block_name syntax”
“block_spec syntax” on page 209
“compile_unit_name syntax” on page 209
“cu_spec syntax” on page 210
“expression syntax” on page 210
“load_module_name syntax” on page 211
“load_spec syntax” on page 211
“references syntax” on page 212
“statement_id syntax” on page 212
“statement_id_range and stmt_id_spec syntax” on page 212
“statement_label syntax” on page 213

block_name syntax
A block_name identifies:
v A C/C++ function or a block statement
v A COBOL nested program or method contained within a complete COBOL

program
v A PL/I block (Debug Tool does not support the use of block_name syntax in

full-screen mode for VisualAge PL/I for OS/390 programs)

The current block qualification can be changed using the SET QUALIFY BLOCK
command.

For C++ only:
Include full declaration in block qualification.

For COBOL only:
Enclose the block name in double (") or single (') quotes if it is case
sensitive. If the name is not inside quotes, Debug Tool will convert the name
to upper case.
If a name contains an internal double quote, you should enclose the name in
single quotes. Similarly, if the name contains an internal single quote, you
should enclose the name in double quotes.

You can only use block_name for blocks known in the current enclave.

208 Debug Tool User’s Guide and Reference

block_spec syntax
A block_spec identifies a block in the program being debugged.

�� %

%

block_name
%BLOCK :> block_name

cu_spec :> block_name

�$

%BLOCK
Represents the currently qualified block. See “Chapter 15. Debug Tool
variables” on page 363.

cu_spec
A valid compile unit specification; see “cu_spec syntax” on page 210.

You can only use block_name for blocks known in the current enclave.
For C++ only:

Block_spec must include the formal parameters for the function. The correct
block qualification is:
int function(int, int) is function(int, int)

Use Describe CUS to determine correct block_spec for blocks known in the
current enclave.

Debug Tool does not support the use of block_spec syntax in full-screen mode for
VisualAge PL/I for OS/390 programs.

Related references
“block_name syntax” on page 208
“Chapter 15. Debug Tool variables” on page 363
“cu_spec syntax” on page 210

compile_unit_name syntax
A compile_unit_name identifies:
v A C/C++ source file
v A COBOL program or class
v The external procedure name of a PL/I program.

For C/C++ only:
The compile unit name must be enclosed in double quotes (") when there is
any chance of ambiguity between a block name and a compile unit name.
For example:
LIST CU2:>CU2:>var1

is ambiguous because the compile unit and a function in that compile unit
has same name. To avoid the ambiguity, use:
LIST "CU2":>CU2:>var1

to correctly list the value of the variable var1 scoped to the function CU2.
Escape sequences in compile unit names that are specified as strings are not
processed if the string is part of a qualification statement.

For COBOL only:

Chapter 12. Entering Debug Tool commands 209

Enclose the compile unit name in double (") or single (') quotes if it is case
sensitive. If the name is not inside quotes, Debug Tool will convert the name
to upper case.

For PL/I only:
For consistency, the compile unit name can optionally be enclosed in single
quotes (').

If the compile unit name is not a valid identifier in the current programming
language, it must be entered as a character string constant in the current
programming language.

The current compile unit qualification can be changed using the SET QUALIFY CU
command.

cu_spec syntax
A cu_spec identifies a compile unit in the application being debugged. In PL/I, the
compile unit name is the same as the outer-most procedure name in the program.
Debug Tool does not support the use of cu_spec syntax in full-screen mode for
VisualAge PL/I for OS/390 programs.

�� compile_unit_name
load_spec ::>

%CU
%PROGRAM

�$

If omitted, the current load module qualification is used.

%CU
Represents the currently qualified compile unit. %CU is equivalent to %PROGRAM.

%PROGRAM
Is equivalent to %CU.

You can only use cu_spec to specify compile units in an enclave that is currently
running. You can, therefore, only qualify variable names, function names, labels,
and statement_ids to blocks within compile units in the current enclave.

Related references
“load_spec syntax” on page 211
“compile_unit_name syntax” on page 209
“Chapter 15. Debug Tool variables” on page 363

expression syntax
An expression is a combination of references and operators that result in a value. For
example, it can be a single constant, a program, session, or Debug Tool variable, a
built-in function reference, or a combination of constants, variables, and built-in
function references, or operators and punctuation (such as parentheses).

Particular rules for forming an expression depend on the current programming
language setting and what release level of the language run-time library under
which Debug Tool is running. For example, if you upgrade your version of the
HLL compiler without upgrading your version of Debug Tool, certain application
programming interface inconsistencies might exist.

210 Debug Tool User’s Guide and Reference

You can only use expressions for variables contained in the current enclave.

Related concepts
“Debug Tool evaluation of COBOL expressions” on page 189
“Debug Tool evaluation of PL/I expressions” on page 200

Related tasks
“Chapter 9. Debugging C/C++ programs” on page 157

Related references
“references syntax” on page 212

load_module_name syntax
A load_module_name is the name of a file, object, or Dynamic Link Library (DLL)
that has been loaded by a supported HLL load service, or a subsystem. For
example, an enclave can contain load modules, which in turn contain compile
units.

For C, escape sequences in load module names that are specified as strings are not
processed if the string is part of a qualification statement.

Debug Tool does not support the use of load_module_name syntax in full-screen
mode for VisualAge PL/I for OS/390 programs.

If omitted from a name that allows it as a qualifier, the current load module
qualification is assumed. It can be changed using the SET QUALIFY LOAD command.

If two enclaves contain duplicate modules, references to compile units in the
modules will be ambiguous, and will be flagged as errors. However, if the compile
unit is in the currently executing load module, that load module is assumed and
no check for ambiguity will be performed. Therefore, for Debug Tool, load module
names must be unique.

load_spec syntax
A load_spec identifies a load module in the program being debugged.

�� load_module_name
%LOAD

�$

This can be specified as a string constant in the current programming language, for
example, a string literal in C or a character literal in COBOL. If not specified as
such, it must be a valid identifier in the current programming language. Debug
Tool does not support the use of load_spec syntax in full-screen mode for VisualAge
PL/I for OS/390 programs.

%LOAD
Represents the currently qualified load module.

Related references
“load_module_name syntax”
“Chapter 15. Debug Tool variables” on page 363

Chapter 12. Entering Debug Tool commands 211

references syntax
A reference is a subset of an expression that resolves to an area of storage, that is, a
possible target of an assignment statement. For example, it can be a program,
session, or Debug Tool variable, an array or array element, or a structure or
structure element, and any of these can be pointer-qualified (in programming
languages that allow it). Any identifying name in a reference can be optionally
qualified by containing structure names and names of blocks where the item is
visible. It is optionally followed by subscript and substring modifiers, following
the rules of the current programming language.

The specification of a qualified reference includes all containing structures and
blocks as qualifiers, and can optionally begin with a load module name qualifier.
For example, when the current programming language setting is C,
mod::>cu:>proc:>struc1.struc2.array[23].

When the current programming language setting is C/C++, the term lvalue is
used in place of reference.

COBOL uses structure qualification (IN or OF keyword) and can have optional
subscripting and substringing of the form:
array OF struc2 OF struc1(subscript)(starting_position:length)

Particular rules for forming a reference depend on the current programming
language setting and what release level of the language run-time library Debug
Tool is running under. For example, if you upgrade your version of the HLL
compiler without upgrading your version of Debug Tool, certain application
programming interface inconsistencies might exist.

statement_id syntax
A statement_id identifies an executable statement in a manner appropriate for the
current programming language. This can be a statement number, sequence number,
or source line number. The statement id is an integer or integer.integer (where the
first integer is the line number and the second integer is the relative statement
number). For example, you can specify 3, 3.0, or 3.1 to signify the first relative
statement on line 3. C/C++, COBOL, and PL/I allow multiple statements or verbs
within a source line.

You can only use statement identifiers for statements that are known in the current
enclave.

statement_id_range and stmt_id_spec syntax
A statement_id_range identifies a source statement id or range of statement ids.
Stmt_id_spec identifies a statement id specification.

�� stmt_id_spec
- statement_id

%LINE
%STATEMENT

�$

stmt_id_spec:

212 Debug Tool User’s Guide and Reference

statement_id
block_spec :>
cu_spec

%LINE
%STATEMENT

block_spec
A valid block specification. The default is the currently qualified block.

Note: For the currently supported programming languages, block qualification
is extraneous and will be ignored. This is because statement identifiers
are unique within a compile unit.

cu_spec
A valid compile unit specification; see “cu_spec syntax” on page 210. The
default is the currently qualified compile unit.

statement_id
A valid statement identifier number; see “statement_id syntax” on page 212.

%LINE
Represents the currently suspended source statement or line. See “Chapter 15.
Debug Tool variables” on page 363. %LINE is equivalent to %STATEMENT.

%STATEMENT
Is equivalent to %LINE.

Specifying a range of statements
A range of statements can be identified by specifying a beginning and ending
statement id, separated by a hyphen (-). When the current programming language
setting is COBOL, blanks are required around the hyphen (-). Blanks are optional
for C/C++ and PL/I. Both statement ids must be in the same block, the second
statement cannot occur before the first in the source program, and they cannot be
equal.

A single statement id is also an acceptable statement id range and is considered to
begin and end at the same statement. This consists of only one statement or verb
even in a multistatement line.

Related references
“block_spec syntax” on page 209
“cu_spec syntax” on page 210
“statement_id syntax” on page 212
“Chapter 15. Debug Tool variables” on page 363

statement_label syntax
A statement_label identifies a statement using its source label. The specification of a
qualified statement label includes all containing compile unit names or block
names, and can optionally begin with a load module name qualifier. For example:
mod::>proc1:>proc2:>block1:>start

The form of a label depends on the current programming language:
v In C/C++, labels must be valid identifiers.
v In COBOL, labels must be valid identifiers and can be qualified with the section

name.
v In PL/I, labels must be valid identifiers, which can include a label variable.

Chapter 12. Entering Debug Tool commands 213

You can only use statement labels for labels that are known in the current enclave.

214 Debug Tool User’s Guide and Reference

Chapter 13. Debug Tool commands

The table below summarizes the Debug Tool commands.

“ANALYZE command (PL/I)” on
page 218

Displays the process of evaluating an expression and
the data attributes of any intermediate results.

“Assignment command (PL/I)” on
page 219

Assigns the value of an expression to a specified
reference.

“AT command” on page 220 Defines a breakpoint (gives control of your program
to Debug Tool under the specified circumstances).

“BEGIN command (PL/I)” on
page 243

BEGIN and END delimit a sequence of one or more
commands to form one longer command.

“block command (C/C++)” on
page 244

Allows you to group any number of Debug Tool
commands into one command.

“break command (C/C++)” on
page 245

Allows you to terminate and exit a loop (that is, do,
for, and while) or switch command from any point
other than the logical end.

“CALL command” on page 245 Invokes an entry name (COBOL), Language
Environment dump service, or procedure.

“CLEAR command” on page 251 Removes the actions of previously issued Debug Tool
commands (such as breakpoints).

“CMS command (VM)” on page 255 Lets you issue certain CMS subset commands during
a Debug Tool session.

“COMMENT command” on
page 255

Used to insert commentary into the session log.

“COMPUTE command (COBOL)”
on page 256

Assigns the value of an arithmetic expression to a
specified reference.

“CURSOR command (full-screen
mode)” on page 257

Moves the cursor between the last saved position on
the Debug Tool session panel (excluding the header
fields) and the command line.

“Declarations (C/C++)” on page 257 Declares session variables and tags effective during a
Debug Tool session.

“Declarations (COBOL)” on
page 260

Declares session variables effective during a Debug
Tool session.

“DECLARE command (PL/I)” on
page 261

Declares session variables effective during a Debug
Tool session.

“DESCRIBE command” on page 263 Displays the attributes of references, compile units,
and the execution environment.

“DISABLE command” on page 265 Makes the AT breakpoint inoperative, but does not
clear it; you can ENABLE it later without typing the
entire command again.

“do/while command (C/C++)” on
page 267

Performs a command before evaluating the test
expression.

“DO command (PL/I)” on page 267 Allows one or more commands to be collected into a
group which can (optionally) be run repeatedly.

“ENABLE command” on page 270 Makes AT breakpoints operative after they have been
disabled by the DISABLE command.

© Copyright IBM Corp. 1995, 2001 215

“EVALUATE command (COBOL)”
on page 271

Provides a shorthand notation for a series of nested IF
statements.

“Expression command (C/C++)” on
page 272

Evaluates the given expression which can be used to
either assign a value to a variable or to call a function.

“FIND command” on page 273 Provides full-screen, line, and batch mode searching of
source and listing files, and full-screen searching of
Log and Monitor windows.

“for command (C/C++)” on
page 275

Provides iterative looping.

“GO command” on page 276 Causes Debug Tool to start or resume running your
program.

“GOTO command” on page 276 Causes Debug Tool to resume program execution at
the specified statement id.

“GOTO LABEL command” on
page 277

Causes Debug Tool to resume running program at the
specified statement label.

“if command (C/C++)” on page 279 Lets you conditionally perform a command.

“IF command (COBOL)” on
page 279

Lets you conditionally perform a command.

“IF command (PL/I)” on page 282 Lets you conditionally perform a command.

“IMMEDIATE command (full-screen
mode)” on page 283

Causes a command within a command list to be
performed immediately. For use with commands
assigned to a PF key.

“INPUT command (C/C++ and
COBOL)” on page 283

Provides input for an intercepted read and is valid
only when there is a read pending for an intercepted
file.

“LIST command” on page 284 Displays information about your Debug Tool session.

“MONITOR command” on page 296 Defines or redefines a command whose output is
displayed in the Monitor window (full-screen mode),
terminal output (line mode), or log file (batch mode).

“MOVE command (COBOL)” on
page 298

Transfers data from one area of storage to another.

“Null command” on page 300 A semicolon written where a command is expected.

“ON command (PL/I)” on page 300 Establishes the actions to be executed when the
specified PL/I condition is raised.

“PANEL command (full-screen
mode)” on page 302

Displays special panels (for example, to customize
your full-screen session).

“PERFORM command (COBOL)” on
page 304

Transfers control explicitly to one or more statements
and implicitly returns control to the next executable
statement after execution of the specified statements is
completed.

“Prefix commands (full-screen
mode)” on page 306

Apply only to source listing lines and are typed into
the Source window.

“PROCEDURE command” on
page 306

Allows the definition of a group of commands that
can be accessed using the CALL procedure command.

“QUERY command” on page 307 Displays the current value of Debug Tool settings
(such as the current location in the suspended
program).

“QUIT command” on page 311 Ends a Debug Tool session (with a return code, if
specified).

216 Debug Tool User’s Guide and Reference

“QQUIT command” on page 311 Ends a Debug Tool session (without additional
prompting)

“RETRIEVE command (full-screen
mode)” on page 312

Displays the last command entered on the command
line.

“RUN command” on page 312 Causes Debug Tool to start or resume running your
program.

“RUNTO command” on page 312 Causes Debug Tool to run your program to a specific
point (without setting a breakpoint)

“SCROLL command (full-screen
mode)” on page 314

Provides horizontal and vertical scrolling in full-screen
mode.

“SELECT command (PL/I)” on
page 315

Chooses one of a set of alternate commands.

“SET command” on page 316 Controls various Debug Tool settings.

“SET command (COBOL)” on
page 343

Assigns a value to a COBOL reference.

“SHOW prefix command
(full-screen mode)” on page 344

Specifies what relative statement (for C) or relative
verb (for COBOL) within the line is to have its
frequency count temporarily shown in the suffix area.

“STEP command” on page 345 Causes Debug Tool to dynamically step through a
program, running one or more program statements.

“switch command (C/C++)” on
page 347

Enables you to transfer control to different commands
within the switch body, depending on the value of the
switch expression.

“SYSTEM command” on page 349 Lets you issue system (CMS or TSO) commands
during a Debug Tool session.

“TRIGGER command” on page 350 Raises the specified AT condition in Debug Tool, or
raises the specified programming language condition
in your program.

“TSO command (MVS)” on page 352 Lets you issue TSO commands during a Debug Tool
session (this command is valid only in a TSO
environment).

“USE command” on page 353 Causes the Debug Tool commands in the specified file
or data set to be either performed or syntax checked.

“while command (C/C++)” on
page 354

Enables you to repeatedly perform the body of a loop
until the specified condition is no longer met or
evaluates to false

“WINDOW command (full-screen
mode)” on page 355

Opens, close, resizes, or expands to full screen
(zooms) the specified window on the Debug Tool
session panel.

Related tasks
“Chapter 12. Entering Debug Tool commands” on page 203

Related references
“Chapter 14. Debug Tool built-in functions” on page 359
“Chapter 15. Debug Tool variables” on page 363

Chapter 13. Debug Tool commands 217

ANALYZE command (PL/I)
The ANALYZE command displays the process of evaluating an expression and the
data attributes of any intermediate results. To display the results of the expression,
use the LIST command.

�� ANALYZE EXPRESSION (expression) ; �$

EXPRESSION
Requests that the accompanying expression be evaluated from the following
points of view:
v What are the attributes of each element during the evaluation of the

expression?
v What are the dimensions and bounds of the elements of the expression, if

applicable?
v What are the attributes of any intermediate results that will be created

during the processing of the expression?

expression
A valid Debug Tool PL/I expression.

Usage notes

v If SET SCREEN ON is in effect, and you want to issue ANALYZE EXPRESSION for an
expression in your program, you can bring the expression from the Source
window up to the command line by typing over any character in the line that
contains the expression. Then, edit the command line to form the desired
ANALYZE EXPRESSION command.

v If SET WARNING ON is in effect, Debug Tool displays messages about PL/I
computational conditions that might be raised when evaluating the expression.

v Although the PL/I compiler supports the concatenation of GRAPHIC strings,
Debug Tool does not.

v The ANALYZE command can not be used to debug VisualAge PL/I for OS/390
programs in full screen mode.

Example

This example is based on the following program segment:
DECLARE lo_point FIXED BINARY(31,5);
DECLARE hi_point FIXED BINARY(31,3);
DECLARE offset FIXED DECIMAL(12,2);
DECLARE percent CHARACTER(12);
lo_point = 5.4; hi_point = 28.13; offset = -6.77;
percent = '18';

The following is an example of the information prepared by issuing ANALYZE
EXPRESSION. Specifically, the following shows the effect that mixed precisions and
scales have on intermediate and final results of an expression:
ANALYZE EXPRESSION ((hi_point - lo_point) + offset / percent)
>>> Expression Analysis <<<
(HI_POINT - LO_POINT) + OFFSET / PERCENT
| HI_POINT - LO_POINT
| | HI_POINT
| | FIXED BINARY(31,3) REAL
| | LO_POINT
| | FIXED BINARY(31,5) REAL

218 Debug Tool User’s Guide and Reference

| FIXED BINARY(31,5) REAL
| OFFSET / PERCENT
| | OFFSET
| | FIXED DECIMAL(12,2) REAL
| | PERCENT
| | CHARACTER(12)
| FIXED DECIMAL(15,5) REAL
FIXED BINARY(31,17) REAL

Related references
“SET WARNING (C/C++ and PL/I)” on page 342

Assignment command (PL/I)
The Assignment command assigns the value of an expression to a specified
reference.

�� reference = expression ; �$

reference
A valid Debug Tool PL/I reference.

expression
A valid Debug Tool PL/I expression.

Usage notes

v The PL/I repetition factor is not supported by Debug Tool.
For example, the following is not valid: rx = (16)'01'B;

v If Debug Tool was invoked because of a computational condition or an attention
interrupt, using an assignment to set a variable might not give the expected
results. This is because Debug Tool cannot determine variable values within
statements, only at statement boundaries.

v The PL/I assignment statement option BY NAME is not valid in the Debug Tool.
v If you are debugging a VisualAge PL/I for OS/390 program in full- screen

mode, the target of an assignment command can not be the variables %EPRn,
%FPRn, %GPRn, or %LPRn.

Examples

v Assign the value 6 to variable x.
x = 6;

v Assign to the Debug Tool variable %GPR5 the address of name_table.
%GPR5 = ADDR (name_table);

v Assign to the prg_name variable the value of Debug Tool variable %PROGRAM.
prg_name = %PROGRAM;

Related references
“references syntax” on page 212

Chapter 13. Debug Tool commands 219

AT command
The AT command defines a breakpoint or a set of breakpoints. By defining
breakpoints, you can temporarily suspend program execution and use Debug Tool
to perform other tasks. By specifying an AT-condition in the AT command, you
instruct Debug Tool when to gain control. You can also specify in the AT command
what action Debug Tool should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another
AT command establishes a new action for the same AT-condition or a CLEAR
command removes the established breakpoint. An informational message is issued
when the first case occurs. Some breakpoints might become obsolete during a
debug session and will be cleared automatically by Debug Tool.

For CICS only:When a DTCN profile is active for a full-screen mode debugging
session, Debug Tool preserves all breakpoint information for that session until the
DTCN profile is deleted.

The following table summarizes the various forms of the AT command.

“AT ALLOCATE (PL/I)” on
page 222

Gives Debug Tool control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.

“AT APPEARANCE” on
page 223

Gives Debug Tool control:

v For C and PL/I, when the specified compile unit is found in
storage

v For COBOL, the first time the specified compile unit is called

“AT CALL” on page 225 Gives Debug Tool control on an attempt to call the specified
entry point.

“AT CHANGE” on page 226 Gives Debug Tool control when either the specified variable
value or storage location is changed.

“AT CURSOR (full-screen
mode)” on page 229

Defines a statement breakpoint by cursor pointing.

“AT DATE (COBOL)” on
page 230

For COBOL, gives Debug Tool control for each date processing
statement within the specified block.

“AT DELETE” on page 231 Gives Debug Tool control when a load module is deleted.

“AT ENTRY/EXIT” on
page 231

Defines a breakpoint at the specified entry point or exit.

“AT GLOBAL” on page 232 Gives Debug Tool control for every instance of the specified
AT-condition.

“AT LABEL” on page 234 Gives Debug Tool control at the specified statement label.

“AT LINE” on page 236 Gives Debug Tool control at the specified line.

“AT LOAD” on page 236 Gives Debug Tool control when the specified load module is
loaded.

“AT OCCURRENCE” on
page 237

Gives Debug Tool control on a language or Language
Environment condition or exception.

“AT PATH” on page 240 Gives Debug Tool control at a path point.

“AT Prefix (full-screen
mode)” on page 241

Defines a statement breakpoint via the Source window prefix
area.

“AT STATEMENT” on
page 241

Gives Debug Tool control at the specified statement.

220 Debug Tool User’s Guide and Reference

|
|
|

“AT TERMINATION” on
page 242

Gives Debug Tool control when the application program is
terminated.

Usage notes

v To set breakpoints at specific locations in a program, Debug Tool depends on
that program being loaded into storage. If you issue an AT command for a
specific ENTRY, EXIT, LABEL, LINE, or STATEMENT breakpoint and the program is
not known by Debug Tool, a warning message is issued and the breakpoint is
not set.

v To set a global breakpoint, you can specify an asterisk (*) with the AT command
or you can specify an AT GLOBAL command. For example, if you want to set a
global AT ENTRY breakpoint, specify:
AT ENTRY *;
or
AT GLOBAL ENTRY;

v AT CHANGE, AT ENTRY, AT EXIT, AT LABEL, AT LINE, or AT STATEMENT
breakpoints (when entered for a specific block, label, line, or statement) are
automatically cleared when the containing compile unit is removed from
storage.

v AT CHANGE breakpoints are automatically cleared when the containing blocks are
no longer active or if the relevant variables are in dynamic storage that is freed
by a language construct in the program (for example, a C call to free()).

v Clearing of a breakpoint is independent of whether the breakpoint is ENABLESd
or DISABLEd.

v When multiple AT conditions are raised at the same statement or line, Debug
Tool processes them in a predetermined order.

v If you want breakpoints to only stop your program under certain conditions,
you can use a combination of the AT command and the IF command to establish
a conditional breakpoint.

Related tasks
“Setting breakpoints to halt your program at a line” on page 68
“Halting on a line in C only if a condition is true” on page 76
“Halting on a line in C++ only if a condition is true” on page 86
“Halting on a COBOL line only if a condition is true” on page 97
“Halting on a PL/I line only if a condition is true” on page 108

every_clause syntax
Most forms of the AT command contain an optional every_clause that controls
whether the specified action is taken based on the number of times a situation has
occurred. For example, you might want an action to occur only every 10th time a
breakpoint is reached.

The syntax for every_clause is:

��
EVERY integer FROM integer TO integer

EVERY

�$

Chapter 13. Debug Tool commands 221

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5 means
that Debug Tool is invoked every fifth time the AT-condition is met. The default
is EVERY 1.

FROM integer
Specifies when Debug Tool invocations are to begin. For example, FROM 8
means that Debug Tool is not invoked until the eighth time the AT-condition is
met. If the FROM value is not specified, its value is equal to the EVERY value.

TO integer
Specifies when Debug Tool invocations are to end. For example, TO 20 means
that after the 20th time this AT-condition is met, it should no longer invoke
Debug Tool. If the TO value is not specified, the every_clause continues
indefinitely.

Usage notes
v FROM integer cannot exceed TO integer and all integers must be ≥ 1.
v EVERY by itself is the same as EVERY 1 FROM 1.
v The EVERY, FROM, and TO clauses can be specified in any order.

Examples

v Break every third time statement 50 is reached, beginning with the 48th time
and ending after the 59th time. The breakpoint action is performed the 48th,
51st, 54th, and 57th time statement 50 is reached.
AT EVERY 3 FROM 48 TO 59 STATEMENT 50;

v At the fifth change of structure field member of the structure named mystruct,
print a message saying that it has changed and list its new value. In addition,
clear the CHANGE breakpoint. The current programming language setting is C.
AT FROM 5 CHANGE mystruct.member {

LIST ("mystruct.member has changed.
It is now", mystruct.member);

CLEAR AT CHANGE mystruct.member;
}

AT ALLOCATE (PL/I)
AT ALLOCATE gives Debug Tool control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I. When the AT ALLOCATE
breakpoint occurs, the allocated storage has not yet been initialized; initialization, if
any, occurs when control is returned to the program.

�� AT
every_clause

ALLOCATE

%

identifier
,

(identifier)
*

command �$

identifier
The name of a PL/I controlled variable whose allocation causes an invocation
of Debug Tool. If the variable is the name of a structure, only the major
structure name can be specified.

* Sets a breakpoint at every ALLOCATE.

command
A valid Debug Tool command.

222 Debug Tool User’s Guide and Reference

Usage notes

AT ALLOCATE command is not available to debug VisualAge PL/I for OS/390
programs in full screen mode.

Examples

v When the major structure area_name is allocated, display the address of the
storage that was obtained.
AT ALLOCATE area_name LIST ADDR (area_name);

v List the changes to temp where the storage for temp has been allocated.
DECLARE temp CHAR(80) CONTROLLED INITIAL('abc');

AT ALLOCATE temp;
BEGIN;

AT CHANGE temp;
BEGIN;

LIST (temp);
GO;

END;
GO;

END;
GO;

temp = 'The first time.';
temp = 'The second time.';
temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized. When it is
initialized to 'abc' by the INITIAL phrase, the first AT CHANGE is recognized and
'abc' is listed. The three assignments to temp cause the value to be set again but
the third assignment doesn’t change the value. This example results in one
ALLOCATE breakpoint and three CHANGE breakpoints.

Related references
“every_clause syntax” on page 221

AT APPEARANCE
Gives Debug Tool control when the specified compile unit is found in storage. This
is usually the result of a new load module being loaded. However, for modules
with the main compile unit in COBOL, the breakpoint does not occur until the
compile unit is first entered after being loaded.

�� AT
every_clause

APPEARANCE

%

cu_spec
,

(cu_spec)
*

command �$

* Sets a breakpoint at every APPEARANCE of any compile unit.

command
A valid Debug Tool command.

Usage notes

v In a CICS environment, if an AT APPEARANCE breakpoint is set for a program that
is loaded via XCTL or LINK, the breakpoint will not be raised.

Chapter 13. Debug Tool commands 223

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v If this breakpoint is set in a parent enclave it can be triggered and operated on
with breakpoint commands while the application is in a child enclave.

v If the compile unit is qualified with a load module name, the AT APPEARANCE
breakpoint will only be recognized for the compile unit that is contained in the
specified load module. For example, if a compile unit cux that is in load module
loady appears, the breakpoint AT APPEARANCE loadx::>cux will not be TRIGGERed.

v If the compile unit is not qualified with a load module name, the current load
module qualification is not used.

v Debug Tool gains control when the specified compile unit is first recognized by
Debug Tool. This can occur when a program is reached that contains a reference
to that compile unit. This occurs late enough that the program can be operated
on (setting breakpoints, for example), but early enough that the program has not
yet been executed. In addition, for C, static variables can also be referenced.

v AT APPEARANCE is helpful when setting breakpoints in unknown compile units.
You can set breakpoints at locations currently unknown to Debug Tool by using
the proper qualification and embedding the breakpoints in the command list
associated with an APPEARANCE breakpoint. However, there can be only one
APPEARANCE breakpoint set at any time for a given compile unit and you must
include all breakpoints for that unknown compile unit in a single APPEARANCE
breakpoint.

v For C/C++, AT APPEARANCE is not triggered for compile units that reside in a
loaded module since the compile units are known at the time of the load.

v For C/C++ and PL/I, an APPEARANCE breakpoint is triggered when Debug Tool
finds the specified compile unit in storage. To be triggered, however, the
APPEARANCE breakpoint must be set before the compile unit is loaded.
At the time the APPEARANCE breakpoint is triggered, the compile unit you are
monitoring has not become the currently-running compile unit. The compile unit
that is current when the new compile unit appears in storage, triggering the
APPEARANCE breakpoint, remains the current compile unit until execution passes
to the new compile unit.

v For COBOL, an APPEARANCE breakpoint is triggered when Debug Tool finds the
specified compile unit in storage. To be triggered, however, the APPEARANCE
breakpoint must be set before the compile unit is called.
At the time the APPEARANCE breakpoint is triggered, the compile unit you are
monitoring has not become the currently-running compile unit. The compile unit
that is current when the new compile unit appears in storage, triggering the
APPEARANCE breakpoint, remains the current compile unit until execution passes
to the new compile unit.

Examples

v Establish an entry breakpoint when compile unit cu is found in storage. The
current programming language setting is C.
AT APPEARANCE cu {

AT ENTRY a;
GO;

}

v Defer the AT EXIT and AT LABEL breakpoints until compile unit cuy is first
entered after being loaded into storage. The current programming language
setting is COBOL.

224 Debug Tool User’s Guide and Reference

AT APPEARANCE cuy PERFORM
AT EXIT cuy:>blocky LIST ('Exiting blocky.');
AT LABEL cuy:>lab1 QUERY LOCATION;

END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent on cuy
are automatically cleared. However, if cuy is then loaded again, the APPEARANCE
breakpoint for cuy is triggered and the AT EXIT and AT LABEL breakpoints are
redefined.

Related references
“every_clause syntax” on page 221
“cu_spec syntax” on page 210

AT CALL
Gives Debug Tool control when the application code attempts to call the specified
entry point. Using CALL breakpoints, you can simulate the execution of unfinished
subroutines, create dummy or stub programs, or set variables to mimic resultant
values, allowing you to test sections of code before the whole is complete.

�� AT
every_clause

CALL

%

entry_name
,

(entry_name)
*

command �$

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be
specified if the current programming language setting is C or PL/I.

* Sets a breakpoint at every CALL of any entry point.

command
A valid Debug Tool command.

Usage notes

v AT CALL intercepts the call itself, not the subroutine entry point. C, COBOL, and
PL/I programs compiled with the TEST(PATH) compiler option identify call
targets even if they are unresolved.

v A breakpoint set with AT CALL for a call to a C, C++, or PL/I built-in function is
never triggered.

v CALL statements within an INITIAL attribute on a PL/I variable declaration will
not trigger AT CALL breakpoints.

v AT CALL generally intercepts only calls to entry points known to Debug Tool at
compile time. Calls to entry variables are not intercepted, except when the
current programming language setting is either C or COBOL (compiled with the
TEST run-time option).

v AT CALL 0 intercepts calls to unresolved entry points when the current
programming language setting is C or PL/I (compiled with the TEST run-time
option).

v AT CALL allows you to intercept or bypass the target program by using GO
BYPASS or GOTO. If resumed by a normal GO or STEP, execution resumes by
performing the call.

Chapter 13. Debug Tool commands 225

v If this breakpoint is set in a parent enclave it can be triggered and operated on
with breakpoint commands while the application is in a child enclave.

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v For COBOL, entry_name can refer to a method as well as a procedure.
v For COBOL, remember to enclose the entry_name in double (") or single (')

quotes if it is case sensitive.
v To be able to set CALL breakpoints in C, you must compile your program with

either the PATH or ALL suboption of the TEST compiler option. The default is PATH.
v If your C/C++ program has unresolved entry points or entry variables, issue AT

CALL 0.
v To be able to set CALL breakpoints in C++, you must compile your program with

the TEST compiler option.
v To be able to set CALL breakpoints in COBOL, you must compile your program

with either the PATH or ALL suboption of the TEST compiler option. To be able to
set CALL breakpoints in COBOL for OS/390 programs, you must compile your
program with either the PATH, ALL, or NONE suboption of the TEST compiler
option. For COBOL for OS/390 programs compiled using the NONE suboption, AT
CALL entry_name is not supported. Instead, use AT CALL *.
AT CALL 0 is not supported for use with COBOL programs. However, COBOL is
able to identify CALL targets even if they are unresolved, and also identify entry
variables and intercept them. Therefore, not all external references need be
resolved for COBOL programs.

v To be able to set CALL breakpoints in PL/I, you must compile your program with
either the PATH or ALL suboptions of the TEST compiler option. AT CALL 0 is
supported and is invoked for unresolved external references.

Examples

v Intercept all calls and request input from the terminal.
AT CALL *;

v If the program invokes function badsubr, intercept the call, set variable varbl to
50, and then bypass the target function. The current programming language
setting is C.
AT CALL badsubr {

varbl = 50;
GO BYPASS;

}

Related tasks
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a COBOL program with the TEST compiler option” on page 14
“Compiling a PL/I program with the TEST compiler option” on page 18

Related references
“every_clause syntax” on page 221

AT CHANGE
Gives Debug Tool control when either the application program or Debug Tool
command changes the specified variable value or storage location.

226 Debug Tool User’s Guide and Reference

|
|

�� AT
every_clause

CHANGE �

�

%

reference
%STORAGE (address)

, length
,

(reference)
%STORAGE (address (

, length

command �$

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE
subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant:
v 0x in C
v H in COBOL (using either double (") or single (') quotes)
v A PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be a
positive integer constant. The default value is 1.

command
A valid Debug Tool command.

Usage notes

v Data is watched only in storage; hence a value that is being kept in a register
due to compiler optimization cannot be watched. In addition, the Debug Tool
variables %GPRn, %FPRn, %LPRn, and %EPRn cannot be watched.

v Only entire bytes are watched; bits or bit strings within a byte cannot be singled
out.

v Since AT CHANGE breakpoints are identified by storage address and length, it is
not possible to have two AT CHANGE breakpoints for the same area (address and
length) of storage. That is, an AT CHANGE command replaces a previous AT CHANGE
command if the storage address and length are the same. However, any other
overlap is ignored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the length is
different, the AT CHANGE command will not replace the previous AT CHANGE.

v When more than one AT CHANGE breakpoint is TRIGGERed at a time, AT CHANGE
breakpoints will be TRIGGERed in the order that they were entered. However, if
the TRIGGERing of one breakpoint causes a variable watched by a different
breakpoint to change, the ordering of the TRIGGERs will not necessarily be
according to when they were originally entered. For example,
AT CHANGE y LIST y;
AT CHANGE x y = 4;
GO;

If the next statement to be executed in your program causes the value of x to
change, the CHANGE x breakpoint will be TRIGGERed when Debug Tool gains

Chapter 13. Debug Tool commands 227

control. Processing of CHANGE x causes the value of y to change. If you type GO;
after being informed that CHANGE x was TRIGGERed, Debug Tool will TRIGGER the
CHANGE y breakpoint (before returning control to your program).

In this case, the CHANGE y breakpoint was entered first, but the CHANGE x
breakpoint was TRIGGERed first (because it caused the CHANGE y breakpoint to be
TRIGGERed).

v %STORAGE is a Debug Tool built-in function that is available only in the CHANGE
breakpoint commands.

v For a CICS application on Debug Tool, the CHANGE %STORAGE breakpoint is
cleared at the end of the last process in the application. For a non-CICS
application on Debug Tool, it is cleared at the end of a process.

v The referenced variables must exist when the AT CHANGE breakpoint is defined.
One way to ensure this is to embed the AT CHANGE in an AT ENTRY.

v An AT CHANGE breakpoint gets removed automatically when the specified
variable is no longer defined. AT CHANGEs for C static variables are removed
when the module defining the variable is removed from storage. For C storage
that is allocated using malloc() or calloc(), this occurs when the dynamic
storage is freed using free().

v Changes are not detected immediately, but only at the completion of any
command that has the potential of changing storage or variable values. If you
issue a Debug Tool command that modifies a variable being watched, the CHANGE
condition is raised immediately. You can force more or less frequent checking by
using the SET CHANGE command.

v C/C++ AT CHANGE breakpoint requirements
– The variable must be an lvalue or an array.
– The variable must be declared in an active block if the variable is a parameter

or has a storage class of auto.
– If you specify the address of the storage containing the variable, it must be

specified with a hexadecimal constant.
– A CHANGE breakpoint defined for a static variable is automatically removed

when the file in which the variable was declared is no longer active. A CHANGE
breakpoint defined for an external variable is automatically removed when
the module where the variable was declared is no longer active.

v COBOL AT CHANGE breakpoint requirements
– AT CHANGE using a storage address should not reference a data item that

follows a variable-size element or subgroup within a group. COBOL
dynamically remaps the group when a variable-size element changes size.

– If you specify the address of the storage containing the variable, it must be
with an H constant, delimited by either quotation marks or apostrophes. The H
constant can only be used where an address or POINTER variable can be used.
The COBOL hexadecimal notations for nonnumeric literals should be used for
all other situations.

– Be careful when examining a variable whose allocated storage follows that of
a variable-size element. COBOL dynamically remaps the storage for the
element any time it changes size. This could alter the address of the variable
you want to examine.

– You cannot set a CHANGE breakpoint for a COBOL file record before the file is
opened.

– The variable, when in the local storage section, must be declared in an active
block.

v PL/I AT CHANGE breakpoint requirements

228 Debug Tool User’s Guide and Reference

– CHANGE breakpoint is removed for based or controlled variables when they are
FREEd and for parameters and AUTOMATIC variables when the block in which
they are declared is no longer active.

– CHANGE monitors only structures with single scalar elements. Structures
containing more than one scalar element are not supported.

– The variable must be a valid reference for the current block.
– The breakpoint is automatically removed after the referenced variable ceases

to exist. The CHANGE breakpoint is removed for based or controlled variables
when they are FREEd and for parameters and AUTOMATIC variables when the
block in which they were declared is no longer active.

– A CHANGE breakpoint monitors the storage allocated to the current generation
of a controlled variable. If you subsequently allocate new generations, they
are not automatically monitored.

– If you specify the address of storage containing the variable, you must do so
with a PX constant, delimited by single or double quotation marks. The PX
constant can only be used where an address or pointer variable can be used.

Examples

v Identify the current location each time variable varbl1 or varbl2 is found to
have a changed value. The current programming language setting is COBOL.
AT CHANGE (varbl1, varbl2) PERFORM

QUERY LOCATION;
GO;

END-PERFORM;

v When storage at the hex address 22222 changes, print a message in the log.
Eight bytes of storage are to be watched. The current programming language
setting is C.
AT CHANGE %STORAGE (0x00022222, 8)

LIST "Storage has changed at hex address 22222";

v Set two breakpoints when storage at the hex address 1000 changes. The variable
x is defined at hex address 1000 and is 20 bytes in length. In the first breakpoint,
20 bytes of storage are to be watched. In the second breakpoint, 50 bytes of
storage are to be watched. The current programming language setting is C.
AT CHANGE %STORAGE (0x00001000, 20) /* Breakpoint 1 set */
AT CHANGE %STORAGE (0x00001000, 50) /* Breakpoint 2 set */
AT CHANGE x /* Replaces breakpoint 1, since x is at */

/* hex address 1000 and is 20 bytes long */

Related tasks
“Using constants in COBOL expressions” on page 190

Related references
“every_clause syntax” on page 221
“references syntax” on page 212

AT CURSOR (full-screen mode)
Provides a cursor controlled method for setting a statement breakpoint. It is most
useful when assigned to a PF key.

�� AT
TOGGLE

CURSOR
�$

Chapter 13. Debug Tool commands 229

TOGGLE
Specifies that if the cursor-selected statement already has an associated
statement breakpoint then the breakpoint is removed rather than replaced.

Usage notes

v AT CURSOR does not allow specification of an every_clause or a command, and must
not have a semicolon coded.

v The cursor must be in the Source window and positioned on a line where an
executable statement begins. An AT STATEMENT command for the first executable
statement in the line is generated and executed (or cleared if one is already
defined and TOGGLE is specified).

Example

Define a PF key to toggle the breakpoint setting at the cursor position.
SET PF10 = AT TOGGLE CURSOR;

AT DATE (COBOL)
Gives Debug Tool control for each date processing statement within the specified
block. A date processing statement is a statement that references a date field, or an
EVALUATE or SEARCH statement WHEN phrase that references a date field.

�� AT
every_clause

DATE

%

block_spec
,

(block_spec)
*

command �$

* Sets a breakpoint at every date processing statement.

command
A valid Debug Tool command.

Usage note

When AT DATE is set, execution is halted only for COBOL compile units compiled
with the DATEPROC compiler option.

Examples

v Each time a date processing statement is encountered in the nested subprogram
subrx, display the location of the statement.
AT DATE subrx QUERY LOCATION;

v Each time a date processing statement is encountered in the compile unit,
display the name of the compile unit.
AT DATE * LIST %CU;

v Each time a date processing statement is encountered in the compile unit,
display the location of the statement, list a specific variable, and resume running
the program.
AT DATE * PERFORM

QUERY LOCATION;
LIST DATE-FIELD
GO;

END-PERFORM;

230 Debug Tool User’s Guide and Reference

Related references
“every_clause syntax” on page 221
“block_spec syntax” on page 209

AT DELETE
Gives Debug Tool control when a load module is removed from storage by a
Language Environment delete service, such as on completion of a successful C
release(), COBOL CANCEL, or PL/I RELEASE.

�� AT
every_clause

DELETE

%

load_spec
,

(load_spec)
*

command �$

* Sets a breakpoint at every DELETE of any load module.

command
A valid Debug Tool command.

Usage notes

v Debug Tool gains control for deletes that are affected by the Language
Environment delete service. If a load module is deleted using the OS DELETE
macro, Debug Tool is not informed. This can cause errors if Debug Tool attempts
to operate on any part of the deleted load module.

v AT DELETE cannot specify the initial load module.
v If this breakpoint is set in a parent enclave it can be triggered and operated on

with breakpoint commands while the application is in a child enclave.
v For a CICS application on Debug Tool, this breakpoint is cleared at the end of

the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

Examples

v Each time a load module is deleted, request input from the terminal.
AT DELETE *;

v Stop watching variable var1:>x when load module mymod is deleted.
AT DELETE mymod CLEAR AT CHANGE (var1:>x);

Related references
“every_clause syntax” on page 221
“load_spec syntax” on page 211

AT ENTRY/EXIT
Defines a breakpoint at the specified entry point or exit in the specified block.

�� AT
every_clause

ENTRY
EXIT

%

block_spec
,

(block_spec)
*

command �$

Chapter 13. Debug Tool commands 231

* Sets a breakpoint at every ENTRY or EXIT of any block.

command
A valid Debug Tool command.

Usage notes

v AT ENTRY/EXIT can only be set for programs that are currently fetched or loaded.
To set an entry or exit breakpoint for a currently unknown compile unit, use AT
APPEARANCE.

v An ENTRY or EXIT breakpoint set for a compile unit that becomes nonactive (one
that is not in the current enclave), is suspended until the compile unit becomes
active. An ENTRY/EXIT breakpoint set for a compile unit that is deleted from
storage is suspended until the compile unit is restored. A suspended breakpoint
cannot be triggered or operated on with breakpoint commands.

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v Both ENTRY and EXIT breakpoints for blocks in a fetched or loaded program are
removed when that program is released.

Examples

v At the entry of program subrx, initialize variable ix and continue program
execution. The current programming language setting is COBOL.
AT ENTRY subrx PERFORM

SET ix TO 5;
GO;

END-PERFORM;

v At exit of main, print a message and TRIGGER the SIGUSR1 condition. The current
programming language setting is C.
AT EXIT main {

puts("At exit of the program");
TRIGGER SIGUSR1;
GO;

}

Related references
“every_clause syntax” on page 221
“block_spec syntax” on page 209
“AT APPEARANCE” on page 223

AT GLOBAL
Gives Debug Tool control for every instance of the specified AT-condition. These
breakpoints are independent of their nonglobal counterparts (except for AT PATH,
which is identical to AT GLOBAL PATH). Global breakpoints are always performed
before their specific counterparts.

232 Debug Tool User’s Guide and Reference

�� AT
every_clause

GLOBAL ALLOCATE
APPEARANCE
CALL
DATE
DELETE
ENTRY
EXIT
LABEL
LINE
LOAD
PATH
STATEMENT

command �$

command
A valid Debug Tool command.

You should use GLOBAL breakpoints where you don’t have specific information of
where to set your breakpoint. For example, you want to halt at entry to block
Abcdefg_Unknwn but cannot remember the name, you can issue AT GLOBAL ENTRY
and Debug Tool will halt every time a block is being entered. If you want to halt at
every function call, you can issue AT GLOBAL CALL.

Usage notes

v To set a global breakpoint, you can specify an asterisk (*) with the AT command
or you can specify an AT GLOBAL command.

v Although you can define GLOBAL breakpoints to coexist with singular breakpoints
of the same type at the same location or event, COBOL does not allow you to
define two or more single breakpoints of the same type for the same location or
event. The last breakpoint you define replaces any previous breakpoint.

Examples

v If you want to set a global AT ENTRY breakpoint, specify:
AT ENTRY *;
or
AT GLOBAL ENTRY;

v At every statement or line, display a message identifying the statement or line.
The current programming language setting is COBOL.
AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);

v If you enter (for COBOL):
AT EXIT table1 PERFORM
LIST TITLED (age, pay);
GO;
END-PERFORM;

then enter:
AT EXIT table1 PERFORM
LIST TITLED (benefits, scale);
GO;
END-PERFORM;

only benefits and scale are listed when your program reaches the exit point of
block table1. The second AT EXIT replaces the first because the breakpoints are
defined for the same location. However, if you define the following GLOBAL
breakpoint:

Chapter 13. Debug Tool commands 233

AT GLOBAL EXIT PERFORM
LIST TITLED (benefits, scale);
GO;
END-PERFORM;

in conjunction with the first EXIT breakpoint, when your program reaches the
exit from table1, all four variables (age, pay, benefits, and scale) are listed with
their values, because the GLOBAL EXIT breakpoint can coexist with the EXIT
breakpoint set for table1.

v To set a GLOBAL DATE breakpoint, specify:
AT DATE *;

or
AT GLOBAL DATE;

v To combine a global breakpoint with other Debug Tool commands, specify:
AT GLOBAL DATE QUERY LOCATION;

Related references
“every_clause syntax” on page 221

AT LABEL
Gives Debug Tool control when execution has reached the specified statement label
or group of labels. For C and PL/I, if there are multiple labels associated with a
single statement, you can specify several labels and Debug Tool gains control at
each label. For COBOL, AT LABEL lets you specify several labels, but for any group
of labels that are associated with a single statement, Debug Tool gains control for
that statement only once.

�� AT
every_clause

LABEL

%

statement_label
,

(statement_label)
*

command �$

* Sets a breakpoint at every LABEL.

command
A valid Debug Tool command.

Usage notes

v A COBOL statement_label can have either of the following forms:
– name

This form can be used in COBOL for reference to a section name or for a
COBOL paragraph name that is not within a section or is in only one section
of the block.

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph (name1)
that is within a section (name2), if the same name also exists in other sections
in the same block. You can specify either OF or IN, but Debug Tool always
uses OF for output.

Either form can be prefixed with the usual block, compile unit, and load module
qualifiers.

234 Debug Tool User’s Guide and Reference

v For C/C++ or PL/I, you can set a LABEL breakpoint at each label located at a
statement. This is the only circumstance where you can set more than one
breakpoint at the same location.

v A LABEL breakpoint set for a nonactive compile unit (one that is not in the
current enclave), is suspended until the compile unit becomes active. A LABEL
breakpoint set for a compile unit that is deleted from storage is suspended until
the compile unit is restored. A suspended breakpoint cannot be triggered or
operated on with breakpoint commands.

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v You cannot set LABEL breakpoints at PL/I label variables.
v LABEL breakpoints for label constants in a fetched, loaded program or DLL are

removed when that program is released.
v To be able to set LABEL breakpoints in C or PL/I, you must compile your

program with either the PATH and SYM suboptions or the ALL suboption of the
TEST compiler option.

v You can set breakpoints for more than one label at the same location. Debug
Tool is entered for each specified label.

v To be able to set LABEL breakpoints in COBOL, you must compile your program
with either the STMT, PATH, or ALL suboption and the SYM suboption of the TEST
compiler option.
When defining specific LABEL breakpoints Debug Tool sets a breakpoint for each
label specified, unless there are several labels on the same statement. In this
case, only the last LABEL breakpoint defined is set.

v For COBOL, a reference to a label or a label constant can take either of the
following forms:
– name

This form is used to refer to a section name or the name of a paragraph
contained in not more than one section of the block.

– name1 OF name2 or name1 IN name2

This form is used to refer to a paragraph contained within a section if the
paragraph name exists in other sections in the same block. You can use either
OF or IN, but Debug Tool only uses OF for output to the log file.

v AT LABEL command is not available to debug VisualAge for OS/390 programs in
full screen mode.

Examples

v Set a breakpoint at label create in the currently qualified block.
AT LABEL create;

v At program label para OF sect1 display variable names x and y and their
values, and continue program execution. The current programming language
setting is COBOL.
AT LABEL para OF sect1 PERFORM

LIST TITLED (x, y);
GO;

END-PERFORM;

v Set a breakpoint at labels label1 and label2, even though both labels are
associated to the same statement. The current programming language setting is
C.
AT LABEL label1 LIST 'Stopped at label1'; /* Label1 is first */
AT LABEL label2 LIST 'Stopped at label2'; /* Label2 is second */

Chapter 13. Debug Tool commands 235

Related references
“every_clause syntax” on page 221
“statement_label syntax” on page 213

AT LINE
Gives Debug Tool control at the specified line.

AT LOAD
Gives Debug Tool control when the specified load module is brought into storage.
For example, Debug Tool gains control on completion of a successful C fetch(), a
PL/I FETCH, or during a COBOL dynamic CALL. To stop at a compile unit or
program in a COBOL DLL, use AT APPEARANCE. Once the breakpoint is raised
for the specified load module, it is not raised again unless either the load module
is released and fetched again or another load module with the specified name is
fetched.

You can set LOAD breakpoints regardless of what compiler options are in effect.

�� AT
every_clause

LOAD

%

load_spec
,

(load_spec)
*

command �$

* Sets a breakpoint at every LOAD of any load module.

command
A valid Debug Tool command.

Usage notes

v Debug Tool gains control for loads that are affected by the Language
Environment load service. If a load module is loaded using the OS LOAD macro
or EXEC CICS LOAD, Debug Tool is not informed.

v AT LOAD can be used to detect the loading of specific language library load
modules; however, the loading of language library load modules does not
TRIGGER an AT GLOBAL LOAD or AT LOAD *.

v AT LOAD cannot specify the initial load module because it is already loaded when
Debug Tool is invoked.

v A LOAD breakpoint is triggered when a new enclave is entered.
v If this breakpoint is set in a parent enclave it can be triggered and operated on

with breakpoint commands while the application is in a child enclave.
v For a CICS application on Debug Tool, this breakpoint is cleared at the end of

the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v AT LOAD on an implicitly or explicitly loaded DLL is not supported by Debug
Tool.

v Debug Tool recognizes an implicitly loaded DLL only after a compile unit in that
DLL is called. For example, if LIST NAMES CUS is issued after an implicit load of
a DLL, there will be no entry in the output of the command of the DLL.

v Depending on the version of the C/C++ compiler used, Debug Tool might
recognize a compile unit in a DLL only after it has had a function in it called.
For example, if a DLL contains a function fn1 in CU file1 and it contains a

236 Debug Tool User’s Guide and Reference

function fn2 in CU file2, a call to fn1 will not enable Debug Tool to recognize
file2, only file1. Similarly, a call to fn2 will not enable Debug Tool to
recognize file1.

v At the triggering of a LOAD breakpoint for C/C++ and PL/I, Debug Tool has
enough information about the loaded module to set breakpoints and examine
variables of static and extern storage classes.

v At the triggering of a LOAD breakpoint for COBOL and C/C++ DLL’s, Debug
Tool does not have enough information about the loaded module to set
breakpoints in blocks contained within the module. At the triggering of an
APPEARANCE breakpoint, however, you can set such breakpoints.

Examples

v Print a message when load module mymod is loaded. The current programming
language setting is either C/C++ or COBOL.
AT LOAD mymod LIST ("Load module mymod has been loaded");

v Establish an entry breakpoint when load module a is fetched and then resume
execution. The current programming language setting is C.
AT LOAD a {

AT ENTRY a;
GO;

}

Related references
“every_clause syntax” on page 221
“load_spec syntax” on page 211

AT OCCURRENCE
Gives Debug Tool control on a language or Language Environment condition or
exception.

�� AT
every_clause

OCCURRENCE

%

condition
,

(condition)

command �$

condition
A valid condition or exception. This can be either an Language Environment
symbolic feedback code, or a language-oriented keyword or code, depending
on the current programming language setting.

Following are the C/C++ condition constants; they must be uppercase and not
abbreviated:

SIGABND
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGIOERR
SIGSEGV

SIGTERM
SIGUSR1
SIGUSR2
THROWOBJ

When a C++ user specifies AT CONDITION THROWOBJ, Debug Tool transfers
control to the user at the point of the throw in C++ code.

PL/I condition constants can be used. However, FILE condition constants and
CONDITION condition constants can not be used while debugging VisualAge
PL/I for OS/390 programs in full screen mode.

Chapter 13. Debug Tool commands 237

There are no COBOL condition constants. Instead, an Language Environment
symbolic feedback code must be used, for example, CEE347.

command
A valid Debug Tool command.

Program conditions and condition handling vary from language to language. The
methods the OCCURRENCE breakpoint uses to adapt to each language are described
below.

For C/C++:

When a C/C++ or an Language Environment condition occurs during your
session, the following series of events takes place:
1. Debug Tool is invoked before any C/C++ signal handler.
2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool processes

that breakpoint and executes any commands you have specified. If you did not
set an OCCURRENCE breakpoint for that condition, and:
v If the current test-level setting is ALL, Debug Tool prompts you for

commands or reads them from a commands file.
v If the current test-level setting is ERROR, and the condition has an error

severity level (that is, anything but SIGUSR1, SIGUSR2, SIGINT, or SIGTERM),
Debug Tool gets commands by prompting you or by reading from a
commands file.

v If the current test-level setting is NONE, Debug Tool ignores the condition and
returns control to the program.

You can set OCCURRENCE breakpoints for equivalent C/C++ signals and Language
Environment conditions. For example, you can set AT OCCURRENCE CEE345 and AT
OCCURRENCE SIGSEGV during the same debug session. Both indicate an addressing
exception and, if you set both breakpoints, no error occurs. However, if you set
OCCURRENCE breakpoints for a condition using both its C/C++ and Language
Environment designations, the Language Environment breakpoint is the only
breakpoint triggered. Any command list associated with the C condition is not
executed.

You can use OCCURRENCE breakpoints to control your program’s response to errors.

Usage notes

v If the application program also has established an exception handler for the
condition then that handler is entered when Debug Tool releases control, unless
return is by use of GO BYPASS or GOTO or a specific statement.

v OCCURRENCE breakpoints for COBOL IGZ conditions can only be set after a
COBOL run-time module has been initialized.

v For C/C++ and PL/I, certain Language Environment conditions map to C/C++
SIGxxx values and PL/I condition constants. It is possible to enter two AT
OCCURRENCE breakpoints for the same condition. For example, one could be
entered with the Language Environment condition name and the other could be
entered with the C/C++ SIGxxx condition constant. In this case, the AT
OCCURRENCE breakpoint for the Language Environment condition name is
TRIGGERed and the AT OCCURRENCE breakpoint for the C/C++ condition constant
is not. However, if an AT OCCURRENCE breakpoint for the Language Environment
condition name is not defined, the corresponding mapped C/C++ or PL/I
condition constant is TRIGGERed.

238 Debug Tool User’s Guide and Reference

v If this breakpoint is set in a parent enclave it can be triggered and operated on
with breakpoint commands while the application is in a child enclave.

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v For COBOL, Debug Tool detects Language Environment conditions. If a
Language Environment condition occurs during your session, the following
series of events takes place:
1. Debug Tool is invoked before any condition handler.
2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool processes

that breakpoint and executes any commands you have specified. If you have
not set an OCCURRENCE breakpoint for that condition, and:
– If the current test-level setting is ALL, Debug Tool prompts you for

commands or reads them from a commands file.
– If the current test-level setting is ERROR, and the condition has a severity

level of 2 or higher, Debug Tool gets commands by prompting you or by
reading from a commands file.

– If the current test-level setting is NONE, Debug Tool ignores the condition
and returns control to the program.

You can use OCCURRENCE breakpoints to control your program’s response to
errors.

v For PL/I, Debug Tool detects Language Environment and PL/I conditions. If a
condition occurs, Debug Tool is invoked before any condition handler. If you
have issued an ON command or set an OCCURRENCE breakpoint for the specified
condition, Debug Tool runs the associated commands.

v If there is no AT OCCURRENCE or ON set, then:
– If the current test-level setting is ALL, Debug Tool prompts you for commands

or reads them from a commands file.
– If the current test-level setting is ERROR, and the condition has an error

severity level of 2 or higher, Debug Tool gets commands by prompting you or
by reading from a commands file.

– If the current test-level setting is NONE, Debug Tool ignores the condition and
returns control to the program.

v Once Debug Tool returns control to the program, any relevant PL/I ON-unit is
run.

Examples

v When a data exception occurs, query the current location. The current
programming language setting is either C or COBOL.
AT OCCURRENCE CEE347 QUERY LOCATION;

v When the SIGSEGV condition is raised, set an error flag and call a user
termination routine. The current programming language setting is C.
AT OCCURRENCE SIGSEGV {

error = 1;
terminate (error);

}

v Suppose SIGFPE maps to CEE347 and the following breakpoints are defined. The
current programming language setting is C.
AT OCCURRENCE SIGFPE LIST "SIGFPE condition";
AT OCCURRENCE CEE347 LIST "CEE347 condition";

Chapter 13. Debug Tool commands 239

If the Language Environment condition CEE347 is raised, the CEE347 breakpoint
is TRIGGERed.

However, if a breakpoint had not been defined for CEE347 and the CEE347
condition is raised, the SIGFPE breakpoint is TRIGGERed (since it is mapped to
CEE347).

Related references
“every_clause syntax” on page 221
“ON command (PL/I)” on page 300
“Language Environment conditions and their C/C++ equivalents” on page 164
z/OS Language Environment Programming
Guide
z/OS Language Environment Debugging
Guide
PL/I for MVS and VM Language Reference

AT PATH
Gives Debug Tool control when the flow of control changes (at a path point). AT
PATH is identical to AT GLOBAL PATH.

�� AT
every_clause

PATH command �$

command
A valid Debug Tool command.

Usage notes

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v For C, COBOL and PL/I, you can set PATH breakpoints if you compiled with the
PATH suboption.

v For C++, you can set PATH breakpoints at any time.
v For COBOL and PL/I, you can set PATH breakpoints at any time (default is PATH),

but setting of other breakpoints is different for each suboption of the TEST
compiler option.

Examples

v Whenever a path point has been reached, display the five most recently
processed breakpoints and conditions.
AT PATH LIST LAST 5 HISTORY;

v Whenever a path point has been reached, display a message and query the
current location. The current programming language setting is COBOL.
AT PATH PERFORM

LIST "Path point reached";
QUERY LOCATION;
GO;

END-PERFORM;

v Whenever a path point has been reached, the value of %PATHCODE contains the
code representing the type of path point stopped at. If the program is stopped at
the entry to a block, display the %PATHCODE.

240 Debug Tool User’s Guide and Reference

AT PATH LIST %PATHCODE;

Related tasks
“Compiling a C program with the TEST compiler option” on page 8
“Compiling a COBOL program with the TEST compiler option” on page 14
“Compiling a PL/I program with the TEST compiler option” on page 18
“Compiling a C++ program with the TEST compiler option” on page 12

Related references
“every_clause syntax” on page 221
“%PATHCODE” on page 370

AT Prefix (full-screen mode)
Sets a statement breakpoint when you issue this command via the Source window
prefix area. When one or more breakpoints have been set on a line, the prefix area
for that line is highlighted.

�� AT
integer

�$

integer
Selects a relative statement (for C/C++ and PL/I) or a relative verb (for
COBOL) within the line. The default value is 1.

Example

Set a breakpoint at the third statement or verb in the line (typed in the prefix area
of the line where the statement is found).
AT 3

No space is needed as a delimiter between the keyword and the integer; hence, AT
3 is equivalent to AT3.

AT STATEMENT
Gives Debug Tool control at each specified statement or line within the given set of
ranges.

�� AT
every_clause LINE

STATEMENT
%

statement_id_range
,

(statement_id_range)
*

�

� command �$

* Sets a breakpoint at every STATEMENT or LINE.

command
A valid Debug Tool command.

Usage notes

Chapter 13. Debug Tool commands 241

v A STATEMENT breakpoint set for a nonactive compile unit (one that is not in the
current enclave), is suspended until the compile unit becomes active. A STATEMENT
breakpoint set for a compile unit that is deleted from storage is suspended until
the compile unit is restored. A suspended breakpoint cannot be triggered or
operated on with breakpoint commands.

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

v You can specify the first relative statement on each line in any one of three
ways. If, for example, you want to set a STATEMENT breakpoint at the first relative
statement on line three, you can enter AT 3, AT 3.0, or AT 3.1. However, Debug
Tool logs them differently according to the current programming language as
follows:
– For C/C++

The first relative statement on a line is specified with "0". All of the above
breakpoints are logged as AT 3.0.

– For COBOL or PL/I

The first relative statement on a line is specified with "1". All of the above
breakpoints are logged as AT 3.1.

Examples

v Set a breakpoint at statement or line number 23. The current programming
language setting is COBOL.
AT 23 LIST 'About to close the file';

v Set breakpoints at statements 5 through 9 of compile unit mycu. The current
programming language setting is C.
AT STATEMENT "mycu":>5 - 9;

v Set breakpoints at lines 19 through 23 and at statements 27 and 31.
AT LINE (19 - 23, 27, 31);

or
AT LINE (27, 31, 19 - 23);

Related references
“every_clause syntax” on page 221
“statement_id_range and stmt_id_spec syntax” on page 212

AT TERMINATION
Gives Debug Tool control when the application program is terminated.

�� AT TERMINATION command �$

command
A valid Debug Tool command.

Usage notes

v AT TERMINATION does not allow specification of an every_clause because
termination can only occur once.

v If Debug Tool has been initialized for any reason, the following default form of
this command is automatically in effect:

242 Debug Tool User’s Guide and Reference

AT TERMINATION;

This definition causes control to be given to your terminal (or primary
commands file) when the program ends. This termination breakpoint can be
replaced or cleared at any time with the AT TERMINATION or CLEAR AT
TERMINATION command.

v If this breakpoint is set in a parent enclave, it can be triggered and operated on
with breakpoint commands while the application is in a child enclave.

v When Debug Tool gains control, normal execution of the program is complete;
however, a CALL or function invocation from Debug Tool can continue to
perform program code. When the AT TERMINATION breakpoint gives control to
Debug Tool:
– Fetched load modules have not been released
– Files have not been closed
– Language-specific termination has been invoked yet no action has been taken

In C, the user atexit() lists have already been called.

In PL/I, the FINISH condition was already raised.
v You are allowed to enter any command with AT TERMINATION. However, normal

error messages are issued for any command that cannot be completed
successfully because of lack of information about your program.

v The TERMINATION breakpoint is set automatically at Debug Tool initialization. It
remains in effect for the entire Debug Tool session. Changes made to this
breakpoint in one enclave will remain in effect when control is passed to another
enclave.

v You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at any time
to disable or clear the breakpoint. It remains disabled or cleared until you
reenable or reset it.

v For a CICS application on Debug Tool, this breakpoint is cleared at the end of
the last process in the application. For a non-CICS application on Debug Tool, it
is cleared at the end of a process.

Examples

v When the program ends, check the Debug Tool environment to see what files
have not been closed.
AT TERMINATION DESCRIBE ENVIRONMENT;

v When the program ends, display the message "Program has ended" and end the
Debug Tool session. The current programming language setting is C.
AT TERMINATION {

LIST "Program has ended";
QUIT;

}

BEGIN command (PL/I)
BEGIN and END delimit a sequence of one or more commands to form one longer
command. The BEGIN and END keywords cannot be abbreviated.

�� BEGIN ; % command END ; �$

Chapter 13. Debug Tool commands 243

command
A valid Debug Tool command.

Usage notes

v The BEGIN command is most helpful when used in AT, IF, or ON commands.
v The BEGIN command does not imply a new block or name scope. It is equivalent

to a PL/I simple DO.

Examples

v Set a breakpoint at statement 320 listing the value of variable x and assigning
the value of 2 to variable a.
AT 320 BEGIN;

LIST (x);
a = 2;

END;

v When the PL/I condition FIXEDOVERFLOW is raised (that is, when the length of the
result of a fixed-point arithmetic operation exceeds the maximum length
allowed) list the value of variable x and assign the value of 2 to variable a. The
current programming language setting is PL/I.
ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block command (C/C++)
The block command allows you to group any number of Debug Tool commands
into one command. When you enclose Debug Tool commands within a single set
of braces ({}), everything within the braces is treated as a single command. You can
place a block anywhere a command is allowed.

�� {

% command

} �$

command
A valid Debug Tool command.

Usage notes

v Declarations are not allowed within a nested block.
v The C block command does not end with a semicolon. A semicolon after the

closing brace is treated as a Null command.

Example

Establish an entry breakpoint when load module a is fetched.
AT LOAD a {

AT ENTRY a;
GO;

}

244 Debug Tool User’s Guide and Reference

break command (C/C++)
The break command allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the logical end. You can
place a break command only in the body of a looping command or in the body of
a switch command. The break keyword must be lowercase and cannot be
abbreviated.

�� break ; �$

In a looping statement, the break command ends the loop and moves control to
the next command outside the loop. Within nested statements, the break command
ends only the smallest enclosing do, for, switch, or while commands.

In a switch body, the break command ends the execution of the switch body and
gives control to the next command outside the switch body.

Examples

v The following example shows a break command in the action part of a for
command. If the i-th element of the array string is equal to '\0', the break
command causes the for command to end.
for (i = 0; i < 5; i++) {

if (string[i] == '\0')
break;

length++;
}

v The following switch command contains several case clauses and one default
clause. Each clause contains a function call and a break command. The break
commands prevent control from passing down through subsequent commands
in the switch body.
char key;

key = '-';
AT LINE 15 switch (key)
{

case '+':
add();
break;

case '-':
subtract();
break;

default:
printf("Invalid key\n");
break;

}

CALL command
The CALL command invokes either a procedure, entry name, or program name, or it
requests that an Language Environment run-time dump be produced. The C/C++
equivalent for CALL is a function reference. PL/I subroutines or functions cannot be
called dynamically during a Debug Tool session. The CALL keyword cannot be
abbreviated.

In C++, calls can be made to any user function as long as the function is declared
as:

Chapter 13. Debug Tool commands 245

extern "C"

In COBOL, the CALL command cannot be issued when Debug Tool is at
initialization.

The following table summarizes the various forms of the CALL command.

“CALL %DUMP” Invokes the Language Environment dump service to
obtain a formatted dump.

“CALL entry_name (COBOL)” on
page 250

Invokes an entry name in the application program
(COBOL).

“CALL procedure” on page 251 Invokes a procedure that has been defined with the
PROCEDURE command.

CALL %DUMP
Invokes the Language Environment dump service to obtain a formatted dump.

�� CALL %DUMP
(options_string)

, title

; �$

title
Specifies the identification printed at the top of each page of the dump. It must
be a fixed-length character string, conforming to the current programming
language syntax for a character string constant (that is, enclosed in quotes
according to the rules of that programming language). The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string, conforming to the current programming
language syntax for a character string constant, which specifies the type,
format, and destination of dump information. The string length cannot exceed
247 bytes.

Options are declared as a string of keywords separated by blanks or commas.
Some options have suboptions that follow the option keyword and are
contained in parentheses. The options can be specified in any order, but the
last option declaration is honored if there is a conflict between it and any
preceding options.

The options_string can include the following:

THREAD(ALL|CURRENT)
Dumps the current thread or all threads associated with the current
enclave. The default is to dump only the current thread. Only one thread is
supported in Language Environment. For enclaves that consist of a single
thread, THREAD(ALL) and THREAD(CURRENT) are equivalent.

THREAD can be abbreviated as THR.

CURRENT can be abbreviated as CUR.

TRACEBACK
Requests a traceback of active procedures, blocks, condition handlers, and
library modules on the call chain. The traceback shows transfers of control
from either calls or exceptions. The traceback extends backwards to the
main program of the current thread.

246 Debug Tool User’s Guide and Reference

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK
Suppresses traceback.

NOTRACEBACK can be abbreviated as NOTRACE.

FILES
Requests a complete set of attributes of all files that are open and the
contents of the buffers used by the files.

FILES can be abbreviated as FILE.

NOFILES
Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

VARIABLES
Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved in
the stack frame at the time of call. There is no way to print a subset of this
information.

Variables and arguments are printed only if the symbol tables are available.
A symbol table is generated if a program is compiled using the compile
options shown below for each language:

Language Compiler option

C TEST(SYM)
C++ TEST
COBOL TEST or TEST(h,SYM)
PL/I TEST(,SYM)

The variables, arguments, and registers are dumped starting with Debug
Tool. The dump proceeds up the chain for the number of routines specified
by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

NOVARIABLES
Suppresses dump of variables, arguments, and registers.

NOVARIABLES can be abbreviated as NOVAR.

BLOCKS
Produces a separate hexadecimal dump of control blocks used in Language
Environment and member language libraries.

Global control blocks and control blocks associated with routines on the
call chain are printed. Control blocks are printed for Debug Tool. The
dump proceeds up the call chain for the number of routines specified by
the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump
of control blocks used in the file analysis.

BLOCKS can be abbreviated as BLOCK.

NOBLOCKS
Suppresses the hexadecimal dump of control blocks.

Chapter 13. Debug Tool commands 247

NOBLOCKS can be abbreviated as NOBLOCK.

STORAGE
Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global
storage and storage associated with each routine on the call chain is
printed. Storage is dumped for Debug Tool. The dump proceeds up the call
chain for the number of routines specified by the STACKFRAME option.
Storage for all file buffers is also dumped if the FILES option is specified.
While using Dynamic Debug, some of the original application instructions
are not displayed because they are replaced by '0A91'x instructions.

STORAGE can be abbreviated as STOR.

NOSTORAGE
Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.

STACKFRAME(n|ALL)
Specifies the number of stack frames dumped from the call chain.

If STACKFRAME(ALL) is specified, all stack frames are dumped. No stack
frame storage is dumped if STACKFRAME(0) is specified.

The particular information dumped for each stack frame depends on the
VARIABLE, BLOCK, and STORAGE option declarations specified. The first stack
frame dumped is the one associated with Debug Tool, followed by its
caller, and proceeding backwards up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE(n)
Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (0) indicates that there
should be no page breaks in the dump.

PAGESIZE can be abbreviated to PAGE.

FNAME(s)
Specifies the ddname of the file where the dump report is written.

The default ddname CEEDUMP is used if this option is not specified.

CONDITION
Specifies that for each condition active on the call chain, the following
information is dumped from the Condition Information Block (CIB):
v The address of the CIB
v The message associated with the current condition token
v The message associated with the original condition token, if different

from the current one
v The location of the error
v The machine state at the time the condition manager was invoked
v The ABEND code and REASON code, if the condition occurred because

of an ABEND.

The particular information that is dumped depends on the condition that
caused the condition manager to be invoked. The machine state is included
only if a hardware condition or ABEND occurred. The ABEND and
REASON codes are included only if an ABEND occurred.

248 Debug Tool User’s Guide and Reference

CONDITION can be abbreviated as COND.

NOCONDITION
Suppresses dump condition information for active conditions on the call
chain.

NOCONDITION can be abbreviated as NOCOND.

ENTRY
Includes in the dump a description of the Debug Tool routine that called
the Language Environment dump service and the contents of the registers
at the point of the call. For the currently supported programming
languages, ENTRY is extraneous and will be ignored.

NOENTRY
Suppresses the description of the Debug Tool routine that called the
Language Environment dump service and the contents of the registers at
the point of the call.

The defaults for the preceding options are:
CONDITION
FILES
FNAME(CEEDUMP)
NOBLOCKS
NOENTRY
NOSTORAGE
PAGESIZE(60)
STACKFRAME(ALL)
THREAD(CURRENT)
TRACEBACK
VARIABLES

Usage notes

v If incorrect options are used, a default dump is written.
v Debug Tool does not analyze any of the CALL %DUMP options, but just passes

them along to the Language Environment dump service. Some of these options
might not be very appropriate, because the call is being made from Debug Tool
rather than from your program.

v When you use CALL %DUMP, one of the following ddnames must be allocated for
you to receive a formatted dump:
– CEEDUMP (default)
– SYSPRINT.

Control might not be returned to Debug Tool after the dump is produced,
depending on the option string specified.

v COBOL does not do anything if the FILES option is specified; the BLOCKS option
gives the file information instead.

v Using a small n (like 1 or 2) with the STACKFRAME option will not produce useful
results because only the Debug Tool stack frames appear in your dump. Larger
values of n or ALL should be used to ensure that application stack frames are
shown.

Examples

v Request a formatted dump that traces active procedures, blocks, condition
handlers, and library modules. Identify the dump as "Dump after read".
CALL %DUMP ("TRACEBACK", "Dump after read");

Chapter 13. Debug Tool commands 249

v Call the Language Environment dump service to obtain a formatted dump
including traceback information, file attributes, and buffers.
CALL %DUMP ("TRACEBACK FILES");

Related references
z/OS Language Environment Programming
Guide
z/OS Language Environment Debugging
Guide

CALL entry_name (COBOL)
Invokes an entry name in the application program. The entry name must be a
valid external entry point name (that is, CALLable from other compile units).

�� CALL identifier
literal

%USING identifier_clause

; �$

identifier_clause:

%

%

identifier
REFERENCE ADDRESS OF

BY

CONTENT identifier
BY ADDRESS OF

LENGTH OF
literal

identifier
A valid Debug Tool COBOL identifier.

literal
A valid COBOL literal.

Usage notes

v If you have a COBOL entry point name that is the same as a Debug Tool
procedure name, the procedure name takes precedence when using the CALL
command. If you want the entry name to take precedence over the Debug Tool
procedure name, you must qualify the entry name when using the CALL
command.

v You can use the CALL entry_name command to change program flow
dynamically. You can pass parameters to the called module.

v The CALL follows the same rules as CALLs within the COBOL language.
v The COBOL ON OVERFLOW and ON EXCEPTION phrases are not supported, so

END-CALL is not supported.

250 Debug Tool User’s Guide and Reference

v Only CALLs to separately compiled programs are supported; nested programs are
not CALLable by this Debug Tool command (they can of course be invoked by
GOTO or STEP to a compiled-in CALL).

v All CALLs are dynamic, that is, the CALLed program (whether specified as a literal
or as an identifier) is loaded when it is CALLed.

v See COBOL for OS/390 & VM Language Reference for an explanation of the
following COBOL keywords: ADDRESS, BY, CONTENT, LENGTH, OF, REFERENCE,
USING.

v An entry_name cannot refer to a method.
v A windowed date field cannot be specified as the identifier containing the entry

name.

Example

Call the entry name sub1 passing the variables a, b, and c.
CALL "sub1" USING a b c;

Related references
COBOL for OS/390 & VM Language Reference

CALL procedure
Invokes a procedure that has been defined with the PROCEDURE command.

�� CALL procedure_name ; �$

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command.

Usage notes

v Since the Debug Tool procedure names are always uppercase, the procedure
name is converted to uppercase even for programming languages that have
mixed-case symbols.

v The CALL keyword is required even for programming languages that do not use
CALL for subroutine invocations.

v The CALL command is restricted to calling procedures in the currently executing
enclave.

Example Create and call the procedure named proc1.
proc1: PROCEDURE;

LIST (r, c);
END;
AT 54 CALL proc1;

CLEAR command
The CLEAR command removes the actions of previously issued Debug Tool
commands. Some breakpoints are removed automatically when Debug Tool
determines that they are no longer meaningful. For example, if you set a
breakpoint in a fetched or loaded compile unit, the breakpoint is discarded when
the compile unit is released.

Chapter 13. Debug Tool commands 251

�� CLEAR

%

%

%

%

%

%

AT
AT_command
generic_AT_command

DECLARE
identifier

,

(identifier)
EQUATE

identifier
,

(identifier)
LOG
MONITOR

number
,

(number)
ON

pli_condition
,

(pli_condition)
PROCEDURE

procedure_name
,

(procedure_name)
VARIABLES

identifier
,

(identifier)

; �$

AT Removes all breakpoints from previously issued AT commands (including
GLOBAL breakpoints).

AT_command
A valid AT command that includes at least one operand. The AT command
must be complete except that the every_clause and command are omitted.

generic_AT_command
A valid AT command without operands. It can be one of the following:
ALLOCATE, APPEARANCE, CALL, CHANGE, CURSOR, DATE, DELETE, ENTRY, EXIT,
LABEL, LOAD, OCCURRENCE, PATH, STATEMENT (the LINE keyword can be used in
place of STATEMENTS), or TERMINATION.

DECLARE
Removes previously defined variables and tags. If no identifier follows DECLARE,
all session variables and tags are cleared. DECLARE is equivalent to VARIABLES.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.

EQUATE
Removes previously defined symbolic references. If no identifier follows EQUATE,
all existing SET EQUATE synonyms are cleared.

252 Debug Tool User’s Guide and Reference

identifier
The name of a previously defined reference synonym declared during the
Debug Tool session using SET EQUATE. This operand must follow the rules
for the current programming language.

LOG
Erases the log file and clears out the data being retained for scrolling. In line
mode, CLEAR LOG clears only the log file.

For MVS only: If the log file is directed to a SYSOUT type file, CLEAR LOG will
not clear the log contents in the file.

MONITOR
Clears the commands defined for MONITOR. If no number follows MONITOR, the
entire list of commands affecting the monitor window is cleared; the monitor
window is empty.

number
A positive integer that refers to a monitored command. If a list of integers
is specified, all commands represented by the specified list are cleared.

ON (PL/I)
Removes the effect of an earlier ON command. If no pli_condition follows ON,
all existing ON commands are cleared.

pli_condition
Identifies an exception condition for which there is an ON command
defined.

PROCEDURE
Clears previously defined Debug Tool procedures. If no procedure_name follows
PROCEDURE, all inactive procedures are cleared.

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command. The procedure
must be currently in storage and not active.

VARIABLES
Removes previously defined variables and tags. If no identifier follows
VARIABLES, all session variables and tags are cleared. VARIABLES is equivalent to
DECLARE.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.

Usage notes

v Only an AT LINE or AT STATEMENT breakpoint can be cleared with a CLEAR AT
CURSOR command.

v To clear every single breakpoint in the Debug Tool session, issue CLEAR AT
followed by CLEAR AT TERMINATION.

v To clear a global breakpoint, you can specify an asterisk (*) with the CLEAR AT
command or you can specify a CLEAR AT GLOBAL command.
If you have only a global breakpoint set and you specify CLEAR AT ENTRY
without the asterisk (*) or GLOBAL keyword, you get a message saying there are
no such breakpoints.

Examples

Chapter 13. Debug Tool commands 253

v Remove the LABEL breakpoint set in the program at label create.
CLEAR AT LABEL create;

v Remove previously defined variables x, y, and z.
CLEAR DECLARE (x, y, z);

v Remove the effect of the ninth command defined for MONITOR.
CLEAR MONITOR 9;

v Remove the structure type definition tagone (assuming all variables declared
interactively using the structure tag have been cleared). The current
programming language setting is C.
CLEAR VARIABLES struct tagone;

v Establish some breakpoints with the AT command and then remove them with
the CLEAR command (checking the results with the LIST command).
AT 50;
AT 56;
AT 55 LIST (r, c);
LIST AT;
CLEAR AT 50;
LIST AT;
CLEAR AT;
LIST AT;

v If you want to clear an AT ENTRY * breakpoint, specify:
CLEAR AT ENTRY *;
or
CLEAR AT GLOBAL ENTRY;

v If you want to remove the DATE breakpoint for block MYBLOCK, specify:
CLEAR AT DATE MYBLOCK;

v If you want to remove a generic DATE breakpoint, specify:
CLEAR AT DATE *;

Related references
“CLEAR prefix (full-screen mode)”
“AT command” on page 220

CLEAR prefix (full-screen mode)
Clears a breakpoint when you issue this command via the source window prefix
area.

�� CLEAR
integer

�$

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL)
within the line to remove the breakpoint if there are multiple statements on
that line. The default value is 1.

Example

Clear a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).
CLEAR 3

254 Debug Tool User’s Guide and Reference

No space is needed as a delimiter between the keyword and the integer; hence,
CLEAR 3 is equivalent to CLEAR3.

CMS command (VM)
The CMS command lets you issue certain CMS subset commands during a Debug
Tool session. The CMS keyword cannot be abbreviated.

�� CMS
cms_command

; �$

cms_command
A CMS system command that can be issued while in the CMS editor. If omitted,
CMS subset mode is entered.

Usage notes

v When not operating interactively, a cms_command must be supplied.
v When operating interactively, if no cms_command is specified, CMS subset mode

is entered. While in CMS subset mode, a subset of CMS commands (that is, CMS
system commands that can be issued while in the CMS editor) can be performed
repeatedly. To return to Debug Tool, type RETURN.

Example

v List all the files that are named free on the a disk.
CMS LIST free * a;

v Copy the contents of myprog script a into ourprog script a.
CMS COPYFILE myprog script a ourprog script a;

Related references
“SYSTEM command” on page 349

COMMENT command
The COMMENT command can be used to insert commentary in to the session log. The
COMMENT keyword cannot be abbreviated.

�� COMMENT
commentary

; �$

commentary
Commentary text not including a semicolon. An embedded semicolon is not
allowed; text after a semicolon is treated as another Debug Tool command.
DBCS characters can be used within the commentary.

The COMMENT command can be used as an executable command, that is it can be the
subject of a conditional command, but it is treated as a Null command.

Examples

v Comment that varblxx seems to have the wrong value.
COMMENT At this point varblxx seems to have the wrong value;

v Combine a commentary with valid Debug Tool commands.

Chapter 13. Debug Tool commands 255

COMMENT Entering subroutine testrun; LIST (x); GO;

COMPUTE command (COBOL)
The COMPUTE command assigns the value of an arithmetic expression to a specified
reference. The COMPUTE keyword cannot be abbreviated.

�� COMPUTE reference = expression ; �$

reference
A valid Debug Tool COBOL numeric reference.

expression
A valid Debug Tool COBOL numeric expression.

Usage notes

v If Debug Tool was invoked because of a computational condition or an attention
interrupt, using an assignment to set a variable might not give expected results.
This is due to the uncertainty of variable values within statements as opposed to
their values at statement boundaries.

v COMPUTE assigns a value only to a single receiver; unlike COBOL, multiple
receiver variables are not supported.

v Floating-point receivers are not supported; however, floating-point values can be
set by using the MOVE command.

v The COBOL EQUAL keyword is not supported ("=" must be used).
v The COBOL ROUNDED and SIZE ERROR phrases are not supported, so END-COMPUTE

is not supported.
v COMPUTE cannot be used to perform a computation with a windowed date field if

the expression consists of more than one operand.
v Any expanded date field specified as an operand in the expression is treated as a

nondate field.
v The result of the evaluation of the expression is always considered to be a

nondate field.
v If the expression consists of a single numeric operand, the COMPUTE will be treated

as a MOVE and therefore subject to the same rules as the MOVE command.

Examples

v Assign to variable x the value of a + 6.
COMPUTE x = a + 6;

v Assign to the variable mycode the value of the Debug Tool variable %PATHCODE +
1.
COMPUTE mycode = %PATHCODE + 1;

v Assign to variable xx the result of the expression (a + e(1)) / c * 2.
COMPUTE xx = (a + e(1)) / c * 2;

You can also use table elements in such assignments as shown in the following
example.
COMPUTE itm−2(1,2) = (a + 10) / e(2);

256 Debug Tool User’s Guide and Reference

The value assigned to a variable is always assigned to the storage for that
variable. In an optimized program, a variable can be temporarily assigned to a
register, and a new value assigned to that variable does not necessarily alter the
value used by the program.

v To assign a value to a session variable named CMS, TSO, or SYSTEM, abut the
"=" to the reference as shown in the following example.
COMPUTE cms= 5;

Related references
“MOVE command (COBOL)” on page 298

CURSOR command (full-screen mode)
The CURSOR command moves the cursor between the last saved position on the
Debug Tool session panel (excluding the header fields) and the command line.

�� CURSOR ; �$

Usage notes

v The cursor position can be saved by typing the CURSOR command on the
command line and moving the cursor before pressing Enter, or by moving the
cursor and pressing a PF key with the CURSOR command assigned to it.

v If the CURSOR command precedes any command on the command line, the cursor
is moved before the other command is performed. This can be useful in saving
cursor movement for commands that are performed repeatedly in one of the
windows.

v The CURSOR command is not logged.

Example

Move the cursor between the last saved position on the Debug Tool session panel
and the command line.
CURSOR;

Declarations (C/C++)
Use declarations to declare session variables and tags effective during a Debug
Tool session. Session variables remain in effect for the entire debug session, or
process in which they were declared. Variables and tags declared with
declarations can be used in other Debug Tool commands as if they were declared
to the compiler. Declared variables and tags are removed when your Debug Tool
session ends or when the CLEAR command is used to remove them. The keywords
must be the correct case and cannot be abbreviated.

You can also declare enum, struct, and union data types. The syntax is identical to
C except that enum members can only be initialized to an optionally signed integer
constant.

Chapter 13. Debug Tool commands 257

�� %

%

,

scalar_def declarator
enum_def
struct_def ,
union_def

declarator

; �$

scalar_def:

char
signed
unsigned

double
long

float
int

signed long
unsigned short

long
signed int
unsigned

double
short

signed int
unsigned

signed
long int
short

char
unsigned

long int
short

char
void *

declarator:

% *
%

identifier
(identifier)

identifier [integer]

enum_def:

enum
identifier

{ %

,

identifier
= constant_expr

}

258 Debug Tool User’s Guide and Reference

struct_def:

_Packed
struct

identifier

%

%

,

identifier
;

{ enum_def }
scalar_def
struct_def
union_def

union_def:

_Packed
union

identifier

%

%

,

identifier
;

{ enum_def }
scalar_def
struct_def
union_def

* A C indirect operator.

identifier
A valid C identifier.

integer
A valid C array bound integer constant.

constant_expr
A valid C integer constant.

Usage notes

v As in C/C++, the keywords can be specified in any order. For example, unsigned
long int is equivalent to int unsigned long. Some permutations are shown in the
syntax diagram to make sure that every keyword is shown at least once in the
initial position.

v As in C/C++, the identifiers are case-sensitive; that is, "X" and "x" are different
names.

v A structure definition must have either an identifier, a declarator, or both
specified.

v Initialization is not supported.
v A declaration cannot be used in a command list; for example, as the subject of

an if command or case clause.
v Declarations of the form struct tag identifier must have the tag previously

declared interactively.
v See the C and C++ Language References for an explanation of the following

keywords:
char short
double signed
enum struct

Chapter 13. Debug Tool commands 259

float union
int unsigned
long void
_Packed(1)

(1) _Packed is not supported in C++.

Examples

v Define two C integers.
int myvar, hisvar;

v Define an enumeration variable status that represents the following values:

Enumeration Constant Integer Representation
run 0
create 1
delete 5
suspend 6

enum statustag {run, create, delete=5, suspend} status;

v Define a variable in a struct declaration.
struct atag {

char foo;
int var1;

} avar;

v Interactively declare variables using structure tags.
struct tagone {int a; int b;} c;

then specify:
struct tagone d;

Related tasks
“Using session variables across different languages” on page 153

Declarations (COBOL)
Use declarations to declare session variables effective during a Debug Tool session.
Session variables remain in effect for the entire debug session, or process in which
they were declared. Variables declared with declarations can be used in other
Debug Tool commands as if they were declared to the compiler. Declared variables
are removed when your Debug Tool session ends or when the CLEAR command is
used to remove them. The keywords cannot be abbreviated.

�� %

%

;

level identifier

attribute

; �$

attribute:

260 Debug Tool User’s Guide and Reference

PIC
PICTURE IS

picture POINTER
USAGE BINARY

IS COMP
COMPUTATIONAL
COMP-1
COMPUTATIONAL-1
COMP-2
COMPUTATIONAL-2

level
1 or 77.

identifier
A valid COBOL data name (including DBCS data names).

picture
A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X(*), the COBOL USAGE clause is required.

Usage notes

v A declaration cannot be used in a command list; for example, as the subject of
an IF command or WHEN clause.

v BINARY and COMP are equivalent.
v Use BINARY or COMP for COMPUTATIONAL-4.
v COMP-1 is short floating point (4 bytes).
v COMP-2 is long floating point (8 bytes).
v Only COBOL PICTURE and USAGE clauses are supported.
v Short forms of COMPUTATIONAL (COMP) are supported.

Examples

v Define a variable named floattmp to hold a floating-point number.
01 floattmp USAGE COMP-1;

v Define an integer variable name temp.
77 temp PIC S9(9) USAGE COMP;

Related tasks
“Using session variables across different languages” on page 153

Related references
COBOL for OS/390 & VM Language Reference

DECLARE command (PL/I)
The DECLARE command declares session variables effective during a Debug Tool
session. Variables declared this way can be used in other Debug Tool commands as
if they were declared to the compiler. They are removed with the CLEAR command
or when your Debug Tool session ends. The keywords cannot be abbreviated.

Chapter 13. Debug Tool commands 261

�� DCL
DECLARE

%

,

major_structure
scalar

; �$

major_structure:

%

%

,

level name

attribute

scalar:

%

% %

,

name
,

(name) attribute

level
An unsigned positive integer. Level 1 must be specified for major structure
names.

name
A valid PL/I identifier. The name must be unique within a particular structure
level.

When name conflicts occur, Debug Tool uses session variables before using
other variables of the same name that appear in the running programs. Use
qualification to refer to the program variable during a Debug Tool session. For
example, to display the variable a declared with the DECLARE command as well
as the variable a in the program, issue the LIST command as follows:
LIST (a, %BLOCK:a);

If a name conflict occurs because the variable was declared earlier with a
DECLARE command, the new declaration overrides the previous one.

attribute
A PL/I data or storage attribute.

Acceptable PL/I data attributes include:
BINARY CPLX FIXED LABEL PTR
BIT DECIMAL FLOAT OFFSET REAL
CHARACTERS EVENT GRAPHIC POINTER VARYING
COMPLEX

Acceptable PL/I storage attributes include:
BASED ALIGNED UNALIGNED

Pointers cannot be specified with the BASED option.

262 Debug Tool User’s Guide and Reference

Only simple factoring of attributes is allowed. DECLAREs such as the following
are not allowed:
DCL (a(2), b) PTR;
DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a
dimension can be specified. If a session variable has dimensions and bounds,
these must be declared following PL/I language rules.

Usage notes

v DECLARE is not valid as a subcommand. That is, it cannot be used as part of a
DO/END or BEGIN/END block.

v Initialization is not supported.
v Program DEFAULT statements do not affect the DECLARE command.
v If you are debugging a VisulAge PL/I for OS/390 program in full- screen mode,

you can not declare arrays or structures or factor attributes.

Examples

v Declare x, y, and z as variables that can be used as pointers.
DECLARE (x, y, z) POINTER;

v Declare a as a variable that can represent binary, fixed-point data items of 15
bits.
DECLARE a FIXED BIN(15);

v Declare d03 as a variable that can represent binary, floating-point, complex data
items.
DECLARE d03 FLOAT BIN COMPLEX;

This d03 will have the attribute of FLOAT BINARY(21).
v Declare x as a pointer, and setx as a major structure with structure elements a

and b as fixed-point data items.
DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;

This a and b will have the attributes of FIXED DECIMAL(5).

Related tasks
“Using session variables across different languages” on page 153

Related references
VisualAge PL/I Language Reference

DESCRIBE command
The DESCRIBE command displays the attributes of references, compile units, and the
execution environment.

Chapter 13. Debug Tool commands 263

�� DESCRIBE

%

%

CURSOR

ATTRIBUTES ;
reference

,

(reference)
*

CUS
PROGRAMS cu_spec

,

(cu_spec)
*

ENVIRONMENT

�$

CURSOR (Full-Screen Mode only)
Provides a cursor-controlled method for describing variables, structures, and
arrays. If you have assigned DESCRIBE to a PF key, you can display the
attributes of a selected variable by positioning the cursor at that variable and
pressing the assigned PF key.

ATTRIBUTES
Displays the attributes of a specified variable or, in C/C++, an expression. The
attributes are ordinarily those that appeared in the declaration of a variable or
are assumed because of the defaulting rules. DESCRIBE ATTRIBUTES works only
for variables accessible to the current programming language. All variables in
the currently qualified block are described if no operand is specified.

reference
A valid Debug Tool reference in the current programming language. Note
the following points:

In C/C++, this can be a valid expression. For a C/C++ expression, the type
is the only attribute displayed. For a C/C++ structure or class, DESCRIBE
ATTRIBUTES displays only the attributes of the structure or class. To display
the attributes of a data object within a structure or data member in a class,
use DESCRIBE ATTRIBUTES for the specific data object or member.

In COBOL, this can be any user-defined name appearing in the DATA
DIVISION. Names can be subscripted or substringed per their definitions
(that is, if they are defined as alphanumeric data or as arrays).

In PL/I, if the variable is in a structure, it can have inherited dimensions
from a higher level parent. The inherited dimensions appear as if they
have been part of the declaration of the variable.

* Describes all variables in the compile unit.

CUS
Describes the attributes of compile units, including such things as the compiler
options and list of internal blocks. The information returned is dependent on
the HLL that the compile unit was compiled under. CUS is equivalent to
PROGRAMS.

* Describes all compile units.

PROGRAMS
Is equivalent to CUS.

264 Debug Tool User’s Guide and Reference

ENVIRONMENT
The information returned includes a list of the currently opened files. Names
of files that have been opened but are not currently closed are excluded from
the list. COBOL does not provide any information for DESCRIBE ENVIRONMENT.

Usage notes

v Cursor pointing can be used by typing the DESCRIBE CURSOR command on the
command line and moving the cursor to a variable in the Source window before
pressing Enter, or by moving the cursor and pressing a PF key with the
DESCRIBE CURSOR command assigned to it.

v When using the DESCRIBE CURSOR command for a variable that is located by the
cursor position, the variable’s name cannot be split across different lines of the
source listing.

v In C/C++ and COBOL, expressions containing parentheses () must be enclosed
in another set of parentheses when used with the DESCRIBE ATTRIBUTES
command. For example, DESCRIBE ATTRIBUTES ((x + y) / z);.

v For COBOL, if DESCRIBE ATTRIBUTES * is specified and your compile unit is
large, you might receive an out of storage error message.

v For PL/I, DESCRIBE ATTRIBUTES returns only the top-level names for structures.
DESCRIBE ATTRIBUTES * is not supported for PL/I. To get more detail, specify the
structure name as the reference. DESCRIBE ATTRIBUTES or DESCRIBE ENVIRONMENT is
not supported for VisualAge PL/I for OS/390 programs debugged in full-screen
mode.

Examples

v Describe the attributes of argc, argv, boolean, i, ld, and structure.
DESCRIBE ATTRIBUTES (argc, argv, boolean, i, ld, structure);

v Describe the current environment.
DESCRIBE ENVIRONMENT;

v Display information describing program myprog.
DESCRIBE PROGRAMS myprog;

Related references
“references syntax” on page 212
“cu_spec syntax” on page 210

DISABLE command
The DISABLE command makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command again.

�� DISABLE AT_command �$

AT_command
An enabled AT command. The AT command must be complete except that the
every_clause and command are omitted. Valid forms are the same as those
allowed with CLEAR AT.

Usage notes

v To reenable a disabled AT command, use the ENABLE command.

Chapter 13. Debug Tool commands 265

v Disabling an AT command does not affect its replacement by a new (enabled)
version if an overlapping AT command is later specified. It also does not prevent
removal by a CLEAR AT command.

v Breakpoints already disabled within the range(s) specified in the specific AT
command are unaffected; however, a warning message is issued for any
specified range found to contain no enabled breakpoints.

Examples

v Disable the breakpoint that was set by the command AT ENTRY myprog CALL
proc1;.
DISABLE AT ENTRY myprog;

v If statement 25 is in a loop and you set the following breakpoint:
AT EVERY 5 FROM 1 TO 100 STATEMENT 25 LIST x;

to disable it, enter:
DISABLE AT STATEMENT 25;

You do not need to reenter the every_clause or the command list. To restore the
breakpoint, enter:
ENABLE AT STATEMENT 25;

Related references
“DISABLE prefix (full-screen mode)”

DISABLE prefix (full-screen mode)
Disables a statement breakpoint when you issue this command via the Source
window prefix area.

�� DISABLE
integer

�$

integer
Selects a relative statement (for C/C++ or PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example

Disable the breakpoint at the third statement or verb in the line by entering the
following command in the prefix area of the line where the statement is found.
DIS 3

You do not need to enter a space between the keyword and the integer: DIS 3 is
equivalent to DIS3.

Related tasks
“Entering commands on the session panel” on page 59

266 Debug Tool User’s Guide and Reference

do/while command (C/C++)
The do/while command performs a command before evaluating the test
expression. Due to this order of execution, the command is performed at least
once. The do and while keywords must be lowercase and cannot be abbreviated.

�� do command while (expression) ; �$

command
A valid Debug Tool command.

expression
A valid Debug Tool C/C++ expression.

The body of the loop is performed before the while clause (the controlling part) is
evaluated. Further execution of the do/while command depends on the value of
the while clause. If the while clause does not evaluate to false, the command is
performed again. Otherwise, execution of the command ends.

A break command can cause the execution of a do/while command to end, even
when the while clause does not evaluate to false.

Example

The following command prompts you to enter a 1. If you enter a 1, the command
ends execution. Otherwise, the command displays another prompt.
int reply1;

do {
printf("Enter a 1.\n");
scanf("%d", &reply1);

} while (reply1 != 1);

DO command (PL/I)
The DO command allows one or more commands to be collected into a group that
can (optionally) be repeatedly executed. The DO and END keywords delimit a group
of commands collectively called a DO group. The keywords cannot be abbreviated.

Simple

�� DO ;

% command

END ; �$

command
A valid Debug Tool command.

Repeating

Chapter 13. Debug Tool commands 267

�� DO WHILE (expression)
UNTIL (expression)

UNTIL (expression)
WHILE (expression)

; �

�

% command

END ; �$

WHILE
Specifies that expression is evaluated before each execution of the command list.
If the expression evaluates to true, the commands are executed and the DO
group begins another cycle; if it evaluates to false, execution of the DO group
ends.

expression
A valid Debug Tool PL/I Boolean expression.

UNTIL
Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

Iterative

�� DO reference = %

,

iteration ;

% command

END ; �$

iteration:

expression
BY expression

TO expression
TO expression

BY expression
REPEAT expression

�

�
WHILE (expression)

UNTIL (expression)
UNTIL (expression)

WHILE (expression)

reference
A valid Debug Tool PL/I reference.

268 Debug Tool User’s Guide and Reference

expression
A valid Debug Tool PL/I expression.

BY Specifies that expression is evaluated at entry to the DO specification and saved.
This saved value specifies the increment to be added to the control variable
after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is
specified, expression defaults to the value of 1.

If BY 0 is specified, the execution of the DO group continues indefinitely unless
it is halted by a WHILE or UNTIL option, or control is transferred to a point
outside the DO group.

The BY option allows you to vary the control variable in fixed positive or
negative increments.

TO Specifies that expression is evaluated at entry of the DO specification and saved.
This saved value specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is
specified, repetitive execution continues until it is terminated by the WHILE or
UNTIL option, or until some statement transfers control to a point outside the
DO group.

The TO option allows you to vary the control variable in fixed positive or
negative increments.

REPEAT
Specifies that expression is evaluated and assigned to the control variable after
each execution of the DO group. Repetitive execution continues until it is
terminated by the WHILE or UNTIL option, or until some statement transfers
control to a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This
option can also be used for nonarithmetic control variables, such as pointers.

WHILE
Specifies that expression is evaluated before each execution of the command list.
If the expression evaluates to true, the commands are executed and the DO
group begins another cycle; if it evaluates to false, execution of the DO group
ends.

UNTIL
Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

Examples

v At statement 25, initialize variable a and display the values of variables x, y, and
z.
AT 25 DO; %BLOCK:>a = 0; LIST (x, y, z); END;

v Execute the DO group until ctr is greater than 4 or less than 0.
DO UNTIL (ctr > 4) WHILE (ctr >= 0); END;

v Execute the DO group with i having the values 1, 2, 4, 8, 16, 32, 64, 128, and 256.
DO i = 1 REPEAT 2*i UNTIL (i = 256); END;

Chapter 13. Debug Tool commands 269

v Repeat execution of the DO group with j having values 1 through 20, but only if
k has the value 1.
DO j = 1 TO 20 BY 1 WHILE (k = 1); END;

ENABLE command
The ENABLE command makes the AT breakpoints operative after they have been
DISABLEd.

�� ENABLE AT_command �$

AT_command
A disabled AT command. The AT command must be complete except that the
every_clause and command are omitted. Valid forms are the same as those
allowed with CLEAR AT.

Usage notes

v To disable an AT command, use the DISABLE command.
v Breakpoints already enabled within the range(s) specified in the specific AT

command are unaffected; however, a warning message is issued for any
specified range found to contain no disabled breakpoints.

Example

Reenable the previously disabled command AT ENTRY mysub CALL proc1;.
ENABLE AT ENTRY mysub;

Related references
“ENABLE prefix (full-screen mode)”

ENABLE prefix (full-screen mode)
Enables a disabled statement breakpoint when you issue this command via the
Source window prefix area.

�� ENABLE
integer

�$

integer
Selects a relative statement (for C/C++ or PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Example

Enable the breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).
ENABLE 3

No space is needed as a delimiter between the keyword and the integer; hence,
ENABLE 3 is equivalent to ENABLE3.

270 Debug Tool User’s Guide and Reference

EVALUATE command (COBOL)
The EVALUATE command provides a shorthand notation for a series of nested IF
statements. The keywords cannot be abbreviated.

�� EVALUATE constant
expression
reference
TRUE
FALSE

% %WHEN any_clause command �

�

%WHEN OTHER command

END-EVALUATE ; �$

any_clause:

ANY
condition
TRUE
FALSE

constant
NOT reference THROUGH constant

THRU reference

constant
A valid Debug Tool COBOL constant.

expression
A valid Debug Tool COBOL arithmetic expression.

reference
A valid Debug Tool COBOL reference.

condition
A simple relation condition.

command
A valid Debug Tool command.

Usage notes

v Only a single subject is supported.
v Consecutive WHENs without associated commands are not supported.
v THROUGH/THRU ranges can be specified as constants or references.
v See COBOL for OS/390 & VM Language Reference for an explanation of the

following COBOL keywords:
ANY
FALSE
NOT
OTHER
THROUGH
THRU
TRUE

Chapter 13. Debug Tool commands 271

WHEN

v Debug Tool implements the EVALUATE command as a series of IF commands. As
a result, only some com

Example

The following example shows an EVALUATE command and the equivalent coding for
an IF command:
EVALUATE menu-input

WHEN "0"
CALL init-proc

WHEN "1" THRU "9"
CALL process-proc

WHEN "R"
CALL read-parms

WHEN "X"
CALL cleanup-proc

WHEN OTHER
CALL error-proc

END-EVALUATE;

The equivalent IF command:
IF (menu-input = "0") THEN

CALL init-proc
ELSE

IF (menu-input >= "1") AND (menu-input <= "9") THEN
CALL process-proc

ELSE
IF (menu-input = "R") THEN

CALL read-parms
ELSE

IF (menu-input = "X") THEN
CALL cleanup-proc

ELSE
CALL error-proc

END-IF;
END-IF;

END-IF;
END-IF;

Related references
“Allowable comparisons for the IF command (COBOL)” on page 280
COBOL for OS/390 & VM Language Reference

Expression command (C/C++)
The Expression command evaluates the given expression. The expression can be
used to either assign a value to a variable or to call a function.

�� expression ; �$

expression
A valid Debug Tool C/C++ expression. Assignment is affected by including
one of the C/C++ assignment operators in the expression. No use is made of
the value resulting from a stand-alone expression.

Usage note

272 Debug Tool User’s Guide and Reference

Function invocations in expressions are restricted to functions contained in the
currently executing enclave.

Examples

v Initialize the variables x, y, z and note that function invocations are supported.
x = 3 + 4/5;
y = 7;
z = 8 * func(x, y);

v Increment y and assign the remainder of the integer division of omega by 4 to
alpha.
alpha = (y++, omega % 4);

FIND command
The FIND command provides full-screen, line, and batch mode search capability in
source and listing files, and full-screen searching of log and monitor objects as
well.

��
string CURSOR

LOG
MONITOR
SOURCE

; �$

string
The string searched for, conforming to the current programming language
syntax for a character string constant. The string length cannot exceed 128
bytes, excluding the quotes.

If string is not specified, the string from the previous FIND command is used.

Some examples of possible strings follow:

C C++ COBOL

"ABC" "IntLink::*" "A5"
'A5'

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the window searched.

LOG (Full-Screen Mode)
Selects the session log window.

MONITOR (Full-Screen Mode)
Selects the monitor window.

SOURCE (Full-Screen Mode)
Selects the source listing window.

Usage notes

v Window defaulting can be controlled by the SET DEFAULT WINDOW command. In
full-screen mode, if you do not place the cursor in a selected window or specify
a window on the command line, the FIND command searches the window
specified with the SET DEFAULT WINDOW command or the Default window entry in
your Profile Settings panel.

Chapter 13. Debug Tool commands 273

v If the current programming language setting is C/C++, the search is
case-sensitive. Otherwise, the search is not case-sensitive.

v In full-screen mode, the search begins at the top line displayed in the window or
at the location of the last found search argument if a previous FIND was issued
for any search string. If the end of the object is reached without finding the
search argument, FIND wraps to the top of the object and continues the search. A
message notifies you that wrapping has occurred.
If the search argument is found, the window is scrolled until it is visible. If the
search target is DBCS, it is displayed as is. If the search target is not DBCS, it is
highlighted as specified by the SET COLOR command and the cursor is placed at
the beginning of the target. If the search target is not found, the screen position
is unchanged and the cursor is not moved.

v FIND can be made immediately effective in full-screen mode with the IMMEDIATE
command.

v In line or batch mode, the search begins at the first line of the source listing or
source file, or at the location of the last found search argument if a previous
FIND was issued for the same string. If the end of the listing is reached without
finding the search argument, FIND wraps to the top of the listing and continues
the search without notification. However, the line number is identified in the
output.
If the search argument is found, the line containing it is displayed with a vertical
bar character (|) beneath the search target.

v For PL/I, if the line found is not the first line of the statement, all lines from the
start of the statement are displayed, up to and including the target line.

v The full-screen FIND command is not logged; however, the FIND command is
logged in line and batch mode.

v If you are searching for strings with trigraphs in them, the trigraphs or their
equivalents can be used as input, and Debug Tool matches them to trigraphs or
their equivalents.

Examples

v Indicate that you want to search the monitor window for the name myvar. The
current programming language setting is either C/C++ or COBOL.
FIND "myvar" MONITOR;

v To search for the variable var1 is not in the Source window, enter:
FIND "var1" SOURCE;

v If var1 is in the Log or Monitor window, enter:
FIND "var1" LOG

or
FIND "var1" MONITOR

v If you want to search the Source window for the next occurrence of var1, just
enter:
FIND

You do not need to provide the variable name, because the Debug Tool
remembers the string you last searched for. Again, the Source window is scrolled
forward, var1 is highlighted, and the cursor points to the variable.

274 Debug Tool User’s Guide and Reference

for command (C/C++)
The for command provides iterative looping similar to the C/C++ for statement.
It enables you to do the following:
v Evaluate an expression before the first iteration of the command ("initialization").
v Specify an expression to determine whether the command should be performed

again ("controlling part").
v Evaluate an expression after each iteration of the command.
v Perform the command, or block, if the controlling part does not evaluate to

false.

The for keyword must be lowercase and cannot be abbreviated.

�� for (
expression

;
expression

;
expression

) command �$

expression
A valid Debug Tool C/C++ expression.

command
A valid Debug Tool command.

Debug Tool evaluates the first expression only before the command is performed for
the first time. You can use this expression to initialize a variable. If you do not
want to evaluate an expression before the first iteration of the command, you can
omit this expression.

Debug Tool evaluates the second expression before each execution of the command.
If this expression evaluates to false, the command does not run and control moves
to the command following the for command. Otherwise, the command is
performed. If you omit the second expression, it is as if the expression has been
replaced by a nonzero constant and the for command is not terminated by failure
of this expression.

Debug Tool evaluates the third expression after each execution of the command. You
might use this expression to increase, decrease, or reinitialize a variable. If you do
not want to evaluate an expression after each iteration of the command, you can
omit this expression.

A break command can cause the execution of a for command to end, even when
the second expression does not evaluate to false. If you omit the second expression,
you must use a break command to stop the execution of the for command.

Examples

v The following for command lists the value of count 20 times. The for command
initially sets the value of count to 1. After each execution of the command, count
is incremented.
for (count = 1; count <= 20; count++)

LIST TITLED count;

Alternatively, the preceding example can be written with the following sequence
of commands to accomplish the same task.

Chapter 13. Debug Tool commands 275

count = 1;
while (count <= 20) {

printf("count = %d\n", count);
count++;

}

v The following for command does not contain an initialization expression.
for (; index > 10; --index) {

varlist[index] = var1 + var2;
printf("varlist[%d] = %d\n", index, varlist[index]);

}

GO command
The GO command causes Debug Tool to start or resume running your program.

�� GO
BYPASS

; �$

BYPASS
Bypasses the user or system action for the AT-condition that caused the
breakpoint. It is valid only when Debug Tool is entered for an:

AT CALL breakpoint
HLL or Language Environment condition

Usage notes

v If GO is specified in a command list (for example, as the subject of an IF
command or WHEN clause), all subsequent commands in the list are ignored.

v If GO is specified within the body of a loop, it causes the execution of the loop to
end.

v To suppress the logging of GO commands, use the SET ECHO command.
v GO with no operand specified does not actually resume the program if there are

additional AT-conditions that have not yet been processed.

Examples

v Resume execution.
GO;

v Resume execution and bypass user and system actions for the AT-condition that
caused the breakpoint.
GO BYPASS;

v Your application has abended with a protection exception, so an OCCURRENCE
breakpoint has been triggered. Correct the results of the instruction that caused
the exception and issue GO BYPASS; to continue processing as if the abend had
not occurred.

Related references
“AT command” on page 220

GOTO command
The GOTO command causes Debug Tool to resume program execution at the
specified statement id. The GOTO keyword cannot be abbreviated. If you want
Debug Tool to return control to you at a target location, make sure there is a
breakpoint at that location.

276 Debug Tool User’s Guide and Reference

�� GOTO
GO TO

statement_id ; �$

Usage notes

v If GOTO is specified in a command list (for example, as the subject of an IF
command or WHEN clause), all subsequent commands in the list are ignored.

v PL/I allows GOTO in a command list on a call to PLITEST or CEETEST.
v For COBOL, the GOTO command follows the COBOL language rules for the GOTO

statement. You can use the GOTO command only if you compiled your program
with either PATH or ALL suboption and the SYM suboption of the TEST
compiler option.

v In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.
v Statement GOTO’s are not restricted if the program is compiled with minimum

optimization.
v Because statements can be removed by the compiler during optimization, specify

a reference or statement with the GOTO command that can be reached during
program execution. You can issue the LIST STATEMENT NUMBERS command to
determine the reachable statements.

Examples

v Resume execution at statement 23, where statement 23 is in a currently active
block.
GOTO 23;

If there’s no breakpoint at statement 23, Debug Tool will run from statement 23
until a breakpoint is hit.

v Resume execution at statement 45, where statement 45 is in a currently active
block.
AT 45
GOTO 45

Related tasks
“Qualifying variables and changing the point of view” on page 147

Related references
“statement_id syntax” on page 212

GOTO LABEL command
The GOTO LABEL command causes Debug Tool to resume program execution at the
specified statement label. The specified label must be in the same block. If you
want Debug Tool to return control to you at the target location, make sure there is
a breakpoint at that location.

�� GOTO
GO TO LABEL

statement_label ; �$

statement_label
A valid statement label within the currently executing program or, in PL/I, a
label variable.

Chapter 13. Debug Tool commands 277

Usage notes

v In PL/I, out-of-block GOTOs are allowed. However, qualification might be needed.
v The LABEL keyword is optional when either the target statement_label is

nonnumeric or if it is qualified (whether the actual label was nonnumeric or
not).

v A COBOL statement_label can have either of the following forms:
– name

This form can be used in COBOL for reference to a section name or for a
COBOL paragraph name that is not within a section or is in only one section
of the block.

– name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph (name1) that
is within a section (name2), if the same name also exists in other sections in
the same block. You can specify either OF or IN, but Debug Tool always uses
OF for output.

Either form can be prefixed with the usual block, compile unit, and load module
qualifiers.

v For C, you can use GOTO LABEL only if you compiled your program with either
the PATH or ALL suboption and the SYM suboption of the TEST compiler option.
There are no restrictions on using labels with GOTO LABEL.

v For COBOL, you can use GOTO LABEL only if you compiled your program with
either PATH or ALL suboption and the SYM suboption of the TEST compiler option.
The label itself can take either of two forms:
– name, where name is a section name, or the name of a paragraph not within a

section or in only one section of the block.
– name1 OF name2 or name1 IN name2, where name1 is duplicated by one or more

other paragraphs in one or more other sections in the block. You can use
either OF or IN, but Debug Tool always logs OF.

v For PL/I, you can use GOTO LABEL only if you compiled your program with
either the PATH or ALL suboption and the SYM suboption of the TEST compiler
option. There are no restrictions on using labels with GOTO LABEL and label
variables are supported.

v GOTO LABEL is not available while debugging VisualAge PL/I for OS/390
programs in full-screen mode.

Examples

v Go to the label constant laba in block suba in program prog1.
GOTO prog1:>suba:>laba;

v Go to the label constant para OF sect1. The current programming language
setting is COBOL.
GOTO LABEL para OF sect1;

Related tasks
“Qualifying variables and changing the point of view” on page 147

Related references
“statement_label syntax” on page 213

278 Debug Tool User’s Guide and Reference

if command (C/C++)
The if command lets you conditionally perform a command. You can optionally
specify an else clause on the if command. If the test expression evaluates to false
and an else clause exists, the command associated with the else clause is
performed. The if and else keywords must be lowercase and cannot be
abbreviated.

�� if (expression) command
else command

�$

expression
A valid Debug Tool C/C++ expression.

command
A valid Debug Tool command.

When if commands are nested and else clauses are present, a given else is
associated with the closest preceding if clause within the same block.

Usage note

v An else clause should always be included if the if clause causes Debug Tool to
get more input (for example, an if containing USE or other commands that cause
Debug Tool to be reinvoked because an AT-condition occurs).

Examples

v The following example causes grade to receive the value "A" if the value of
score is greater than or equal to 90.
if (score >= 90)

grade = "A";

v The following example shows a nested if command.
if (paygrade == 7) {

if (level >= 0 && level <= 8)
salary *= 1.05;

else
salary *= 1.04;

}
else

salary *= 1.06;

IF command (COBOL)
The IF command lets you conditionally perform a command. You can optionally
specify an ELSE clause on the IF command. If the test expression evaluates to false
and an ELSE clause exists, the command associated with the ELSE clause is
performed. The keywords cannot be abbreviated.

�� IF condition
THEN

% command

%ELSE command

END-IF ; �$

condition
A simple relation condition.

Chapter 13. Debug Tool commands 279

command
A valid Debug Tool command.

When IF commands are nested and ELSE clauses are present, a given ELSE or
END-IF is associated with the closest preceding IF clause within the same block.

Unlike COBOL, Debug Tool requires terminating punctuation (;) after commands.
The END-IF keyword is required.

Usage notes

v An ELSE clause should always be included if the IF clause causes Debug Tool to
get more input (for example, an IF containing USE or other commands that cause
Debug Tool to be reinvoked because an AT-condition occurs).

v The COBOL NEXT SENTENCE phrase is not supported.
v Comparison combinations with windowed date fields are not supported.
v Comparisons between expanded date fields with different DATE FORMAT

clauses are not supported.

Example

To substitute the input that would have come from the ddname specified by the
SET INTERCEPT ON command with your desired input, enter:
INPUT text you want to input ;

Program input is recorded in your Log window.

A closing semicolon (;) is required for this command. Everything between the
INPUT keyword and the semicolon is considered input text. If you want to include
a semicolon in your input, or if the first character of your input is a quote, you
must enter your input as a valid character string for your programming language.

Related references
“Allowable comparisons for the IF command (COBOL)”

Allowable comparisons for the IF command (COBOL)
The following table shows the allowable comparisons for the Debug Tool IF
command. A description of the codes follows the table.

OPERANDGR AL AN ED BI NE ANE ID IN IDI PTR @ IF EF D1

Group
(GR)

NN NN NN NN NN NN NN NN NN NN NN

Alphabetic
(AL)

NN NN

Alphanumeric
(AN)8

NN NN

External
Decimal
(ED)8

NN NU

Binary NN NU NU4

Numeric
Edited
(NE)

NN NN

280 Debug Tool User’s Guide and Reference

OPERANDGR AL AN ED BI NE ANE ID IN IDI PTR @ IF EF D1

Alphanumeric
Edited
(ANE)

NN NN

FIGCON
ZERO7

NN NU NU NU NU NU

FIGCON1,7NN NN NN NN

Numeric
Literal7

NN NU NU NU NU4 NU NU

Nonnumeric
Literal2,7

NN NN3 NN NN NN

Internal
Decimal
(ID)8

NN NU

Index
Name
(IN)

NN NU4 IO4 NU

Index
Data
Item
(IDI)

NN NU IV

Pointer
Data
Item
(PTR)

NU5 NU5

Address
of (@)

NU5 NU5

Floating
Point
Literal7

X NU NU

Internal
Floating
Point (IF)

NN NU NU

External
Floating
Point
(EF)

NN NU NU

DBCS
data item
(D1)

NN

DBCS
Literal7

NN

Hex
Literal6

NU5

Notes:
1 FIGCON includes all figurative constants except ZERO and ALL.
2 A nonnumeric literal must be enclosed in quotation marks, and the

quotation marks are not valid characters in the literal.
3 Must contain only alphabetic characters.
4 Index name converted to subscript value before compare.
5 Only comparison for equal and not equal can be made.

Chapter 13. Debug Tool commands 281

6 Must be hexadecimal characters only, delimited by either double (") or
single (') quotation marks and preceded by H.

7 Constants and literals can also be compared against constants and literals
of the same type.

8 Comparisons using windowed date fields are not supported.

Allowable comparisons are comparisons as described in IBM OS Full American
National Standard COBOL for the following:

NN Nonnumeric operands

NU Numeric operands

IO Two index names

IV Index data items

X High potential for user error

Related references
IBM OS Full American National Standard COBOL

IF command (PL/I)
The IF command lets you conditionally perform a command. You can optionally
specify an ELSE clause on the IF command. If the test expression evaluates to false
and an ELSE clause exists, the command associated with the ELSE clause is
performed. The keywords cannot be abbreviated.

�� IF expression THEN command
ELSE command

�$

expression
A valid Debug Tool PL/I expression.

If necessary, the expression is converted to a BIT string.

command
A valid Debug Tool command.

When IF commands are nested and ELSE clauses are present, a given ELSE is
associated with the closest preceding IF clause within the same block.

Usage note

v An ELSE clause should always be included if the IF clause causes Debug Tool to
get more input (for example, an IF containing USE or other commands that cause
Debug Tool to be reinvoked because an AT-condition occurs).

Examples

v If the value of array1 is equal to the value of array2, go to the statement with
label constant label_1. Execution of the user program continues at label_1. If
array1 does not equal array2, the GOTO is not performed and control is passed to
the user program.
IF array1 = array2 THEN GOTO LABEL label_1; ELSE GO;

v Set a breakpoint at statement 23, which will test if variable j is equal to 10,
display the names and values of variables rmdr, totodd, and terms(j). If variable
j is not equal to 10, continue program execution.

282 Debug Tool User’s Guide and Reference

AT 23 IF j = 10 THEN LIST TITLED (rmdr, totodd, terms(j)); ELSE GO;

IMMEDIATE command (full-screen mode)
The IMMEDIATE command causes a command within a command list to be
performed immediately. It is intended for use with commands assigned to a PF
key.

IMMEDIATE can only be entered as an unnested command or within a compound
command.

It is recommended that PF key definitions for FIND, RETRIEVE, SCROLL, and WINDOW
commands be prefixed with IMMEDIATE. This makes it possible to do things like
SCROLL even when entering a group of commands.

�� IMMEDIATE command �$

command
One of the following Debug Tool commands:

FIND
RETRIEVE
SCROLL commands

BOTTOM
DOWN
LEFT
NEXT
RIGHT
TO
TOP
UP

WINDOW commands
CLOSE
OPEN
SIZE
ZOOM

Usage note The IMMEDIATE command is not logged.

Examples

v Specify that the WINDOW OPEN LOG command be immediately effective.
IMMEDIATE WINDOW OPEN LOG;

v Specify that the SCROLL BOTTOM command be immediately effective.
IMMEDIATE SCROLL BOTTOM;

INPUT command (C/C++ and COBOL)
The INPUT command provides input for an intercepted read and is valid only when
there is a read pending for an intercepted file. The INPUT keyword cannot be
abbreviated.

�� INPUT text ; �$

Chapter 13. Debug Tool commands 283

text
Specifies text input to a pending read.

Usage notes

v The INPUT text consists of everything between the INPUT keyword and the
semicolon (or end-of-line). Any leading or trailing blanks are removed by Debug
Tool.

v If a semicolon is included as part of the INPUT text, or if the first character of the
INPUT text is a quote, the INPUT text must conform to the current programming
language syntax for a character string constant (that is, enclosed in quotes, with
internal quotes entered according to the rules of that programming language).

v This command is not supported for CICS.
v To set interception to and from a file, use the SET INTERCEPT (C/C++ and

COBOL) command.

Example

You have used SET INTERCEPT ON to make Debug Tool prompt you for input to a
sequential file. The prompt and the file’s name appears in the Command Log.

Indicate that the phrase "quick brown fox" is input to a pending read. The phrase
is written to the file.
INPUT quick brown fox;

Related references
“SET INTERCEPT (C/C++ and COBOL)” on page 327

LIST command
The LIST command displays information about a program such as values of
specified variables, structures, arrays, registers, statement numbers, frequency
information, and the flow of program execution. The LIST command can be used
to display information in any enclave. All information displayed will be saved in
the log file.

The following table summarizes the various forms of the LIST command.

“LIST (blank)” on page 285 Displays Source Identification panel

“LIST AT” on page 285 Lists the currently defined breakpoints.

“LIST CALLS” on page 287 Displays the dynamic chain of active blocks.

“LIST CURSOR (full-screen mode)”
on page 288

Displays the variable pointed to by the cursor.

“LIST expression” on page 288 Displays values of expressions.

“LIST FREQUENCY” on page 289 Lists statement execution counts.

“LIST LAST” on page 290 Displays a list of recent entries in the history table.

“LIST LINE NUMBERS” on page 290 Lists all line numbers that are valid locations for an AT
LINE breakpoint.

“LIST LINES” on page 291 Lists one or more lines from the current listing or
source file displayed in the Source window.

“LIST MONITOR” on page 291 Lists the current set of MONITOR commands.

“LIST NAMES” on page 291 Lists the names of variables, programs, or Debug Tool
procedures.

284 Debug Tool User’s Guide and Reference

“LIST ON (PL/I)” on page 293 Lists the action (if any) currently defined for the
specified PL/I conditions.

“LIST PROCEDURES” on page 293 Lists the commands contained in the specified Debug
Tool procedure.

“LIST REGISTERS” on page 293 Displays the current register contents.

“LIST STATEMENT NUMBERS” on
page 294.

Lists all statement numbers that are valid locations for
an AT STATEMENT breakpoint.

“LIST STATEMENTS” on page 295 Lists one or more statements from the current listing
or source file displayed in the Source window.

“LIST STORAGE” on page 295 Provides a dump-format display of storage.

LIST (blank)
Displays the Source Identification panel, where associations are made between
source listings or source files shown in the source window and their program
units. LIST is equivalent to PANEL LISTINGS and PANEL SOURCES.

Related references
“PANEL command (full-screen mode)” on page 302

LIST AT
Lists the currently defined breakpoints, including the action taken when the
specified breakpoint is activated.

�� LIST AT_command
AT

ENABLED ALLOCATE
DISABLED APPEARANCE

CALL
CHANGE
DATE
DELETE
ENTRY
EXIT
GLOBAL ALLOCATE

APPEARANCE
CALL
DATE
DELETE
ENTRY
EXIT
LABEL
LINE
LOAD
PATH
STATEMENT

LABEL
LINE
LOAD
OCCURRENCE
PATH
STATEMENT
TERMINATION

; �$

Chapter 13. Debug Tool commands 285

AT_command
A valid AT command that includes at least one operand. The AT command must
be complete except that the every_clause and command are omitted.

ENABLED
Restricts the list to enabled breakpoints. The default is to list both enabled and
disabled breakpoints.

DISABLED
Restricts the list to disabled breakpoints. The default is to list both enabled and
disabled breakpoints.

ALLOCATE
Lists currently defined AT ALLOCATE breakpoints.

APPEARANCE
Lists currently defined AT APPEARANCE breakpoints.

CALL
Lists currently defined AT CALL breakpoints.

CHANGE
Lists currently defined AT CHANGE breakpoints. This displays the storage
address and length for all AT CHANGE subjects, and shows how they were
specified (if other than by the %STORAGE function).

DATE
Lists currently defined AT DATE breakpoints.

DELETE
Lists currently defined AT DELETE breakpoints.

ENTRY
Lists currently defined AT ENTRY breakpoints.

EXIT
Lists currently defined AT EXIT breakpoints.

GLOBAL
Lists currently defined AT GLOBAL breakpoints for the specified AT-condition.

LABEL
Lists currently defined AT LABEL breakpoints.

LINE
Lists currently defined AT LINE or AT STATEMENT breakpoints. LINE is equivalent
to STATEMENT.

LOAD
Lists currently defined AT LOAD breakpoints.

OCCURRENCE
Lists currently defined AT OCCURRENCE breakpoints.

PATH
Lists currently defined AT PATH breakpoints.

STATEMENT
Is equivalent to LINE.

TERMINATION
Lists currently defined AT TERMINATION breakpoint.

If the AT command type (for example, LOAD) is not specified, LIST AT lists all
currently defined breakpoints (both DISABLEd and ENABLEd).

286 Debug Tool User’s Guide and Reference

Usage note

v To display a global breakpoint, you can specify an asterisk (*) with the LIST AT
command or you can specify a LIST AT GLOBAL command. For example, if you
want to display an AT ENTRY * breakpoint, specify:
LIST AT ENTRY *;
or
LIST AT GLOBAL ENTRY;

If you have only a global breakpoint set and you specify LIST AT ENTRY without
the asterisk (*) or GLOBAL keyword, you get a message saying there are no such
breakpoints.

Examples

v Display information about enabled breakpoints defined at block entries.
LIST AT ENABLED ENTRY;

v Display information about global DATE breakpoint entries.
LIST AT DATE *;

v Display breakpoint information for all disabled AT CHANGE breakpoints within the
currently executing program.
LIST AT DISABLED CHANGE;

v The current programming language setting is C. Here are some assorted LIST AT
commands.
LIST AT LINE 22;

or
LIST AT OCCURRENCE SIGSEGV;

or
LIST AT CHANGE structure.un.m;

Related references
“AT command” on page 220

LIST CALLS
Displays the dynamic chain of active blocks. For languages without block
structure, this is the CALL chain. Under MVS batch and MVS with TSO, LIST CALLS
lists the call chain of every active enclave in the process.

�� LIST CALLS ; �$

Usage notes

v For programs containing interlanguage communication (ILC), routines from
previous enclaves are only listed if they are written in a language that is active
in the current enclave.

v This command also lists compile units in parent enclaves under CMS if the
enclave was created using SVC LINK. If the enclave was created with the
system() function or the CMSCALL macro, compile units in parent enclaves will
not be listed.

Example

Chapter 13. Debug Tool commands 287

Display the current dynamic chain of active blocks.
LIST CALLS;

LIST CURSOR (full-screen mode)
Provides a cursor controlled method for displaying variables, structures, and
arrays. It is most useful when assigned to a PF key.

�� LIST
CURSOR

�$

Usage notes

v Cursor pointing can be used by typing the LIST CURSOR command on the
command line and moving the cursor to a variable in the source window before
pressing Enter, or by moving the cursor and pressing a PF key with the LIST
CURSOR command assigned to it.

v When using the LIST CURSOR command for a variable that is located by the
cursor position, the variable’s name cannot be split across different lines of the
source listing.

Example

Display the value of the variable at the current cursor position.
LIST CURSOR

LIST expression
Displays values of expressions.

�� LIST

%

expression
TITLED ,
UNTITLED

(expression)
TITLED

*

; �$

TITLED
Displays each expression in the list with its value. For PL/I, this is the default.
For C/C++, this is the default for expressions that are lvalues. For COBOL, this
is the default except for expressions consisting of only a single constant.

If TITLED is issued with no keyword specified, all variables in the currently
qualified block are listed.

* (C/C++ and COBOL)
Lists all variables in the currently qualified compile unit.

UNTITLED
Lists expression values without displaying the expressions themselves. For
C/C++, this is the default for expressions that are not lvalues. For COBOL, this
is the default for expressions consisting of only a single constant. For the LIST
command, an expression also includes character strings enclosed in either
double (") or single (') quotes, depending on the current programming
language.

288 Debug Tool User’s Guide and Reference

In C and COBOL, expressions containing parentheses () must be enclosed in
another set of parentheses when used with the LIST command as in example
LIST ((x + y) / z);.

In COBOL, an expression can be the GROUP keyword followed by a reference. If
specified, the GROUP keyword causes the reference to be displayed as if it were
an elementary item. If GROUP is specified for an elementary item, it has no
effect. The operand of a GROUP keyword can only be a reference (expressions
are not allowed) as in example LIST TITLED GROUP y;.

Usage notes

v Debug Tool allows you to abbreviate many commands. This might result in
unexpected results when you use the LIST command with a single-letter
expression. For example, LIST A can be interpreted as the LIST AT command,
which lists all breakpoints. However, if you wanted to display the value of a
variable labeled A in your program, you need to use parenthesis: LIST (A).

v If LIST TITLED * is specified and your compile unit is large, slow performance
might result.

v For COBOL, if LIST TITLED * is specified and your compile unit is large, you
might receive an out of storage error message.

v When using LIST TITLED with no parameters within the PL/I compile unit, only
the first element of any array will be listed. If the entire array needs to be listed,
use LIST and specify the array name (i.e., LIST array where array is the name of
an array).

v Currently, Debug Tool only supports two character sets: English and Japanese. If
a variable contains unprintable characters, error message EQA1461E is
displayed.

Examples

v Display the values for variables size and r and the expression c + r, with their
respective names.
LIST TITLED (size, r, c + r);

v Display the COBOL references as if they were elementary items. The current
programming language setting is COBOL.
LIST (GROUP x OF z(1,2), GROUP a, w);

v Display the value of the Debug Tool variable %ADDRESS.
LIST %ADDRESS;

Related references
“expression syntax” on page 210

LIST FREQUENCY
Lists statement execution counts.

�� LIST FREQUENCY

%

statement_id_range
,

(statement_id_range)
*

; �$

* Lists frequency for all statements in the currently qualified compile unit. If
currently executing at the AT TERMINATION breakpoint where there is no

Chapter 13. Debug Tool commands 289

qualification available, it will list frequency for all statements in all the compile
units in the terminating enclave where frequency data exists.

Examples

v List frequency for statements 1-20.
LIST FREQUENCY 1 - 20;

v List frequency for all statements in the currently qualified compile unit.
LIST FREQUENCY *;

v List frequency for all statements in all compile units.
AT TERMINATION LIST FREQUENCY *;

Related references
“statement_id_range and stmt_id_spec syntax” on page 212
“SET FREQUENCY” on page 326

LIST LAST
Displays a list of recent entries in the history table.

�� LIST
LAST

integer

HISTORY
LINES
PATHS
STATEMENTS

; �$

integer
Specifies the number of most recently processed breakpoints and conditions
displayed.

HISTORY
Displays all processed breakpoints and conditions.

LINES
Displays processed statement or line breakpoints. LINES is equivalent to
STATEMENTS.

PATHS
Displays processed path breakpoints.

STATEMENTS
Is equivalent to LINES.

Examples

v Display all processed path breakpoints in the history table.
LIST PATHS;

v Display all program breakpoints and conditions for the last five times Debug
Tool gained control.
LIST LAST 5 HISTORY;

Related references
“SET HISTORY” on page 327

LIST LINE NUMBERS
Equivalent to LIST STATEMENT NUMBERS.

290 Debug Tool User’s Guide and Reference

Related references
“LIST STATEMENT NUMBERS” on page 294

LIST LINES
Equivalent to LIST STATEMENTS.

Related references
“LIST STATEMENTS” on page 295

LIST MONITOR
Lists all or selected members of the current set of MONITOR commands.

�� LIST MONITOR
integer

- integer

; �$

integer
An unsigned integer identifying a MONITOR command. If two integers are
specified, the first must not be greater than or equal to the second. If omitted,
all MONITOR commands are displayed.

Usage note

v When the current programming language setting is COBOL, blanks are required
around the hyphen (-). Blanks are optional for C.

Example

List the fifth through the seventh commands currently being monitored.
LIST MONITOR 5 - 7;

LIST NAMES
Lists the names of variables, programs, or Debug Tool procedures. If LIST NAMES is
issued with no keyword specified, the names of all program and session variables
that can be referenced in the current programming language and that are visible to
the currently qualified block are displayed. A subset of the names can be specified
by supplying a pattern to be matched.

�� LIST NAMES
pattern

%

BLOCK block_spec
cu_spec

,

(block_spec)
cu_spec

CUS
PROCEDURES
PROGRAMS
TEST

; �$

Chapter 13. Debug Tool commands 291

pattern
The pattern searched for, conforming to the current programming language
syntax for a character string constant. The pattern length cannot exceed 128
bytes, excluding the quotes.

If the DBCS setting is ON, the pattern can contain DBCS characters. DBCS shift
codes are not considered significant characters in the pattern. Within the
pattern, an SBCS or DBCS asterisk represents a string of zero or more
insignificant SBCS or DBCS characters. As many as eight asterisks can be
included in the pattern, but adjacent asterisks are equivalent to a single
asterisk.

Some examples of possible strings follow:

C COBOL PL/I

"ABC" "A5" 'MY'
'A5'

Pattern matching is not case-sensitive outside of DBCS. Both the pattern and
potential names outside of shift codes are effectively uppercased, except when
the current programming language setting is C. Letters in the pattern must be
the correct case when the current programming language setting is C.

BLOCK
Displays variable names that are defined within one or more specified blocks.

CUS
Displays the compile unit names. CUS is equivalent to PROGRAMS.

PROCEDURES
Displays the Debug Tool procedure names.

PROGRAMS
Is equivalent to CUS.

TEST
Displays the Debug Tool session variable names.

Usage notes

v LIST NAMES CUS applies to compile unit names.
v LIST NAMES TEST shows only those session variable names that can be referenced

in the current programming language.
v The output of LIST NAMES without any options depends on both the current

qualification and the current programming language setting. If the current
programming language differs from the programming language of the current
qualification, the output of the command shows only those session variable
names that can be referenced in the current programming language.

v For structures, the pattern is tested against the complete name, hence "B" is not
satisfied by "C OF B OF A" (COBOL).

Examples

v Display all compile unit names that begin with the letters "MY" and end with
"5". The current programming language setting is either C or COBOL.
LIST NAMES "MY*5" PROGRAMS;

v Display the names of all the Debug Tool procedures that can be invoked.
LIST NAMES PROCEDURES;

292 Debug Tool User’s Guide and Reference

v Display the names of variables whose names begin with 'R' and are in the
mainprog block. The current programming language setting is COBOL.
LIST NAMES 'R*' BLOCK (mainprog);

Related references
“block_spec syntax” on page 209
“cu_spec syntax” on page 210

LIST ON (PL/I)
Lists the action (if any) currently defined for the specified PL/I conditions.

�� LIST ON
pli_condition

; �$

pli_condition
A valid PL/I condition specification. If omitted, all currently defined ON
command actions are listed.

Example

List the action for the ON ZERODIVIDE command.
LIST ON ZERODIVIDE;

Related references
“ON command (PL/I)” on page 300

LIST PROCEDURES
Lists the commands contained in the specified Debug Tool PROCEDURE definitions.

�� LIST PROCEDURES

%

name
,

(name)

; �$

name
A valid Debug Tool procedure name. If no procedure name is specified, the
commands contained in the currently running procedure are displayed. If no
procedure is currently running, an error message is issued.

Examples

v Display the commands in the Debug Tool procedure p2.
LIST PROC p2;

v List the procedures abc and proc7.
LIST PROCEDURES (abc, proc7);

LIST REGISTERS
Displays the current register contents.

Chapter 13. Debug Tool commands 293

�� LIST REGISTERS
LONG

FLOATING
SHORT REGISTERS

; �$

REGISTERS
Displays the general-purpose registers

LONG
Displays the decimal value of the long-precision floating-point registers.

SHORT
Displays the decimal value of the short-precision floating-point registers.

FLOATING
Displays the long-precision floating-point registers.

Examples

v Display the general-purpose registers at the point of a program interruption:
LIST REGISTERS;

v Display the floating-point registers.
LIST FLOATING REGISTERS;

LIST STATEMENT NUMBERS
Lists all statement or line numbers that are valid locations for an AT LINE or AT
STATEMENT breakpoint.

�� LIST LINE
STATEMENT

NUMBERS
block_spec
cu_spec
statement_id_range

; �$

NUMBERS
Displays the statement numbers that can be used to set STATEMENT breakpoints,
assuming the compile options used to generate statement hooks were specified
at compile time. The list can also be used for the GOTO command, however, you
might not be able to GOTO all of the statement numbers listed.

block_spec
A valid block specification. This operand lists all statement or line numbers in
the specified block.

cu_spec
A valid compile unit specification. For C programs, cu_spec can be used to list
the statement numbers that are defined within the specified compile unit
before the first function definition.

statement_id_range
A valid range of statement ids, separated by a hyphen (-).

Examples

v List the statement or line numbers in the currently qualified block.
LIST STATEMENT NUMBERS;

v Display the statement or line number of every statement in block earnings.

294 Debug Tool User’s Guide and Reference

LIST STATEMENT NUMBERS earnings;

Related references
“block_spec syntax” on page 209
“cu_spec syntax” on page 210
“statement_id_range and stmt_id_spec syntax” on page 212

LIST STATEMENTS
Lists one or more statements or lines from a file. It is primarily intended for
viewing portions of the source listing or source file in line mode, but can also be
used in full-screen mode to copy a portion of a source listing or source file to the
log.

�� LIST LINE
STATEMENT

statement_id_range ; �$

Usage notes

v The specified lines are displayed in the same format as they would appear in the
full-screen Source window, except that wide lines are truncated.

v You might need to specify a range of line numbers to ensure that continued
statements are completely displayed.

v This command is not to be confused with the LIST LAST STATEMENTS command.

Examples

v List lines 25 through 30 in the source file associated with the currently qualified
compile unit.
LIST LINES 25 - 30;

v List statement 100 from the current program listing file.
LIST STATEMENT 100;

Related references
“statement_id_range and stmt_id_spec syntax” on page 212

LIST STORAGE
Displays the contents of storage at a particular address in hex format.

�� LIST STORAGE
(address)

reference , integer

; �$

address
The starting address of storage to be watched for changes. This must be a hex
constant: 0x in C, H in COBOL (using either double (") or single (') quotes), or
PX in PL/I.

integer
The number of bytes of storage displayed. The default is 16 bytes.

Usage notes

Chapter 13. Debug Tool commands 295

v For C/C++, if the referenced variable is an array, Debug Tool displays the
storage at the address of that array. However, if the referenced variable is a
pointer, Debug Tool displays the storage at the address given by that pointer.

v Using Debug Tool, cursor pointing can be used by typing the LIST STORAGE
command on the command line and moving the cursor to a variable in the
Source window before pressing Enter, or by moving the cursor and pressing a
PF key with the LIST STORAGE command assigned to it.

v When using the LIST STORAGE command in Debug Tool for a variable that is
located by the cursor position, the variable’s name cannot be split across
different lines of the source listing.

v If no operand is specified with LIST STORAGE, the command is cursor-sensitive.

Examples

v Display the first 64 bytes of storage beginning at the address of variable table.
LIST STORAGE (table, 64);

v Display 16 bytes of storage at the address given by pointer table(1).
LIST STORAGE (table(1));

v Display the 16 bytes contained at locations 20CD0-20CDF. The current
programming language setting is COBOL.
LIST STORAGE (H'20CD0');

v Display the 16 bytes contained at locations 20CD0-20CDF. The current
programming language setting is PL/I.
LIST STORAGE ('20CD0'PX);

Related references
“references syntax” on page 212

MONITOR command
The MONITOR command defines or redefines a command whose output is displayed
in the monitor window (full-screen mode), terminal output (line mode), or log file
(batch mode). Only DESCRIBE, LIST, Null, and QUERY command values are
maintained.

�� MONITOR
GLOBAL

LOCAL
cu_spec

integer
command �$

GLOBAL
Specifies that the monitor definition is global. That is, it is not associated with
a particular compile unit.

LOCAL
Specifies that the monitor definition is local to a specific compile unit. Using
Debug Tool, the specified output is displayed only when the current
qualification is within the associated compile unit.

cu_spec
A valid compile unit specification. This specifies the compile unit
associated with the monitor definition.

integer
An integer in the range 1 to 99, indicating what command in the list is

296 Debug Tool User’s Guide and Reference

replaced with the specified command and the order that the monitored
commands are evaluated. If omitted, the next monitor integer is assigned. An
error message is displayed if the maximum number of monitoring commands
already exists.

command
A DESCRIBE, LIST, Null, or QUERY command whose output is displayed in the
monitor window, terminal output, or log file.

Usage notes

v A monitor number identifies a global monitor command, a local monitor
command, or neither.

v Using Debug Tool, monitor output is presented in monitor number sequence.
v If a number is provided and a command omitted, a Null command is inserted

on the line corresponding to the number in the monitor window. This reserves
the monitor number.

v You can only specify a monitor number that is at most one greater than the
highest existing monitor number.

v To clear a command from the monitor, use the CLEAR MONITOR command.
v The MONITOR command displays up to a maximum of 1000 lines of output in the

monitor window.
v Replacement only occurs if the command identified by the monitor number

already exists.
v The MONITOR LIST command does not allow the POPUP, TITLED, and UNTITLED

options.
v When using the MONITOR LIST command, simple references (or C lvalues)

display identifying information with the values, whereas expressions and literals
do not.

v The GLOBAL and LOCAL keywords also affect the default qualification for
evaluation of an expression. GLOBAL indicates that the default qualification is the
currently executing point in the program. LOCAL indicates that the default
qualification is to the compile unit specified.

Examples

v Replace the 10th command in the monitor list with QUERY LOCATION. This is a
global definition; therefore, it is always present in the monitor output.
MONITOR 10 QUERY LOCATION;

v Add a monitor command that displays the variable abc and is local to compile
unit myprog. The monitor number is the next available number.
MONITOR LOCAL myprog LIST abc;

Related references
“cu_spec syntax” on page 210
“CLEAR command” on page 251
“DESCRIBE command” on page 263
“LIST command” on page 284
“QUERY command” on page 307

Chapter 13. Debug Tool commands 297

MOVE command (COBOL)
The MOVE command transfers data from one area of storage to another. The
keywords cannot be abbreviated.

�� MOVE reference
literal

TO reference ; �$

reference
A valid Debug Tool COBOL reference.

literal
A valid COBOL literal.

Usage notes

v If Debug Tool was invoked because of a computational condition or an attention
interrupt, using an assignment to set a variable might not give expected results.
This is due to the uncertainty of variable values within statements as opposed to
their values at statement boundaries.

v MOVE assigns a value only to a single receiver; unlike COBOL, multiple receiver
variables are not supported.

v The COBOL CORRESPONDING phrase is not supported.
v MOVE does not support date windowing. Therefore, you cannot use the MOVE

command to assign the value of a windowed date field to an expanded date
field or to a nondate field.

v You cannot use the MOVE command to assign the value of one expanded date
field to another expanded date field with a different DATE FORMAT clause, or
to assign the value of one windowed date field to another windowed date field
with a different DATE FORMAT clause.

Examples

v Move the string constant "Hi There" to the variable field.
MOVE "Hi There" TO field;

v Move the value of session variable temp to the variable b.
MOVE temp TO b;

v To assign a new value to a DBCS variable when the current programming
language is COBOL, enter the following command in the Command/Log
window.
MOVE G"D B C S V A L U E"

v Assign to the program variable c, found in structure d, the value of the program
variable a, found in structure b.
MOVE a OF b TO c OF d;

Note the qualification used in this example.
v Assign the value of 123 to the first table element of itm-2.

MOVE 123 TO itm-2(1,1);

v You can also use reference modification to assign values to variables as shown in
the following two examples.
MOVE aa(2:3) TO bb;

and

298 Debug Tool User’s Guide and Reference

MOVE aa TO bb(1:4);

Related references
“Allowable moves for the MOVE command (COBOL)”

Allowable moves for the MOVE command (COBOL)
The following table shows the allowable moves for the Debug Tool MOVE command.

SOURCE FIELD RECEIVING FIELD

GR AL AN ED BI NE ANE ID IF EF D1

GROUP (GR) Y Y Y Y1 Y1 Y1 Y1 Y1 Y1 Y1

ALPHABETIC (AL) Y Y

ALPHANUMERIC
(AN)4,5 Y Y

EXTERNAL
DECIMAL (ED)4,5 Y1 Y

BINARY (BI) Y1 Y

NUMERIC EDITED
(NE)

Y

ALPHANUMERIC
EDITED (ANE)

Y Y

FIGCON ZERO Y Y Y2 Y2 Y Y2 Y Y

SPACES (AL) Y Y Y Y

HIGH-VALUE,
LOW-VALUE,
QUOTES

Y Y Y

NUMERIC LITERAL Y1 Y Y Y Y Y

NONNUMERIC
LITERAL

Y Y Y Y1 Y

INTERNAL DECIMAL
(ID)4,5 Y1 Y

FLOATING POINT
LITERAL

Y1 Y Y

INTERNAL
FLOATING POINT
(IF)

Y1 Y Y

EXTERNAL
FLOATING POINT
(EF)

Y1 Y Y3

DBCS DATA ITEM
(D1)

Y

DBCS LITERAL Y

Notes:
1 Move without conversion (like AN to AN)
2 Numeric move
3 Decimal-aligned and truncated, if necessary
4 MOVE does not support date windowing. For example, the MOVE

statement cannot be used to move a windowed date field to an expanded
date field, or to a nondate field.

Chapter 13. Debug Tool commands 299

5 The MOVE command cannot be used to move one windowed date field to
another windowed date field with a different DATE FORMAT clause, or to
move one expanded date field to another expanded date field with a
different DATE FORMAT clause.

Related references
“MOVE command (COBOL)” on page 298

Null command
The Null command is a semicolon written where a command is expected. It is
used for such things as an IF command with no action in its THEN clause.

�� ; �$

Example

Do nothing if array[x] > 0; otherwise, set a to 1. The current programming
language setting is C.
if (array[x] > 0); else a = 1;

ON command (PL/I)
The ON command establishes the actions to be executed when the specified PL/I
condition is raised. This command is equivalent to AT OCCURRENCE.

�� ON CONDITION (condition_name)
ENDFILE (file_reference)
ENDPAGE
KEY
NAME
PENDING
RECORD
TRANSMIT
UNDEFINEDFILE

AREA
ATTENTION
CONVERSION
ERROR
FINISH
FIXEDOVERFLOW
OVERFLOW
SIZE
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE
UNDERFLOW
ZERODIVIDE

command �$

condition_name
A valid PL/I CONDITION condition name.

file_reference
A valid PL/I file constant or file variable (can be qualified).

300 Debug Tool User’s Guide and Reference

command
A valid Debug Tool command.

Usage notes

v You must abide by the PL/I restrictions for the particular condition.
v An ON action for a specified PL/I condition remains established until:

– Another ON command establishes a new action for the same condition. In
other words, the breakpoint is replaced.

– A CLEAR command removes the ON definition.
v The ON command occurs before any existing ON-unit in your application program.

The ON-unit is processed after Debug Tool returns control to the language.
v The following are accepted PL/I abbreviations for the PL/I condition constants:

ATTENTION or ATTN
FIXEDOVERFLOW or FOFL
OVERFLOW or OFL
STRINGRANGE or STRG
STRINGSIZE or STRZ
SUBSCRIPTRANGE or SUBRG
UNDEFINEDFILE([file_reference]) or UNDF([file_reference])
UNDERFLOW or UFL
ZERODIVIDE or ZDIV

v The preferred form of the ON command is AT OCCURRENCE. For compatibility with
PLITEST and INSPECT, however, it is recognized and processed. ON should be
considered a synonym of AT OCCURRENCE. Any ON commands entered are logged
as AT OCCURRENCE commands.

Examples

v Display a message if a division by zero is detected.
ON ZERODIVIDE BEGIN;

LIST 'A zero divide has been detected';
END;

v Display and patch the error character when converting character data to
numeric.
Given a PL/I program that contains the following statements:
DECLARE i FIXED BINARY(31,0);

.

..

..
i = '1s3';

The following Debug Tool command would display and patch the error
character when converting the character data to numeric:
ON CONVERSION

BEGIN;
LIST (%STATEMENT, ONCHAR);
ONCHAR = '0';
GO;

END;

'1s3' cannot be converted to a binary number so CONVERSION is raised. The ON
CONVERSION command lists the offending statement number and the offending
character: 's'. The data will be patched by replacing the 's' with a character
zero, 0, and processing will continue.

Chapter 13. Debug Tool commands 301

Related references
“AT OCCURRENCE” on page 237
VisualAge PL/I Language Reference

PANEL command (full-screen mode)
The PANEL command displays special panels. The PANEL keyword is optional.

The PANEL command cannot be used in a command list, any conditional command,
or any multiway command.

��
PANEL

COLORS
LAYOUT

RESET
LISTINGS
PROFILE
SOURCES

; �$

COLORS
Displays the Color Selection panel that allows the selection of color,
highlighting, and intensity of the various fields of the Debug Tool session
panel.

LAYOUT
Displays the Window Layout Selection panel that controls the configuration of
the windows on the Debug Tool session panel.

RESET
Restores the relative sizes of windows for the current configuration,
without displaying the window layout panel. For configurations 1 and 4,
the three windows are evenly divided. For other configurations, the point
where the three windows meet is approximately the center of the screen.

LISTINGS
Displays the Source Identification panel, where associations are made between
source listings or source files shown in the Source window and their program
units. LISTINGS is equivalent to SOURCES.

Debug Tool provides the Source Identification panel to maintain a record of
compile units associated with your program, as well as their associated source
or listing.

You can also make source or listings available to Debug Tool by entering their
names on the Source Identification panel.

The Source Identification panel associates compile units with the names of
their respective listing or source files and controls what appears in the Source
window. To explicitly name the compile units being displayed in the source
window, access the Source Identification panel (shown below) by entering the
PANEL LISTINGS or PANEL SOURCES command.

302 Debug Tool User’s Guide and Reference

Source Identification Panel
Command ===>

Compile Unit Listings/Source File Display
---------------------- --------------------------------- -------
DBKP515 TS64081.TEST.LISTING(IBME73) Y
___________ ____________________________ _

Enter QUIT to return with current settings saved.
CANCEL to return without current settings saved.
UP/DOWN to scroll up and down.

Compile Unit
Is the name of a valid compile unit currently known to Debug Tool. New
compile units are added to the list as they become known.

Listing/Source File
Is the name of the listing or source file containing the compilation unit to
be displayed in the Source window. If the file is a listing, only source
program statements are shown. The minimum required is the compile unit
name. The default file specification is pgmname LISTING * (COBOL and
PL/I), where pgmname is the name of your program. For TSO, the default
file specification is userid.pgmname.C (C/C++), userid.pgmname.list
(COBOL), or userid.pgmname.list (PL/I) for sequential data sets and
userid.dsname.C(membername) (C/C++),
userid.dsname.Listing(membername) (COBOL), or
userid.dsname.List(membername) (PL/I) for partitioned data sets.

Display
Is a flag that specifies whether the listing or source is to be displayed in
the Source window.

To display a listing view, take the following steps:
v Compile the program with the proper option to generate a source or source

listing file.
v Make sure the file is available and accessible on your host operating system.
v Set the Display field on the Source Identification panel to Y for the compile

unit. To save time and avoid displaying listings or source you do not want
to see, specify N.

If any of these conditions are not satisfied, the Source window remains empty
until control reaches a compile unit where the conditions are satisfied.

You can change the source or source listing associated with a compile unit by
entering the new name over the source or source listing file displayed in the
LISTING/SOURCE FILE field.

Note: The new name must be followed by at least one blank.

After you modify the panel, return to the Debug Tool session panel either by
issuing the QUIT command, or by pressing the QUIT PF key.

PROFILE
Displays the Profile Settings panel, where parameters of a full-screen Debug
Tool session can be set.

SOURCES
Is equivalent to LISTINGS.

Chapter 13. Debug Tool commands 303

Usage notes

v All information on the panels invoked by the PANEL command is saved when
QUIT is used to leave them. Saving the changes to the specified panels in this
manner returns you to your Debug Tool session with the current settings in
effect. In addition, CANCEL can be used to leave the panels without saving the
changes.

v On normal termination, Debug Tool saves certain panel settings in the Debug
Tool-defined file INSPSAFE.

v The PANEL command is not logged.

Examples

v Display the color and attribute panel.
PANEL COLORS;

v Reset the relative sizes of the windows for the current layout configuration.
PANEL LAYOUT RESET;

Related tasks
“Customizing the layout of windows on the session panel” on page 114
“Customizing profile settings” on page 117

PERFORM command (COBOL)
The PERFORM command transfers control explicitly to one or more statements and
implicitly returns control to the next executable statement after execution of the
specified statements is completed. The keywords cannot be abbreviated.

Simple:

�� PERFORM % command END-PERFORM ; �$

command
A valid Debug Tool command.

Repeating:

�� PERFORM
BEFORE

TEST
WITH AFTER

�

�
VARYING reference FROM reference BY reference

UNTIL condition �

� % command END-PERFORM ; �$

304 Debug Tool User’s Guide and Reference

reference
A valid Debug Tool COBOL reference.

condition
A simple relation condition.

command
A valid Debug Tool command.

Usage notes

v A constant as a reference is allowed only on the right side of the FROM and BY
keywords.

v Index-names and floating point variables cannot be used as the VARYING
references.

v Index-names are not supported in the BY phrase.
v Only inline PERFORMs are supported (but the PERFORMed command can be a

Debug Tool procedure invocation).
v The COBOL AFTER phrase is not supported.
v Windowed date fields cannot be used as the VARYING reference, the FROM reference,

or the BY reference.
v See COBOL for OS/390 & VM Language Reference for an explanation of the

following COBOL keywords:
AFTER
BEFORE
BY
FROM
TEST
UNTIL
VARYING
WITH

Examples

v Set a breakpoint at statement number 10 to move the value of variable a to the
variable b and then list the value of x.
AT 10 PERFORM

MOVE a TO b;
LIST (x);

END-PERFORM;

v List the value of height for each even value between 2 and 30, including 2 and
30.
PERFORM WITH TEST AFTER

VARYING height FROM 2 BY 2
UNTIL height = 30

LIST height;
END-PERFORM;

v Position the cursor at the start of a COBOL performed paragraph, MY-SUMMARY,
place the cursor on the paragraph name MY-SUMMARY and press F5.

Related references
COBOL for OS/390 & VM Language Reference

Chapter 13. Debug Tool commands 305

Prefix commands (full-screen mode)
The Prefix commands apply only to source listing lines and are typed into the
prefix area in the source window. For details, see the section corresponding to the
command name.

The following table summarizes the various forms of the Prefix commands.

“AT Prefix (full-screen
mode)” on page 241

Defines a statement breakpoint via the Source window prefix
area.

“CLEAR prefix
(full-screen mode)” on
page 254

Clears a breakpoint via the Source window prefix area.

“DISABLE prefix
(full-screen mode)” on
page 266

Disables a breakpoint via the Source window prefix area.

“ENABLE prefix
(full-screen mode)” on
page 270

Enables a disabled breakpoint via the Source window prefix
area.

“QUERY prefix
(full-screen mode)” on
page 310

Queries what statements have breakpoints via the Source
window prefix area.

“RUNTO prefix command
(full-screen mode)” on
page 313

Runs the program to the location indicated by the cursor or by
statement id via the Source window prefix area.

“SHOW prefix command
(full-screen mode)” on
page 344

Specifies what relative statement or verb within the line is to
have its frequency count shown in the suffix area.

PROCEDURE command
The PROCEDURE command allows the definition of a group of commands that can be
accessed using the CALL procedure command. The CALL command is the only way
to perform the commands within the PROCEDURE. PROCEDURE definitions remain in
effect for the entire debug session.

The PROCEDURE keyword can only be abbreviated as PROC. PROCEDURE definitions can
be subcommands of other PROCEDURE definitions. The name of a nested procedure
has only the scope of the containing procedure. Session variables cannot be
declared within a PROCEDURE definition.

In addition, a procedure must be defined before it is CALLed.

�� name : PROCEDURE ; % command END ; �$

name
A valid Debug Tool procedure name. It must be a valid identifier in the current
programming language. The maximum length is 31 characters.

command
A valid Debug Tool command other than a declaration or PANEL command.

306 Debug Tool User’s Guide and Reference

Usage notes

v Since the Debug Tool procedure names are always uppercase, the procedure
names are converted to uppercase even for programming languages that have
mixed-case symbols.

v If a GO or STEP command is issued within a procedure or a nested procedure,
any statements following the GO or STEP in that procedure and the containing
procedure are ignored. If control returns to Debug Tool, it returns to the
statement following the CALL of the containing PROCEDURE.

v It is recommended that procedure names be chosen so that they are valid for all
possible programming language settings throughout the entire Debug Tool
debug session.

Examples

v When procedure proc1 is called, the values of variables x, y, and z are displayed.
proc1: PROCEDURE; LIST (x, y, z); END;

v Define a procedure named setat34 that sets a breakpoint at statement 34.
Procedure setat34 contains a nested procedure lister that lists current
statement breakpoints. Procedure lister can only be called from within setat34.
setat34: PROCEDURE;

AT 34;
lister: PROCEDURE;

LIST AT STATEMENT;
END;
CALL lister;

END;

QUERY command
The QUERY command displays the current value of the specified Debug Tool setting,
the current setting of all the Debug Tool settings, or the current location in the
suspended program.

For an explanation of the Debug Tool settings, see the SET command.

Chapter 13. Debug Tool commands 307

�� QUERY CHANGE
COLORS
COUNTRY
DBCS
DEFAULT LISTINGS
DEFAULT SCROLL
DEFAULT WINDOW

(1)
DYNDEBUG
ECHO
EQUATES
EXECUTE
FREQUENCY
HISTORY
INTERCEPT
KEYS
LOCATION
LOG
LOG NUMBERS
MONITOR NUMBERS
MSGID

LANGUAGE
NATIONAL

PACE
PFKEYS
PROGRAMMING LANGUAGE
PROMPT
QUALIFY
REFRESH
REWRITE
SCREEN
SCROLL DISPLAY
SETS
SOURCE
SUFFIX
TEST
WARNING

; �$

Notes:

1 Available only on COBOL for OS/390 programs with the Dynamic Debug
feature installed.

CHANGE
Displays the current CHANGE setting.

COLORS (Full-Screen and Line Mode)
Displays the current COLOR setting.

COUNTRY
Displays the current COUNTRY setting.

DBCS
Displays the current DBCS setting.

DEFAULT LISTINGS (MVS)
Displays the current DEFAULT LISTINGS setting.

DEFAULT SCROLL (Full-Screen and Line Mode)
Displays the current DEFAULT SCROLL setting.

308 Debug Tool User’s Guide and Reference

DEFAULT WINDOW (Full-Screen and Line Mode)
Displays the current DEFAULT WINDOW setting.

DYNDEBUG (COBOL for OS/390)
Displays the current DYNDEBUG setting.

ECHO
Displays the current ECHO setting.

EQUATES
Displays the current EQUATE definitions.

EXECUTE
Displays the current EXECUTE setting.

FREQUENCY
Displays the current FREQUENCY setting.

HISTORY
Displays the current HISTORY setting and size.

INTERCEPT
Displays the current INTERCEPT setting.

KEYS (Full-Screen and Line Mode)
Displays the current KEYS setting.

LOCATION
Displays the statement identifier where execution is suspended. The current
statement identified by QUERY LOCATION has not yet executed. If suspended at a
breakpoint, the description of the breakpoint is also displayed.

LOG
Displays the current LOG setting.

LOG NUMBERS (Full-Screen and Line Mode)
Displays the current LOG NUMBERS setting.

MONITOR NUMBERS (Full-Screen and Line Mode)
Displays the current MONITOR NUMBERS setting.

MSGID
Displays the current MSGID setting.

NATIONAL LANGUAGE
Displays the current NATIONAL LANGUAGE setting.

PACE
Displays the current PACE setting. This setting is not supported in batch mode.

PFKEYS
Displays the current PFKEY definitions. This setting is not supported in batch
mode.

PROGRAMMING LANGUAGE
Displays the current PROGRAMMING LANGUAGE setting. Debug Tool does not
differentiate between C and C++, use this option for C++ as well a C
programs.

PROMPT (Full-Screen and Line Mode)
Displays the current PROMPT setting.

QUALIFY
Displays the current QUALIFY BLOCK setting.

Chapter 13. Debug Tool commands 309

REFRESH (Full-Screen and Line Mode)
Displays the current REFRESH setting.

REWRITE
Displays the current REWRITE setting. This setting is not supported in batch
mode.

SCREEN (Full-Screen and Line Mode)
Displays the current SCREEN setting.

SCROLL DISPLAY (Full-Screen and Line Mode)
Displays the current SCROLL DISPLAY setting.

SETS
Displays all current settings.

SOURCE
Displays the current SOURCE setting.

SUFFIX (Full-Screen and Line Mode)
Displays the current SUFFIX setting.

TEST
Displays the current TEST setting.

WARNING (C)
Displays the current WARNING setting.

Examples

v Display the current ECHO setting.
QUERY ECHO;

v Display all current settings.
QUERY SETS;

Related references
“QUERY prefix (full-screen mode)”

QUERY prefix (full-screen mode)
Queries what statements on a particular line have statement breakpoints when you
issue this command via the Source window prefix area.

�� QUERY �$

Usage notes

v When the QUERY prefix command is issued, a sequence of characters
corresponding to the statements is displayed in the prefix area of the Source
window. If the statement contains a breakpoint, "*" is used, or ".", if it does not.
If there are more than eight statements or verbs on the line, and one or more
past the eighth statement have breakpoints, the eighth character of the map is
replaced by a "+".
For example, a display of "..*." would indicate that four statements or verbs
begin on the line and the third one has a breakpoint defined.

v The QUERY prefix command is not logged.

310 Debug Tool User’s Guide and Reference

QUIT command
The QUIT command ends a Debug Tool session and if an expression is specified,
sets the return code. It also invokes a prompt panel (full-screen) that asks if you
really want to quit the debug session. In line and batch mode, the QUIT command
ends the session without prompting.

�� QUIT
(expression)
ABEND

; �$

expression
A valid Debug Tool expression in the current programming language.

If expression is specified, this value is used as the application return code value.
The actual return code for the run is determined by the execution environment.

ABEND
If ABEND is specified, Debug Tool raises an CEE2F1 exception to terminate each
active enclave.

Usage notes

v QUIT is always logged in a comment line except where it appears in a command
list. This makes it unnecessary for you to "comment out" the QUIT to reuse the
log file as a primary commands file.

v If QUIT is issued from a Debug Tool commands file, no prompt is issued. This
applies to the Debug Tool preferences files, primary commands files, and USE
files.

v For PL/I, the expression will be converted to FIXED BINARY (31,0), if necessary.
In addition, if an expression is specified, it is used as if there was an invocation
of the PLIRETC built-in subroutine in your program.

v For PL/I, the value of the expression must be nonnegative and less than 1000.

Examples

v End a Debug Tool session.
QUIT;

v End a Debug Tool session and use the value in variable x as the application
return code.
QUIT (x);

Related references
“expression syntax” on page 210

QQUIT command
The QQUIT command ends a Debug Tool session without further prompting.

�� QQUIT ; �$

Usage note

Chapter 13. Debug Tool commands 311

|||||||||||||||||||||||

|

|

|
|
|

In full-screen mode, the QQUIT command does not invoke a prompt panel to
verify that you want to quit the debug session.

Example

End a Debug Tool session.
QQUIT;

Related references
“QUIT command” on page 311

RETRIEVE command (full-screen mode)
The RETRIEVE command displays the last command entered on the command line.
For long commands this might be only the last line of the command.

�� RETRIEVE
COMMAND

; �$

COMMAND
Retrieves commands. Any command retrieved to the command line can be
performed by pressing Enter. The retrieved command can also be modified
before it is performed. Successive RETRIEVE commands continue to display up
to 12 commands previously entered on the command line. This operand is
most useful when assigned to a PF key.

Usage note The RETRIEVE command is not logged.

Example

Retrieve the last line so that it can be reissued or modified.
RETRIEVE COMMAND;

RUN command
The RUN command is synonymous to the GO command.

Related references
“GO command” on page 276

RUNTO command
The RUNTO command runs your program to a valid executable statement without
setting a breakpoint. You can indicate at which statement to stop by specifying the
statement id or by positioning the cursor on a statement.

�� RUNTO ;
statement_id

�$

statement_id
A valid statement identifier.

Usage notes

312 Debug Tool User’s Guide and Reference

|
|

v If you indicate a statement by positioning the cursor on the statement, the cursor
must be in the Source window and positioned on a line where an executable
statement begins.

v If you indicate a statement by positioning the cursor on the statement and there
are multiple statements on the same line, the target of the RUNTO command is the
first relative statement on the line.

v If you indicate a statement by providing a statement id, the statement id must
be an executable statement.

v Execution continues until one of the following conditions occurs:
– The location indicated by the cursor position or the statement id is reached.
– A previously set breakpoint is encountered.
– The end of the job is reached.

Examples

v Run to statement 67, where statement 67 is in a currently active block.
RUNTO 67;

v Run to the statement 11 in the block IPLI11A, where IPLI11A is known in the
current enclave.
RUNTO IPLI11A :> 11

v Run to statement 36, where statement 36 is located in the Source window.
1. Type RUNTO in the command line.
2. Place the cursor on statement 36.
3. Press Enter.

v Run to the statement 74, using a PF key.
1. Define a PF key to run to the cursor position.

SET PF13 = RUNTO;

2. Place the cursor at the statement 74 and hit shift+PF1 key.

Related references
“RUN command” on page 312

RUNTO prefix command (full-screen mode)
Runs to the statement when you issue this command via the Source window prefix
area.

Example

Run to the statement 67, where statement 67 is located in the Source window.
1. Type RUNTO in the prefix area of statement 67 and press Enter.

Usage note

For RUNTO prefix , no space is needed as a delimiter between the keyword and the
integer; RUNTO 67 is equivalent to RUNTO67.

Chapter 13. Debug Tool commands 313

SCROLL command (full-screen mode)
The SCROLL command provides horizontal and vertical scrolling in full-screen
mode. Scroll commands can be made immediately effective with the IMMEDIATE
command. The SCROLL keyword is optional.

The Log, Monitor, or Source window will not wrap around when scrolled.

��
SCROLL

DOWN
LEFT CSR
NEXT DATA
RIGHT HALF
UP integer

MAX
PAGE

BOTTOM
TO integer
TOP

CURSOR

LOG
MONITOR
SOURCE

; �$

DOWN
Scrolls the specified number of lines in a window toward the top margin of
that window. DOWN is equivalent to NEXT.

LEFT
Scrolls the specified number of columns in a window toward the right margin
of that window.

NEXT
Is equivalent to DOWN.

RIGHT
Scrolls the specified number of columns in a window toward the left margin of
that window.

UP Scrolls the specified number of lines in a window toward the bottom margin of
that window.

CSR
Specifies scrolling based on the current position of the cursor in a selected
window. The window scrolls up, down, left, or right of the cursor position
until the character where the cursor is positioned reaches the edge of the
window. If the cursor is not in a window or if it is already positioned at the
edge of a window, a full-page scroll occurs.

DATA
Scrolls by one line less than the window size or by one character less than the
window size (if moving left or right).

HALF
Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of
characters (left or right). Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached. To scroll
the maximum amount, you must use the MAX keyword. You cannot scroll the
maximum amount by filling in the scroll amount field.

314 Debug Tool User’s Guide and Reference

PAGE
Scrolls by the window size.

BOTTOM
Scrolls to the bottom of the data.

TO integer
Specifies that the selected window is to scroll to the given line (as indicated in
the prefix area of the selected window). This can be in either the UP or DOWN
direction (for example, if you are line 30 and issue TO 20, it will return to line
20). Maximum value is 999999.

TOP
Scrolls to the top of the data.

CURSOR
Selects the window where the cursor is currently positioned.

LOG
Selects the session log window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Usage notes

v If you do not specify an operand with the DOWN, LEFT, NEXT, RIGHT, or UP
keywords, and the cursor is outside the window areas, the window scrolled is
determined by the current default window setting (if the window is open) and
the scroll amount is determined by the current default scroll setting, shown in
the SCROLL field on the Debug Tool session panel. Default scroll and default
window settings are controlled by SET DEFAULT SCROLL and SET DEFAULT WINDOW
commands.

v When the SCROLL field on the Debug Tool session panel is overtyped, the
equivalent SET DEFAULT SCROLL command is issued just as if you had typed the
command in directly from the command line (that is, it is logged and
retrievable).

v The SCROLL command is not logged.

Examples

v Scroll one page down in the window containing the cursor.
SCROLL DOWN PAGE CURSOR;

v Scroll the monitor window 12 columns to the left.
SCROLL LEFT 12 MONITOR;

Related references
“SET DEFAULT SCROLL (full-screen mode)” on page 322

SELECT command (PL/I)
The SELECT command chooses one of a set of alternate commands.

If the reference can be satisfied by more than one of the WHEN clauses, only the first
one is performed. If there is no reference, the first WHEN clause containing an
expression that is true is executed. If none of the WHEN clauses are satisfied, the

Chapter 13. Debug Tool commands 315

command specified on the OTHERWISE clause, if present, is performed. If the
OTHERWISE clause should be executed and it is not present, a Debug Tool message is
issued.

�� SELECT
(reference)

; �

�

% %

,

WHEN (expression) command

OTHERWISE command
END ; �$

reference
A valid Debug Tool PL/I scalar reference. An aggregate (array or structure)
cannot be used as a reference.

WHEN
Specifies that an expression or a group of expressions be evaluated and either
compared with the reference immediately following the SELECT keyword, or
evaluated to true or false (if reference is omitted).

expression
A valid Debug Tool PL/I expression.

command
A valid Debug Tool command.

OTHERWISE
Specifies the command to be executed when every test of the preceding WHEN
statements fails.

Example

When sum is equal to the value of c+ev, display a message. When sum is equal to
either fv or 0, display a message. If sum is not equal to the value of either c+ev, fv,
or 0, a Debug Tool error message is issued.
SELECT (sum);

WHEN (c + ev) LIST ('Match on when group number 1');
WHEN (fv, 0) LIST ('Match on when group number 2');

END;

SET command
The SET command sets various switches that affect the operation of Debug Tool.
Except where otherwise specified, settings remain in effect for the entire debug
session.

The following table summarizes the various forms of the SET command.

“SET CHANGE” on page 318 Controls the frequency of checking the AT CHANGE
breakpoints.

“SET COLOR (full-screen and line
mode)” on page 318

Provides control of the color, highlighting, and
intensity attributes.

“SET COUNTRY” on page 320 Changes the current national country setting.

316 Debug Tool User’s Guide and Reference

“SET DBCS” on page 321 Controls whether DBCS shift-in and shift-out codes
are recognized.

“SET DEFAULT LISTINGS (MVS)” on
page 321

Defines a default partitioned data set (PDS) ddname
or dsname searched for program source listings or
source files.

“SET DEFAULT SCROLL (full-screen
mode)” on page 322

Sets the default scroll amount.

“SET DEFAULT WINDOW (full-screen
mode)” on page 323

Specifies what window is defaulted.

“SET DYNDEBUG (COBOL for OS/390)”
on page 323

Controls whether Dynamic Debug is enabled.

“SET ECHO” on page 324 Controls whether GO and STEP commands are recorded
in the log window.

“SET EQUATE” on page 325 Equates a symbol to a string of characters.

“SET EXECUTE” on page 326 Controls whether commands are performed or just
syntax checked.

“SET FREQUENCY” on page 326 Controls whether statement executions are counted.

“SET HISTORY” on page 327 Specifies whether entries to Debug Tool are recorded
in the history table.

“SET INTERCEPT (C/C++ and COBOL)”
on page 327

Intercepts input to and output from specified files,
displaying prompts and output in the log

“SET KEYS (full-screen and line
mode)” on page 328

Controls whether PF key definitions are displayed.

“SET LOG” on page 329 Controls the logging of output and assignment to the
log file.

“SET LOG NUMBERS (full-screen and
line mode)” on page 330

Controls whether line numbers are shown in the log
window.

“SET MONITOR NUMBERS (full-screen
and line mode)” on page 330

Controls whether line numbers are shown in the
monitor window.

“SET MSGID” on page 330 Controls whether message identifiers are shown.

“SET NATIONAL LANGUAGE” on
page 331

Switches your application to a different run-time
national language.

“SET PACE” on page 332 Specifies the maximum pace of animated execution.

“SET PFKEY” on page 332 Associates a Debug Tool command with a PF key.

“SET PROGRAMMING LANGUAGE” on
page 333 LANGUAGE

Sets the current programming language.

“SET PROMPT (full-screen and line
mode)” on page 335

Controls the display of the current program location.

“SET QUALIFY” on page 335 Simplifies the identification of references and
statement numbers by resetting the point of view.

“SET REFRESH (full-screen mode)”
on page 336

Controls screen refreshing when the SCREEN setting is
ON.

“SET REWRITE” on page 337 Forces a periodic screen rewrite.

“SET SCREEN (full-screen and line
mode)” on page 337

Controls how information is displayed on the screen.

“SET SCROLL DISPLAY (full-screen
mode)” on page 338

Controls whether the scroll field is displayed.

“SET SOURCE” on page 338 Associates a source listing or source file with one or
more compile units.

Chapter 13. Debug Tool commands 317

“SET SUFFIX (full-screen mode)”
on page 340

Controls the display of the Source window suffix area.

“SET TEST” on page 340 Overrides the initial TEST run-time options specified at
invocation.

“SET WARNING (C/C++ and PL/I)” on
page 342

Controls display of the Debug Tool warning messages
and whether exceptions are reflected to the application
program.

Related references
“SET command (COBOL)” on page 343

SET CHANGE
Controls the frequency of checking the AT CHANGE breakpoints. The initial setting is
STATEMENT/LINE.

�� SET CHANGE
STATEMENT

ALL
BLOCK
LINE
PATH

; �$

STATEMENT
Specifies that the AT CHANGE breakpoints are checked at all statements.
STATEMENT is equivalent to LINE.

ALL
Specifies that the AT CHANGE breakpoints are checked at all statements, block
entry and exits, and path points.

BLOCK
Specifies that the AT CHANGE breakpoints are checked at all block entry and
exits.

LINE
Is equivalent to STATEMENT.

PATH
Specifies that the AT CHANGE breakpoints are checked at all path points.

Examples

v Specify that AT CHANGE breakpoints are checked at all statements.
SET CHANGE;

v Specify that AT CHANGE breakpoints are checked at all path points.
SET CHANGE PATH;

SET COLOR (full-screen and line mode)
Provides control of the color, highlighting, and intensity attributes when the SCREEN
setting is ON. The color, highlighting, and intensity keywords can be specified in
any order.

318 Debug Tool User’s Guide and Reference

�� SET COLOR
CYCLE

BLUE BLINK HIGH
GREEN NONE LOW
PINK REVERSE
RED UNDERLINE
TURQUOISE
WHITE
YELLOW

�

�
CURSOR

COMMAND LINE ;
LOG LINES
MONITOR AREA

LINES
PROGRAM OUTPUT
SOURCE AREA

BREAKPOINTS
CURRENT
PREFIX
SUFFIX

TARGET
FIELD

TEST INPUT
OUTPUT

TITLE FIELDS
HEADERS

TOFEOF
MARKER

WINDOW HEADERS

�$

CYCLE
Causes the color to change to the next one in the sequence of colors. The
sequence follows the order shown in the syntax diagram.

BLINK
Causes the characters to blink (if supported by the terminal).

NONE
Causes the characters to appear in normal type.

REVERSE
Transforms the characters to reverse video (if supported by the terminal).

UNDERLINE
Causes the characters to be underlined (if supported by the terminal).

HIGH
Causes screen colors to be high intensity (if supported by the terminal).

LOW
Causes screen colors to be low intensity (if supported by the terminal).

CURSOR
Specifies that cursor pointing is used to select the field. Optionally, you can
type in the field name (for example, COMMAND LINE) as shown in the syntax
diagram.

Chapter 13. Debug Tool commands 319

COMMAND LINE
Selects the command input line (preceded by ===>).

LOG LINES
Selects the line number portion of the log window.

MONITOR AREA
Selects the primary area of the monitor window.

MONITOR LINES
Selects the line number portion of the monitor window.

PROGRAM OUTPUT
Selects the application program output displayed in the log window.

SOURCE AREA
Selects the primary area of the Source window.

SOURCE BREAKPOINTS
Selects the source prefix fields next to statements where breakpoints are set.

SOURCE CURRENT
Selects the line containing the source statement that is about to be performed.

SOURCE PREFIX
Selects the statement identifier column at the left of the source window.

SOURCE SUFFIX
Selects the frequency column at the right of the Source window.

TARGET FIELD
Selects the target of a FIND command in full-screen mode, if found.

TEST INPUT
Selects the Debug Tool input displayed in the log window.

TEST OUTPUT
Selects the Debug Tool output displayed in the log window.

TITLE FIELDS
Selects the information fields in the top line of the screen, such as current
programming language setting or the current location within the program.

TITLE HEADERS
Selects the descriptive headers in the top line of the screen, such as location.

TOFEOF MARKER
Selects the top-of-file and end-of-file lines in the session panel windows.

WINDOW HEADERS
Selects the header lines for the windows in the main session panel.

Examples

v Set the Source window display area to yellow reverse video.
SET COLOR YELLOW REVERSE SOURCE AREA;

v Set the monitor window display area to high intensity green.
SET COLOR HIGH GREEN MONITOR AREA;

SET COUNTRY
Changes the current national country setting for the application program. It is
available only where supported by Language Environment. The IBM-supplied
initial country code is US.

320 Debug Tool User’s Guide and Reference

�� SET COUNTRY country_code ; �$

country_code
A valid two-letter set that identifies the country code used. The country code
can have one of the following values:

United States: US
Japanese: JP

Country codes cannot be truncated.

Usage notes

v This setting affects both your application and Debug Tool.
v At the beginning of an enclave, the settings are those provided by Language

Environment or your operating system. For nested enclaves, the parent’s settings
are restored upon return from a child enclave.

Example

Change the current country code to correspond to Japan.
SET COUNTRY JP;

SET DBCS
Controls whether shift-in and shift-out codes are interpreted on input and supplied
on DBCS output. SET DBCS is valid for all programming languages. The initial
setting is ON for C and PL/I and OFF for COBOL.

�� SET DBCS
ON

OFF
; �$

ON Interprets shift-in and shift-out codes.

OFF
Ignores shift-in and shift-out codes.

Usage Note: If you SET NATIONAL LANGUAGE ENU and you set DBCS on,
Debug Tool resets the national language to UEN to remain compatible with
Japanese characters.

Example

Specify that shift-in and shift-out codes are interpreted.
SET DBCS ON;

Related references
“SET NATIONAL LANGUAGE” on page 331

SET DEFAULT LISTINGS (MVS)
Defines a default partitioned data set (PDS) ddname or dsname searched for
program source listings or source files. The LISTINGS keyword cannot be
abbreviated.

Chapter 13. Debug Tool commands 321

�� SET DEFAULT LISTINGS listings_file ; �$

listings_file
Specifies a ddname (a valid ddname in MVS) or a fully-qualified MVS data set
name (for TSO and CICS) to be searched for program source listings or source
files.

Usage notes

v If the file name is too long to be typed on one line, suffix it with a trailing
hyphen.

v The SET SOURCE ON command has a higher precedence than the SET DEFAULT
LISTINGS command.

v For C/C++ compile units, Debug Tool requires a file containing the source code.
By default, when Debug Tool encounters a new C/C++ compile unit, it looks for
the source code in a file whose name is the one that was used on the compile
step.
For VS COBOL II and PL/I compile units, Debug Tool requires a file containing
the compiler listing. By default, when Debug Tool encounters a new VS COBOL
II or PL/I compile unit, it looks for the listing in a file named hlq.cuname.LIST.
For COBOL/370, COBOL for MVS, and COBOL for OS/390, Debug Tool looks
for the listing in a partitioned data set member named cuname.
For PL/I, you might need to use the SET SOURCE command to specify the
location of your listing file if the CU or program name is not the same as the
listing file name. For example, for program name AVER, Debug Tool looks for
the sequential data set userid.pgmname.LIST. If the Debug Tool window comes
up empty, use the following command:
SET SOURCE ON (PGMNAME) userid.source.listings(cu_name) ;

This specifies the actual location of the listing file, in this example a partitioned
data set with the program name differing from the CU name.

Example

Indicate that the default listings file is allocated to dsname
SVTRSAMP.TS99992.MYPROG.
SET DEFAULT LISTINGS SVTRSAMP.TS99992.MYPROG;

SET DEFAULT SCROLL (full-screen mode)
Sets the default scroll amount that is used when a SCROLL command is issued
without the amount specified. The initial setting is PAGE.

�� SET DEFAULT SCROLL CSR
DATA
HALF
integer
MAX
PAGE

; �$

CSR
Scrolls in the specified direction until the character where the cursor is
positioned reaches the edge of the window.

322 Debug Tool User’s Guide and Reference

DATA
Scrolls by one line less than the window size or by one character less than the
window size (if moving left or right).

HALF
Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of
characters (left or right). Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached.

PAGE
Scrolls by the window size.

Example

Set the default amount to half the size of the window.
SET DEFAULT SCROLL HALF;

SET DEFAULT WINDOW (full-screen mode)
Specifies what window is selected when a window referencing command (for
example, FIND, SCROLL, or WINDOW) is issued without explicit window identification
and the cursor is outside the window areas. The initial setting is SOURCE.

�� SET DEFAULT WINDOW LOG
MONITOR
SOURCE

; �$

LOG
Selects the session log window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Example

Set the default to the monitor window for use with scrolling commands.
SET DEFAULT WINDOW MONITOR;

SET DYNDEBUG (COBOL for OS/390)
Controls whether to activate Dynamic Debug. Use the SET DYNDEBUG command at
the beginning of your debug session. The Dynamic Debug feature allows you to
debug COBOL for OS/390 programs compiled without debug hooks. Debug hooks
are added into the object for the programs when you specify the TEST compiler
option with any of its suboptions (excluding NONE). Debug hooks increase the size
of the object and can decrease performance. Dynamic Debug allows you to create
smaller objects by removing the need for compiled-in debug hooks. Dynamic
Debug also supports the debugging of programs that contain a mixture of
programs compiled with and without debug hooks. For example:
v A COBOL program is compiled using TEST(NONE,SYM) and it calls

Chapter 13. Debug Tool commands 323

v a COBOL program compiled using TEST(ALL,SYM) which calls
v a C program compiled using TEST(ALL,SYM)

Dynamic Debug allows you to debug all three programs. Without Dynamic Debug,
you are only able to debug the two programs compiled using TEST(ALL,SYM).

�� SET DYNDEBUG
ON
OFF �$

ON Activates Dynamic Debug.

OFF
Deactivates Dynamic Debug.

Usage notes

v Dynamic Debug does not support attention interrupts with programs compiled
using TEST(NONE,SYM).

v The GOTO command is not allowed when you debug a program compiled with
TEST(NONE) and DYNDEBUG is set ON.

v The same program compiled with different TEST options may halt execution at
different locations or the same scenarios. For instance, if you compile a program
with TEST(ALL,...) and step through the first three lines, execution is halted on
line four. However, if you compile the same program with TEST(NONE,SYM,...)
and step through the first three lines, execution is halted on line five. The
difference is due to optimization techniques used by the compiler.

Program compiled with TEST(ALL) Program compiled with TEST(NONE)

000001 MOVE... 000001 MOVE...

000002 ADD... 000002 ADD...

�000003 LABEL: ... 000003 LABEL: ...

000004 MOVE... �000004 MOVE...

Related concepts
“Using Debug Tool on optimized programs” on page 374

SET ECHO
Controls whether GO and STEP commands are recorded in the log window when
they are not subcommands. The presence of long sequences of GO and STEP
commands clutters the log window and provides little additional information. SET
ECHO makes it possible to suppress the display of these commands. The contents of
the log file are unaffected. The initial setting is ON.

�� SET ECHO ON
OFF

*

keyword
; �$

ON Shows given commands in the log window.

OFF
Suppresses given commands in the log window.

324 Debug Tool User’s Guide and Reference

keyword
Can be GO (with no operand) or STEP.

* Specifies that the command is applied to the GO and STEP commands. This is
the default.

Examples

v Specify that the display of GO and STEP commands is suppressed.
SET ECHO OFF;

v Specify that GO and STEP commands are displayed.
SET ECHO ON *;

SET EQUATE
Equates a symbol to a string of characters. The equated symbol can be used
anywhere a keyword, identifier, or punctuation is used in a Debug Tool command.
When an equated symbol is found in a Debug Tool command (other than the
identifier operand in SET EQUATE and CLEAR EQUATE), the equated symbol is replaced
by the specified string before parsing continues.

�� SET EQUATE identifier = string ; �$

identifier
An identifier that is valid in the current programming language. The maximum
length of the identifier is:
v For C, 32 SBCS characters
v For COBOL, 30 SBCS characters
v For PL/I, 31 SBCS characters

The identifier can contain DBCS characters.

string
A string constant in the current programming language. The maximum length
of the replacement string is 255 SBCS characters.

Usage notes

v Operands of the following commands are for environments other than the
standard Debug Tool environment (that is, CMS fileid, TSO dsname, and so
forth) and are not scanned for EQUATEd symbol substitution:

CMS
COMMENT
INPUT
SET DEFAULT LISTINGS
SET INTERCEPT ON/OFF FILE
SET LOG ON FILE
SET SOURCE (cu_spec)
SYSTEM/SYS
TSO
USE

v To remove an EQUATE definition, use the CLEAR EQUATE command.
v To remain accessible when the current programming language setting is

changed, symbols that are equated when the current programming language
setting is C must be entered in uppercase and must be valid in the other
programming languages.

Chapter 13. Debug Tool commands 325

v If an EQUATE identifier coincides with an existing keyword or keyword
abbreviation, EQUATE takes precedence. If the EQUATE identifier is already defined,
the new definition replaces the old.

v The equate string is not scanned for, or substituted with, symbols previously set
with a SET EQUATE command.

Examples

v Specify that the symbol INFO is equated to "ABC, DEF (H+1)". The current
programming language setting is either C or COBOL.
SET EQUATE INFO = "ABC, DEF (H+1)";

v Specify that the symbol tstlen is equated to the equivalent of a #define for
structure pointing. The current programming language setting is C. Note that
this lowercase symbol will not necessarily be accessible if the current
programming language changes.
SET EQUATE tstlen = "struct1->member.b->c.len";

v Specify that the symbol VARVALUE is equated to the command LIST x.
SET EQUATE VARVALUE = "LIST x";

SET EXECUTE
Controls whether commands from all input sources are performed or just syntax
checked (primarily for checking USE files). The initial setting is ON.

�� SET EXECUTE
ON

OFF
; �$

ON Specifies that commands are accepted and performed.

OFF
Specifies that commands are accepted and parsed; however, only the following
commands are performed: END, GO, SET EXECUTE ON, QUIT, and USE.

Example

Specify that all commands are accepted and performed.
SET EXECUTE ON;

SET FREQUENCY
Controls whether statement executions are counted. The initial setting is OFF.

�� SET FREQUENCY
ON

OFF

%

cu_spec
,

(cu_spec)

; �$

ON Specifies that statement executions are counted.

OFF
Specifies that statement executions are not counted.

326 Debug Tool User’s Guide and Reference

cu_spec
A valid compile unit specification. If omitted, all compile units with statement
information are processed.

Example

Specify that statement executions are counted in compile units main and subr1.
SET FREQUENCY ON (main, subr1);

Related references
“cu_spec syntax” on page 210
“LIST FREQUENCY” on page 289
“SET SUFFIX (full-screen mode)” on page 340

SET HISTORY
Specifies whether entries to Debug Tool are recorded in the history table and
optionally adjusts the size of the table. The history table contains information
about the most recently processed breakpoints and conditions. The initial setting is
ON; the initial size is 100.

�� SET HISTORY
ON

OFF integer
; �$

ON Maintains the history of invocations.

OFF
Suppresses the history of invocations.

integer
The number of entries kept in the history table.

Examples

v Adjust the history table size to 50 lines.
SET HISTORY 50;

v Turn off history recording.
SET HISTORY OFF;

Related references
“LIST LAST” on page 290

SET INTERCEPT (C/C++ and COBOL)
Intercepts input to and output from specified files. Output and prompts for input
are displayed in the log.

Only sequential I/O can be intercepted. I/O intercepts remain in effect for the
entire debug session, unless you terminate them by selecting SET INTERCEPT OFF.
The initial setting is OFF.

�� SET INTERCEPT
ON

OFF
FILE file_spec
CONSOLE

�$

Chapter 13. Debug Tool commands 327

ON Turns on I/O interception for the specified file. Output appears in the log,
preceded by the file specifier for identification. Input causes a prompt entry in
the log, with the file specifier identified. You can then enter input for the
specified file on the command line by using the INPUT command.

OFF
Turns off I/O interception for the specified file.

FILE file_spec
A valid file specification that is interpreted by each supported language. The
FILE keyword cannot be abbreviated.

In C, this can be any valid fopen() file specifier including stdin, stdout, or
stderr.

CONSOLE (COBOL)
Turns on I/O interception for the console.

This consists of:
v Job log output from DISPLAY UPON CONSOLE
v Screen output (and confirming input) from STOP 'literal'
v Terminal input for ACCEPT FROM CONSOLE or ACCEPT FROM SYSIN.

Usage notes

v COBOL supports only the CONSOLE command.
v For C, intercepted streams or files cannot be part of any C I/O redirection

during the execution of a nested enclave.
v For PL/I, SET INTERCEPT is not supported.
v For CICS, SET INTERCEPT is not supported.

Examples

v Turn on the I/O interception for the console. The current programming language
setting is COBOL.
SET INTERCEPT CONSOLE;

v Turn on the I/O interception for the fopen() file specifier dd:mydd. The current
programming language setting is C.
SET INTERCEPT ON FILE dd:mydd;

Related references
“INPUT command (C/C++ and COBOL)” on page 283
“SET REFRESH (full-screen mode)” on page 336

SET KEYS (full-screen and line mode)
Controls whether PF key definitions are displayed when the SCREEN setting is ON.
The initial setting is ON.

�� SET KEYS
ON

OFF

12

24
; �$

ON Displays PF key definitions.

OFF
Suppresses the display of the PF key definitions.

12 Shows PF1-PF12 on the screen bottom.

328 Debug Tool User’s Guide and Reference

24 Shows PF13-PF24 on the screen bottom.

Example

Specify that the display of the PF key definitions is suppressed.
SET KEYS OFF;

Related references
“SET PFKEY” on page 332

SET LOG
Controls whether each performed command and the resulting output is written to
the log file and defines (or redefines) the file that is used. The initial setting is ON
FILE INSPLOG. This is a valid DD name in MVS or FILEDEF name in CMS.

�� SET LOG
ON

ON FILE fileid
KEEP count
OFF

; �$

ON Specifies that commands and output are written to the log file.

FILE fileid
Identifies the log file used. The FILE keyword cannot be abbreviated.

In TSO, fileid is a ddname or a qualified data set name. Partitioned data sets
should not be used.

In CICS, fileid is a qualified data set name. Partitioned data sets should not be
used.

In CMS, fileid is a FILEDEF name or a CMS fileid (filename filetype filemode). If
filemode is omitted, the CMS search sequence is used.

If fileid has the form of a ddname, Debug Tool checks to see if the file is
allocated (FILEDEFed in CMS).

In full-screen mode, the log file should not be allocated to the 3270 terminal
device.

KEEP count
Specifies the number of lines of log output retained for display. The initial
setting is 1000; count cannot equal zero (0).

OFF
Specifies that commands and output are not written to a log file.

Usage notes

v The log output lines retained for display are always the last (that is, the most
recent) lines.

v Setting LOG OFF does not suppress the log display.
v If the same file name already exists, the output log is appended to the existing

file.
v If you are debugging in full-screen mode and the log file is allocated to the

terminal, issue a SET LOG OFF command before issuing a QUIT command. If you
do not issue the SET LOG OFF command, the QUIT command fails.

Chapter 13. Debug Tool commands 329

Examples

v Specify that commands and output are written to the log file named mainprog.
SET LOG ON FILE mainprog;

Another example using the data set name thing.
SET LOG ON FILE userid.thing.log

v Indicate that 500 lines of log output are retained for display.
SET LOG KEEP 500;

Related tasks
“Recording your debug session in a log file” on page 66

SET LOG NUMBERS (full-screen and line mode)
Controls whether line numbers are shown in the log window. The initial setting is
ON.

�� SET LOG NUMBERS
ON

OFF
; �$

ON Shows line numbers in the log window.

OFF
Suppresses line numbers in the log window.

Example

Specify that log line numbers are not shown.
SET LOG NUMBERS OFF;

SET MONITOR NUMBERS (full-screen and line mode)
Controls whether line numbers are shown in the monitor window. The initial
setting is ON.

�� SET MONITOR NUMBERS
ON

OFF
; �$

ON Shows line numbers in the monitor window.

OFF
Suppresses line numbers in the monitor window.

Example

Specify that monitor line numbers are not shown.
SET MONITOR NUMBERS OFF;

SET MSGID
Controls whether the Debug Tool messages are displayed with the message prefix
identifiers. The initial setting is OFF.

330 Debug Tool User’s Guide and Reference

�� SET MSGID
ON

OFF
; �$

ON Displays message identifiers. The first 7 characters of the message contain the
EQAnnnn message prefix identifier, then a blank, then the original message
text, such as: 'EQA2222 Program does not exist.'

OFF
Displays only the message text.

Example

Specify that message identifiers are suppressed.
SET MSGID OFF;

SET NATIONAL LANGUAGE
Switches your application to a different run-time national language that determines
what translation is used when a message is displayed. The switch is effective for
the entire run-time environment; it is not restricted to Debug Tool activity only.
The initial setting is supplied by Language Environment, according to the setting
in the current enclave.

�� SET
NATIONAL

LANGUAGE language_code ; �$

language_code
A valid three-letter set that identifies the language used or (for compatibility)
one of the two-letter language codes that was accepted in the previous release
of INSPECT for C/370 and PL/I. The language code can have one of the
following values:

United States English: ENU
United States English (Uppercase): UEN
Japanese: JPN
If you SET DBCS ON and you set the national language to ENU, Debug
Tool resets the national language to UEN to remain compatible with
Japanese characters.

For compatibility with the previous release of INSPECT for C/370 and PL/I:
EN or ENGLISH is mapped to ENU
UE or UENGLISH is mapped to UEN
JA, JAPANESE, NI, or NIHONGO is mapped to JPN

Usage notes

v In order to display Japanese DBCS characters correctly in full-screen mode, the
VTAM Attribute Byte that must be set ON. To verify that the VTAM Attribute
Byte is set ON:
1. In ISPF, select option 0 (Settings).
2. On the command line, enter: environ.
3. Tab to the section Terminal Status (TERMSTAT). In the Enable field, enter 2

(Query terminal information).

Chapter 13. Debug Tool commands 331

|
|
|

|

|

|
|

4. Several pages of statistics appear. In the section GTTERM Information, note
the value of the highest bit in the second byte of the field Attribute Byte. The
value of this bit must be 1 (ON). For example, if the value of the Attribute
Byte field is x'008000C9', then Japanese DBCS characters display correctly
because the second byte is X'80'. However, if the value of the Attribute Byte
field is x'000000C9', Japanese DBCS characters are not display properly.
Contact the VTAM System Administrator to set the VTAM Attribute Byte to
1 (ON).

v The SET NATIONAL LANGUAGE setting affects both your application and
Debug Tool.

v At the beginning of an enclave, the settings are those provided by Language
Environment or your operating system. For nested enclaves, the parent’s settings
are restored upon return from a child enclave.

Examples

v Set the current national language to Japanese.
SET NATIONAL LANGUAGE JPN;

v Set the current national language to United States English.
SET LANGUAGE ENU;

Related references
“SET DBCS” on page 321

SET PACE
Specifies the maximum pace of animated execution, in steps per second. The initial
setting is two steps per second. This setting is not supported in batch mode and it
has no effect under CICS.

�� SET PACE number ; �$

number
A decimal number between 0 and 9999; it must be a multiple of 0.5.

Usage notes

v Associated with the SET PACE command is the STEP command. Animated
execution is achieved by defining a PACE and then issuing a STEP n command
where n is the number of steps to be seen in animated mode. STEP * can be used
to see all steps to the next breakpoint in animated mode.

v When PACE is set to 0, no animation occurs.

Example

Set the animated execution pace to 1.5 steps per second.
SET PACE 1.5;

SET PFKEY
Associates a Debug Tool command with a Program Function key (PF key). This
setting is not supported in batch mode.

332 Debug Tool User’s Guide and Reference

|
|
|
|
|
|
|
|

|
|

�� SET PFn
string

= command ; �$

PFn
A valid program function key specification (PF1 - PF24).

string
The label shown in the PF key display (if the KEYS setting is ON) that is entered
as a string constant. The string is truncated if longer than eight characters. If
the string is omitted, the first eight characters of the command are displayed.
The string needs to be surrounded by single (for PL/I) or double (for C/C++)
quotation marks. For COBOL, the strings can be surrounded by either single or
double quotation marks.

command
A valid Debug Tool command or partial command.

Usage notes

v In Debug Tool, if there is any text on the command line at the time the PF key is
pressed, that text is appended to the PF key string, with an intervening blank,
for execution.

v The initial settings for PF keys 13-24 are equivalent to PF keys 1-12, respectively.
If you change the setting for a PF key in the 1–12 range, the equivalent key in
the 13–24 range remains the same.

Example

Define the PF5 key to scroll the cursor-selected window forward.
v If the programming language setting is COBOL:

SET PF5 "Down" = IMMEDIATE SCROLL DOWN;

v If the programming lanuage setting is PL/I:
SET PF5 'Down' = IMMEDIATE SCROLL DOWN;

v If the programming language setting is C++:
SET PF5 "Down" = IMMEDIATE SCROLL DOWN;

In all cases, the setting for PF17 remains the same.

Related references
“Initial PF key settings” on page 62

SET PROGRAMMING LANGUAGE
Sets the current programming language. You can only set the current programming
language to the selection of languages of the programs currently loaded. For
example, if the current load module contains both C and COBOL compile units,
but not PL/I, you can set the language only to C or COBOL. However, if you later
STEP or GO into another load module that contains C, COBOL, and PL/I compile
units, you can set the language to any of the three.

The programming language setting affects the parsing of incoming Debug Tool
commands. The execution of a command is always consistent with the current
programming language setting that was in effect when the command was parsed.
The programming language setting at execution time is ignored.

Chapter 13. Debug Tool commands 333

|

|
|

|

�� SET PROGRAMMING LANGUAGE
CYCLE

AUTOMATIC
HOLD

C
COBOL HOLD
PLI

; �$

CYCLE
Specifies that the programming language is set to the next language in the
alphabetic sequence of supported languages.

AUTOMATIC
Cancels a HOLD by specifying that the programming language is set according
to the current qualification and thereafter changed automatically each time the
qualification changes or STEP or GO is issued.

HOLD
Specifies that the given language (or the current language, if no language is
specified) remains in effect regardless of qualification changes. The language
remains in effect until SET PROGRAMMING LANGUAGE changes the language or
releases the hold.

C Sets the current programming language to C. Debug Tool does not differentiate
between C and C++, use this option for C++ as well as C programs.

COBOL
Sets the current programming language to COBOL.

PLI
Sets the current programming language to PL/I.

Usage notes

v If CYCLE or one of the explicit programming language names is specified, the
current programming language setting is changed regardless of the currently
suspended program or the current qualification.

v The current programming language setting affects how commands are parsed,
not how they are performed. Commands are always performed according to the
programming language setting where they were parsed. For example, it is not
possible for a Debug Tool procedure to contain a mixture of C and COBOL
commands; there is no way for the programming language setting to be changed
while the procedure is being parsed. Also, it is not possible for a command
parsed with one programming language setting to reference variables, types, or
labels in another programming language.

v If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is, HOLD is not in effect),
changing the qualification automatically sets the current programming language
to the specified block or compile unit.

v SET PROGRAMMING LANGUAGE can be used to set the programming language to any
supported language in the current or parent enclaves.

Example

Specify that C/C++ is the current programming language.
SET PROGRAMMING LANGUAGE C;

334 Debug Tool User’s Guide and Reference

SET PROMPT (full-screen and line mode)
Controls whether the current program location is automatically shown as part of
the prompt message in line mode. It has no effect in full-screen mode, because the
current location is always shown in the panel header in that case. The initial
setting is LONG.

�� SET PROMPT LONG
SHORT

; �$

LONG
Uses long form of prompt message.

SHORT
Uses short form of prompt message.

Example

Specify that the long form of prompt message is used.
SET PROMPT LONG;

SET QUALIFY
Simplifies the identification of references and statement numbers by resetting the
point of view to a new block, compile unit, or load module. In full-screen mode
this affects the contents of the Source window. If you are currently viewing one
compile unit in your Source window and you want to view another, issue the SET
QUALIFY command to change the qualification. The SET keyword is optional. The
QUALIFY keyword can be abbreviated.

��
SET

QUALIFY BLOCK block_spec
CU cu_spec
PROGRAM

LOAD
load_spec

RESET
RETURN
UP

; �$

BLOCK
Sets the current point of view to the specified block.

block_spec
A valid block specification.

CU Sets the current point of view to the specified compile unit. CU is equivalent to
PROGRAM.

cu_spec
A valid compile unit specification.

PROGRAM
Is equivalent to CU.

LOAD
Sets the current point of view to the specified load module.

Chapter 13. Debug Tool commands 335

load_spec
A valid load module specification. If omitted, the initial (primary) load
module qualification is used.

RESET
Resets qualification to the block of the suspended program and (if the SCREEN
setting is ON) scrolls the source window to display the current statement line.

RETURN
Switches qualification to the next higher calling program.

UP Switches qualification up one lexical level to the statically containing block.

Usage notes

v If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is, HOLD is not in effect),
changing the qualification automatically sets the current programming language
to the specified block or compile unit.

v If you are debugging a program that has multiple enclaves, SET QUALIFY can be
issued only for load modules, compile units, and blocks that are known in the
current enclave.

v The SET QUALIFY command does not imply a change in flow of control when the
program is resumed with the GO command.

v The SET QUALIFY command cannot modify the point of view to a Debug Tool or
library block.

v SET QUALIFY LOAD will not change the results of the QUERY QUALIFY command.

Examples

v Indicate to Debug Tool that the load module statmod should be used when no
load module is specified.
SET QUALIFY LOAD statmod;

v Set the qualification back to the point of the suspended program.
SET QUALIFY RESET;

v Set the block qualification to blockx. As a result, the load module qualification
and compile unit qualification will be updated to the load module and compile
unit that contain the block blockx.
SET QUALIFY BLOCK blockx;

Related references
“block_spec syntax” on page 209
“cu_spec syntax” on page 210
“load_spec syntax” on page 211

SET REFRESH (full-screen mode)
Controls screen refreshing. This command is only valid when in full-screen mode,
that is the SET SCREEN setting is ON. The initial setting for REFRESH is OFF.

�� SET REFRESH
ON

OFF
; �$

ON Clears the screen before each rewrite. This is a required setting if your
application handles line mode I/O.

336 Debug Tool User’s Guide and Reference

OFF
Rewrites without clear.

SET REFRESH ON is needed for applications that also make use of the screen; for
example, applications using ISPF services to display panels.

Example

Specify that rewrites only occur on those portions of the screen that have changed.
The screen is not cleared before being rewritten.
SET REFRESH OFF;

SET REWRITE
Forces a periodic screen rewrite during long sequences of output. This setting is
not supported in batch mode.

�� SET REWRITE
EVERY

number ; �$

number
Specifies how many lines of intercepted output are written by the application
program before Debug Tool refreshes the screen. The initial setting is 50.

Example

Force screen rewrite after each 100 lines of screen output.
SET REWRITE EVERY 100;

SET SCREEN (full-screen and line mode)
Controls how information is displayed on the screen. The initial setting for a
supported full-screen terminal is ON.

�� SET SCREEN

%

ON

CYCLE
integer

LOG
MONITOR
SOURCE

OFF

; �$

CYCLE
Switches to the next window configuration in sequence.

integer
An integer in the range 1 to 6, selecting the window configuration. The initial
setting is 1.

LOG or MONITOR or SOURCE
Specifies the sequence of window assignments within the selected
configuration (left to right, top to bottom). There must be no more than three
objects specified and they must all be different.

ON Activates the Debug Tool full-screen services.

Chapter 13. Debug Tool commands 337

OFF
Activates line mode. This mode is forced if the terminal is not a supported
full-screen device.

Usage notes

v If neither CYCLE nor integer is specified, there is no change in the choice of
configuration. If no windows are specified, there is no change in the assignment
of windows to the configuration.

v If SET SCREEN OFF is entered while debugging in full-screen mode using a VTAM
terminal under TSO, the session enters line mode using the TSO terminal. If SET
SCREEN ON is later entered from the TSO terminal, control reverts to full-screen
mode using a VTAM terminal.

v SET SCREEN OFF is ignored in CICS full-screen mode and in MVS batch while
debugging in full-screen mode using a VTAM terminal.

Examples

v Indicate that the Debug Tool full-screen services are used.
SET SCREEN ON;

v Indicate that the log window is positioned above the Source window on the left
hand side of the screen and the monitor window is to occupy the upper right
side portion of the screen.
SET SCREEN 2 LOG MONITOR;

Related tasks
“Customizing the layout of windows on the session panel” on page 114
“Chapter 5. Customizing your full-screen session” on page 113

SET SCROLL DISPLAY (full-screen mode)
Controls whether the scroll field is displayed when operating in full-screen mode.
The initial setting is ON.

�� SET SCROLL DISPLAY
ON

OFF
; �$

ON Displays scroll field.

OFF
Suppresses scroll field.

Example

Specify that the scroll field is suppressed.
SET SCROLL DISPLAY OFF;

SET SOURCE
Associates a source file (for C) or source listing (for COBOL or PL/I) with one or
more compile units.

338 Debug Tool User’s Guide and Reference

|

|
|
|
|

|
|

�� SET SOURCE
ON

OFF
(%

,

cu_spec)
fileid

; �$

ON Displays the source or listing for a compile unit when the compile unit is
active.

OFF
Specifies that the file is not displayed.

cu_spec
A valid compile unit specification. Multiple compile units can be associated
with the same source, listing or separate debug file.

fileid
Identifies the source, listing or separate debug file to be used for the compile
unit. The file that you specify must be of fixed block format.

In MVS, fileid is a DD name, a fully qualified partitioned data set and member
name, a sequential file, or an HFS path and file name.

In CICS, fileid is a fully-qualified data set name or an HFS path and file name.

In CMS, fileid is a FILEDEF name or a CMS fileid (filename filetype filemode). If
filemode is omitted, the CMS search sequence is used.

If fileid is a DD name, Debug Tool checks to see if it is allocated (via the
ALLOCATE command in TSO or FILEDEFed in CMS). If not allocated, it is taken
as a partitioned data set name or CMS fileid.

Fileid specifies a file identifier used in place of the default file identifier for the
compile unit. A valid fileid is required unless it is already known to Debug
Tool (via a previous SET SOURCE) or the default fileid is valid.

Usage notes

v When SET SOURCE is issued for the currently executing compile unit, a test is
performed for the existence of the file. If the compile unit is not the current
compile unit, this test is not performed until the compile unit becomes current.
The file associated with the source might not exist and the error message for the
nonexistent file does not appear until a function that requires this file is
attempted.

v The SET SOURCE ON command has a higher precedence than the SET DEFAULT
LISTINGS command.

v For COBOL, if the cu_spec includes any names that are case sensitive, enclose the
name in single or double quotes.

Examples

v Indicate that the COBOL listing associated with compile unit prog1 is found in
DD name mainprog. In a TSO session, allocate the listing data set:
ALLOCATE FI(MAINPROG) DA('JSMITH.COBOL.LISTING(PROG1)') SHR

Invoke Debug Tool and issue:
SET SOURCE ON (prog1) mainprog;

When prog1 is made current during the debug session, Debug Tool searches for
the listing in JSMITH.COBOL.LISTING(PROG1).

Chapter 13. Debug Tool commands 339

v Indicate that the COBOL listing associated with compile unit prog1 is found in
DD name mainprog. In a TSO session:
SET SOURCE ON (prog1) JSMITH.COBOL.LISTING(PROG1)

This accomplishes the same result as the previous example without the
execution of the ALLOCATE command.

v Indicate that the source associated with compile unit "/u/userid/code/oefun.c"
is found in the HFS under the path and file name "/u/userid/code/oefun.c".
SET SOURCE ON ("/u/userid/code/oefun.c") /u/userid/code/oefun.c;

v Indicate that the PL/I listing file associated with compile unit AVER is found in
MYID.PLI.LISTING(AVER)

SET SOURCE ON (AVER) myid.pli.listing(AVER) ;

v Indicate that the C source associated with compile unit JSMITH.C.SOURCE(myprog)
is found in the PDS and member CODE.CLIB.SOURCE(myprog).
SET SOURCE ON ("JSMITH.C.SOURCE(myprog)") CODE.CLIB.SOURCE(myprog)

Under TSO or CICS, the cu_spec for a C/C++ program consists of the data set
name of the compile unit source input to the compiler. Fileid defines the data set
name where the source to be used resides.

Related references
“cu_spec syntax” on page 210
“LIST command” on page 284

SET SUFFIX (full-screen mode)
Controls the display of frequency counts at the right edge of the Source window
when in full-screen mode. The initial setting is ON.

�� SET SUFFIX
ON

OFF
; �$

ON Displays the suffix column.

OFF
Suppresses the suffix column.

Example

Specify that the suffix column is displayed.
SET SUFFIX ON;

SET TEST
Overrides the initial TEST run-time options specified at invocation. The initial
setting is ALL.

�� SET TEST test_level
(test_level)

; �$

340 Debug Tool User’s Guide and Reference

test_level
Specifies what exception conditions cause Debug Tool to gain control, even
though no breakpoint exists. The parentheses are optional.

Test_level can include the following:

ALL
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or
Language Environment condition of Severity 1 and above causes Debug
Tool to gain control, regardless of whether a breakpoint is defined for that
type of condition. If a condition occurs and a breakpoint exists for the
condition, the commands specified in the breakpoint are executed. If a
condition occurs and a breakpoint does not exist for that condition, or if an
attention interrupt occurs, Debug Tool:
v In interactive mode, reads commands from a commands file (if it exists)

or prompts you for commands, or
v In noninteractive mode, reads commands from the commands file

ERROR
Specifies that only the following conditions cause Debug Tool to gain
control without a user-defined breakpoint.
v For C:

– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above
– Any C condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

v For COBOL:
– An attention interrupt
– Program termination
– A predefined Language Environment condition of Severity 2 or above.

v For PL/I:
– An attention interrupt, directed at either PL/I or Debug Tool
– Program termination
– A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, any commands
specified in the breakpoint are executed. If no commands are specified,
Debug Tool reads commands from a commands file or prompts you for
commands in interactive mode.

NONE
Specifies that Debug Tool gains control only at an attention interrupt, or at
a condition if a breakpoint is defined for that condition. If a breakpoint
does exist for the condition, the commands specified in the breakpoint are
executed.

Examples

v Indicate that only an attention interrupt or exception causes Debug Tool to gain
control when no breakpoint exists.
SET TEST ERROR;

v Indicate that no condition causes Debug Tool to gain control unless a breakpoint
exists for that condition.
SET TEST NONE;

Chapter 13. Debug Tool commands 341

Related tasks
“Requesting an attention interrupt during interactive sessions” on page 71

Related references
z/OS Language Environment Debugging
Guide

SET WARNING (C/C++ and PL/I)
Controls display of the Debug Tool warning messages and whether exceptions are
reflected to the application program. The initial setting is ON.

�� SET WARNING
ON

OFF
; �$

ON Displays the Debug Tool warning messages, and conditions such as a divide
check result in a diagnostic message.

OFF
Suppresses the Debug Tool warning messages, and conditions raise an
exception in the application program.

Exceptions that occur due to interaction with you are likely to be due to typing
errors and are probably not intended to be passed to the application program.
However, you might want to raise a real exception in the program, for example, to
test some error recovery code. (TRIGGER is not always appropriate for this because
it does not set up the exception information.)

Usage notes

v Debug Tool detects C conditions such as the following:
– Division by zero
– Array subscript out of bounds for defined arrays
– Assignment of an integer value to a variable of enumeration data type where

the integer value does not correspond to an integer value of one of the
enumeration constants of the enumeration data type.

v Debug Tool detects the following PL/I computational conditions:
– Invalid decimal data
– CHARACTER to BIT conversion errors
– Division by zero
– Invalid length in varying strings

Example

Specify that conditions result in a diagnostic message.
SET WARNING ON;

Related concepts
“C/C++ expressions” on page 161

Related tasks
“Using SET WARNING PL/I command with built-in functions” on page 201

342 Debug Tool User’s Guide and Reference

SET command (COBOL)
The SET command assigns a value to a COBOL reference. The SET keyword cannot
be abbreviated.

�� SET reference TO reference
literal

; �$

reference
A valid Debug Tool COBOL reference.

literal
A valid COBOL numeric literal constant.

Usage notes

v If Debug Tool was invoked because of a computational condition or an attention
interrupt, using an assignment to set a variable might not give expected results.
This is due to the uncertainty of variable values within statements as opposed to
their values at statement boundaries.

v SET assigns a value only to a single receiver; unlike COBOL, multiple receiver
variables are not supported.

v Only formats 1 and 5 of the COBOL SET command are supported.
v Index-names can only be program variables (since OCCURS is not supported for

the Debug Tool session variables).
v COBOL ADDRESS OF identifier is supported only for identifiers that are LINKAGE

SECTION variables. In addition, COBOL ADDRESS OF as a receiver must be level 1
or 77, and COBOL ADDRESS OF as a sender can be any level except 66 or 88.

v Debug Tool provides a hexadecimal constant that can be used with the SET
command, where the hexadecimal value is denoted by an "H" and delimited by
quotation marks or apostrophes.

Examples

v Assign the value 3 to inx1, the index to itm-1.
SET inx1 TO 3;

v Assign the value of inx1 to inx2.
SET inx2 TO inx1;

v Assign the value of an invalid address (nonnumeric 0) to ptr and:
SET ptr TO NULL;

v Assign the address of one to ptr.
SET ptr TO ADDRESS OF one;

v Assigns the hexadecimal value of '20000' to the pointer ptr.
SET ptr TO H'200000';

Related tasks
“Using constants in COBOL expressions” on page 190

Related references
“Allowable moves for the Debug Tool SET command” on page 344

Chapter 13. Debug Tool commands 343

Allowable moves for the Debug Tool SET command
The following table shows the allowable moves for the Debug Tool SET command.

SOURCE FIELD RECEIVING FIELD

IN IDI PTR ED BI ID OR

Index Name (IN) Y Y Y Y Y

Index Data Item
(IDI)

Y Y

Pointer Data Item
(PTR)

Y

Hex Literal1 Y

NULL (NUL) Y

Integer Literal Y2

External Decimal
(ED)

Y

Binary (BI) Y

Internal Decimal
(ID)

Y

Object Reference
(OR)

Y

Notes:
1 Must be hexadecimal characters only, delimited by either double (") or

single (') quotation marks and preceded by H.
2 Index name is converted to index value.

SHOW prefix command (full-screen mode)
The SHOW prefix command specifies what relative statement (for C) or relative
verb (for COBOL) within the line is to have its frequency count temporarily shown
in the suffix area.

�� SHOW
integer

�$

integer
Selects a relative statement (for C) or a relative verb (for COBOL) within the
line. The default value is 1.

Usage notes
v If SET SUFFIX is currently OFF, SHOW prefix forces it ON.
v The suffix display returns to normal on the next interaction.
v The SHOW prefix command is not logged.

Example

Display the frequency count of the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).
SHOW 3

344 Debug Tool User’s Guide and Reference

No space is needed as a delimiter between the keyword and the integer; hence,
SHOW 3 is equivalent to SHOW3.

STEP command
The STEP command causes Debug Tool to dynamically step through a program,
executing one or more program statements. In full-screen mode, it provides
animated execution.

STEP ends if one or more of the following conditions is reached:
v User attention interrupt
v A breakpoint is encountered
v Normal or unusual termination of the program

�� STEP
integer
*

INTO
OVER
RETURN

; �$

integer
Indicates the number of statements performed. The default value is 1. If integer
is greater than 1, the statement is performed as if it were that many repetitions
of STEP with the same keyword and a count of one. The speed of execution, or
the pace of stepping, is set by either the SET PACE command, or with the Pace of
visual trace field on the Profile panels.

* Specifies that the program should run until interrupted. STEP * is equivalent to
GO.

INTO
Steps into any called procedures or functions. This means that stepping
continues within called procedures or functions. This is the default except when
the called procedure or function is a library or operating system routine.

OVER
Steps over any procedure call or function invocations. This operand provides
full-speed execution (with no animation) while in called procedures and
functions, resuming STEP mode on return. This is the default when the called
procedure or function is a library or operating system routine.

RETURN
Steps to the return point the specified number of levels back, halting at the
statement following the corresponding procedure call or function invocation.
This operand provides full-speed execution (with no animation) for the
remainder of the current procedure or function, and for any called procedures
or functions, resuming STEP mode on return.

Usage notes

Chapter 13. Debug Tool commands 345

v In the figure below, PGM A calls PGM B.

Assume that the current execution point is on PGM B and, at the line ADD 5 TO
MYNUM. At this point, you decide you don’t need to see any more of the code in
PGM B. By issuing STEP RETURN on the command line, Debug Tool returns to the
first line of code after the CALL command that called PGM B, as indicated by the
arrow. You can then continue stepping through PGM A.

v If STEP is specified in a command list (for example, as the subject of an IF
command or WHEN clause), all subsequent commands in the list are ignored.

v If STEP is specified within the body of a loop, it causes the execution of the loop
to end.

v To suppress the logging of STEP commands, use the SET ECHO command.
v If two operands are given, they can be specified in either order.
v The animation execution timing is set by the SET PACE command.
v The source panel provides a means of suppressing the display of selected

listings or files. This gives some control of "debugging scope," since animated
execution does not occur within a load module where the source listing or
source file is not displayed.

Examples

v Step through the next 25 statements and if an application subroutine or function
is invoked, continue stepping into that subroutine or function.
STEP 25 INTO;

346 Debug Tool User’s Guide and Reference

v Step through the next 25 statements, but if any application subroutines or
functions are invoked, switch to full-speed execution without animation until the
subroutine or function returns.
STEP 25 OVER;

v Return at full speed through three levels of calls.
STEP 3 RETURN;

switch command (C/C++)
The switch command enables you to transfer control to different commands within
the switch body, depending on the value of the switch expression. The switch,
case, and default keywords must be lowercase and cannot be abbreviated.

�� switch (expression) { switch_body } �$

switch_body:

% case_clause %

default_clause

case_clause

case_clause:

case case_expression :

% command

default_clause:

%

default :

command

expression
A valid Debug Tool C expression.

case_expression
A valid character or optionally signed integer constant.

command
A valid Debug Tool command.

The value of the switch expression is compared with the value of the expression in
each case clause. If a matching value is found, control is passed to the command
in the case clause that contains the matching value. If a matching value is not

Chapter 13. Debug Tool commands 347

found and a default clause appears anywhere in the switch body, control is
passed to the command in the default clause. Otherwise, control is passed to the
command following the switch body.

If control passes to a command in the switch body, control does not pass from the
switch body until a break command is encountered or the last command in the
switch body is performed.

Usage notes

v Declarations are not allowed within a switch command.
v The switch command does not end with a semicolon. A semicolon after the

closing brace is treated as a Null command.
v Although this command is similar to the switch statement in C, it is subject to

Debug Tool restrictions on expressions.
v Duplicate case_expression values are not supported.

Examples

v The following switch command contains several case clauses and one default
clause. Each clause contains a function call and a break command. The break
commands prevent control from passing down through subsequent commands
in the switch body.
If key has the value '/', the switch command calls the function divide. On
return, control passes to the command following the switch body.
char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{

case '+':
add();
LIST (key);
break;

case '-':
subtract();
LIST (key);
break;

case '*':
multiply();
LIST (key);
break;

case '/':
divide();
LIST (key);
break;

default:
printf("Invalid key\n");
break;

}

v In the following example, break commands are not present. If the value of c is
equal to 'A', all 3 counters are incremented. If the value of c is equal to 'a',
lettera and total are increased. Only total is increased if c is not equal to 'A'
or 'a'.
char text[100];
int capa, i, lettera, total;

for (i=0; i < sizeof(text); i++) {

348 Debug Tool User’s Guide and Reference

switch (text[i]) {
case 'A':

capa++;
case 'a':

lettera++;
default:

total++;
}

}

SYSTEM command
The SYSTEM command lets you issue system (CMS or TSO) commands during a
Debug Tool session. The SYSTEM keyword can only be abbreviated as SYS.

�� SYS
SYSTEM system_command

; �$

system_command
A valid system command in the current operating system environment;
however, the specified system command must be appropriate for the
environment. For example, when operating in TSO, system_command can be a
valid TSO system command or CLIST name.

Usage notes

v You cannot introduce a new interactive debug session with the SYSTEM
command. For example, you cannot invoke a REXX program that would invoke
a new Debug Tool instance, using SYSTEM REXXINVK.

v When operating interactively in CMS, if no CMS system command is specified,
CMS subset mode is entered. While in CMS subset mode, a subset of CMS
commands (that is, CMS system commands that can be issued while in the CMS
editor) can be performed repeatedly. To return to Debug Tool, type RETURN.

v While in CMS subset mode, caution should be taken that your application
program does not conflict with the memory or other resources of Debug Tool.

v When operating in TSO, a system_command must be supplied.
v When operating in TSO, no parameters can be specified as part of the system

command or CLIST invocation. To execute noninteractively when parameters are
required, you must enter the complete invocation in a CLIST and then use a
TSO or SYSTEM command to invoke that CLIST (without parameters).

v You cannot introduce a new Debug Tool session using the SYSTEM command.
v When operating interactively in TSO, there is no provision for entering a mode

where commands are accepted repeatedly; however, it is possible to write your
own such iterative sequence in a CLIST.

v You cannot issue CICS commands using SYSTEM.

Examples

v List all the data sets in the user catalog. The operating system is TSO.
SYSTEM LISTCAT;

v List all the files that are named run on the a disk. The operating system is CMS.
SYSTEM LISTFILE run * a;

v Temporarily places you in ISPF mode. The operating system is .
SYSTEM PDF;

Chapter 13. Debug Tool commands 349

Related references
“CMS command (VM)” on page 255
“TSO command (MVS)” on page 352

TRIGGER command
The TRIGGER command raises the specified AT-condition in Debug Tool, or it raises
the specified programming language condition in your program.

�� TRIGGER AT
CURSOR

condition
AT ALLOCATE identifier

*
AT APPEARANCE cu_spec

*
AT CALL entry_name

*
AT CHANGE reference

storage_clause
AT DATE block_spec

*
AT DELETE load_spec

*
AT ENTRY block_spec

*
AT EXIT block_spec

*
AT GLOBAL APPEARANCE

CALL
DATE
DELETE
ENTRY
EXIT
LABEL
LINE
LOAD
PATH
STATEMENT

AT LABEL statement_label
*

AT stmt_id_spec
LINE *

AT LOAD load_spec
*

AT OCCURRENCE condition
AT PATH
AT stmt_id_spec

STATEMENT *

; �$

storage_clause:

%STORAGE (address
, length

)

350 Debug Tool User’s Guide and Reference

condition
A valid condition or exception. This can be either a Language Environment
symbolic feedback code, or a language-oriented keyword or code, depending
on the current programming language setting.

If no active condition handler exists for the specified condition, the default
condition handler can cause the program to end prematurely.

Following are the C condition constants; they must be uppercase and not
abbreviated.

SIGABND
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGIOERR
SIGSEGV

SIGTERM
SIGUSR1
SIGUSR2

There are no COBOL condition constants. Instead, an Language Environment
symbolic feedback code must be used, for example, CEE347.

PL/I condition constants can be used; for syntax and acceptable abbreviations
see the ON command.

cu_spec
A valid compile unit specification.

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be
specified if the current programming language setting is C or PL/I.

reference
A valid Debug Tool reference in the current programming language.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE
subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant: 0x in C, H in COBOL (using either double (") or single (')
quotes), or a PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be a
positive integer constant. The default value is 1.

load_spec
A valid load module specification.

block_spec
A valid block specification.

statement_label
A valid source label constant.

stmt_id_spec
A valid statement id specification.

Usage note

v AT TERMINATION cannot be raised by TRIGGER.

Examples

Chapter 13. Debug Tool commands 351

In the following examples, note the difference between triggering a breakpoint,
which performs Debug Tool commands associated with the breakpoint, and
triggering a condition, which actually raises the condition and causes a
corresponding system action.
v Perform the commands in the AT OCCURRENCE CEE347 breakpoint (the CEE347

condition is not raised). The current programming language setting is COBOL.
AT OCCURRENCE CEE347 PERFORM

SET ix TO 5;
END-PERFORM;

TRIGGER AT OCCURRENCE CEE347; /* SET ix TO 5 is executed */

v Raise the SIGTERM condition in your program. The current programming
language setting is C.
TRIGGER SIGTERM;

v A previously defined STATEMENT breakpoint (for line 13) is triggered.
AT 13 LIST "at 13";
TRIGGER AT 13;
/* "at 13" will be the echoed output here */

v Assume the following breakpoints exist in a program:
AT CHANGE x LIST TITLED (x); AT STATEMENT 10;

If Debug Tool is invoked for the STATEMENT breakpoint and you want to trigger
the commands associated with the AT CHANGE breakpoint, enter:
TRIGGER AT CHANGE x;

Debug Tool displays the value of x.

Related references
z/OS Language Environment Programming
Guide

Related references
“Language Environment conditions and their C/C++ equivalents” on page 164
“ON command (PL/I)” on page 300
“cu_spec syntax” on page 210
“references syntax” on page 212
“load_spec syntax” on page 211
“block_spec syntax” on page 209
“statement_label syntax” on page 213
“statement_id_range and stmt_id_spec syntax” on page 212

TSO command (MVS)
The TSO command lets you issue TSO commands during a Debug Tool session and
is valid only in a TSO environment. The TSO keyword cannot be abbreviated.

�� TSO tso_command ; �$

tso_command
A valid TSO system command or CLIST name that does not require a
parameter.

Usage note

352 Debug Tool User’s Guide and Reference

v TSO is synonymous to SYSTEM.

Example

List all the data sets in the user catalog.
TSO LISTCAT;

Related references
“SYSTEM command” on page 349

USE command
The USE command causes the Debug Tool commands in the specified file or data
set to be either performed or syntax checked. This file can be a log file from a
previous session. The specified file or data set can itself contain another USE
command. The maximum number of USE files open at any time is limited to eight.
The USE keyword cannot be abbreviated.

�� USE ddname
dsname
fileid

; �$

ddname
A valid ddname in MVS or FILEDEF name in CMS.

dsname
An MVS data set containing the Debug Tool commands to be performed.

fileid
A CMS fileid (filename filetype filemode) containing the Debug Tool commands to
be performed. If filemode is omitted, the CMS search sequence is used.

Usage notes

v To check the syntax of the commands in a USE file, set the EXECUTE setting to OFF
and then issue a USE command for the file.

v Commands read from a USE file are logged as comments.
v The log file can serve as a USE file in a subsequent Debug Tool session.
v Recursive calls are not allowed; that is, a commands file cannot be USEd if it is

already active. This includes the primary commands and preferences files. If
another invocation of Debug Tool occurs during the execution of a USE file (for
example, if a condition is raised while executing a command from a USE file), the
USE file is not used for command input until control returns from the condition.

v The USE file is closed when the end of the file is reached.
v If a nonreturning command (such as GO) is performed from a USE file, the action

taken (as far as closing the USE file) depends on certain things:
– If the USE file was invoked directly or indirectly from the primary commands

file or preferences file, it has the same characteristics as the primary
commands file or preferences file. That is, it "keeps its place" and the next
time Debug Tool requests a command, it reads from the USE file where it left
off.

– If the USE file was not invoked directly or indirectly from the primary
commands file or preferences file, the rest of the USE file and the file that
invoked the USE file is skipped.

Chapter 13. Debug Tool commands 353

v If the end of the USE file is reached without encountering a QUIT command,
Debug Tool returns to the command source where the USE command was issued.
This can be the terminal, a command string, or another commands file.

v A USE file takes on the aspects of whatever command source issued the USE
command, relative to its behavior when a GO, GOTO, or STEP is executed. When
invoked from the primary commands file, it continues with its next sequential
command at the next breakpoint. If it is invoked from any other command
sequence, the GO, GOTO, or STEP causes any remaining commands in the USE file
to be discarded.

Examples

v On VM, perform the Debug Tool commands in the file pointed to by the
ddname duse300 in the following filedef statement.
CMS filedef duse300 disk my300 exec o (recfm f lrecl 80 blksize 80;

USE duse300;

v On VM, perform the Debug Tool commands in the file duse200 commands a.
USE duse200 commands a;

v Perform the Debug Tool commands in the MVS data set USERID.COMMANDS.FILE.
The data set must first be allocated with, for example, ALLOC FI(MYCMDS)
DA("USERID.COMMANDS.FILE").
USE MYCMDS;

Alternatively, perform the commands in the MVS data set
USERID.COMMANDS.FILE.
USE USERID.COMMANDS.FILE

v On MVS, perform the Debug Tool commands in the partitioned data set member
USERID.PDS(CMDS).
USE USERID.PDS(CMDS)

v For CICS, perform Debug Tool commands in the fully-qualified data set
TS64081.USE.FILE.
USE TS64081.USE.FILE;

In addition to using sequential files, you can perform Debug Tool commands
using partitioned data sets.
USE userid.thing.file(usefile)

while command (C/C++)
The while command enables you to repeatedly perform the body of a loop until
the specified condition is no longer met or evaluates to false. The while keyword
must be lowercase and cannot be abbreviated.

�� while (expression) command �$

expression
A valid Debug Tool C expression.

command
A valid Debug Tool command.

The expression is evaluated to determine whether the body of the loop should be
performed. If the expression evaluates to false, the body of the loop never

354 Debug Tool User’s Guide and Reference

|
|
|

|

|
|

|

|
|

|

|

executes. Otherwise, the body does execute. After the body has been performed,
control is given once again to the evaluation of the expression. Further execution
of the action depends on the value of the condition.

A break command can cause the execution of a while command to end, even when
the condition does not evaluate to false.

Examples

v List the values of x starting at 3 and ending at 9, in increments of 2.
x = 1;
while (x +=2, x < 10)

LIST x;

v While --index is greater than or equal to zero (0), triple the value of the
expression item[index].
while (--index >= 0) {

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);

}

WINDOW command (full-screen mode)
The WINDOW command provides window manipulation functions. WINDOW commands
can be made immediately effective with the IMMEDIATE command. The
cursor-sensitive form is most useful when assigned to a PF key. The WINDOW
keyword is optional.

The following table summarizes the various forms of the WINDOW command.

“WINDOW CLOSE” Closes the specified window in the Debug Tool full-screen
session panel.

“WINDOW OPEN” on
page 356

Opens a previously-closed window in the Debug Tool
full-screen session panel.

“WINDOW SIZE” on
page 356

Controls the relative size of currently visible windows in the
Debug Tool full-screen session panel.

“WINDOW ZOOM” on
page 357

Expands the indicated window to fill the entire screen.

Usage notes

v If no operand is specified and the cursor is on the command line, then the
default window id set by SET DEFAULT WINDOW is used (if it is open, otherwise
the precedence is SOURCE, LOG, MONITOR).

v The WINDOW command is not logged.

WINDOW CLOSE
Closes the specified window in the Debug Tool full-screen session panel. The
remaining open windows expand to fill the remainder of the screen. Closing a
window does not effect the contents of that window. For example, closing the
monitor window does not stop the monitoring of variable values assigned by the
LIST MONITOR command.

If there is only one window visible, WINDOW CLOSE is invalid.

Chapter 13. Debug Tool commands 355

��
WINDOW

CLOSE
CURSOR

LOG
MONITOR
SOURCE

; �$

CURSOR
Selects the window where the cursor is currently positioned unless on the
command line.

LOG
Selects the session log window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Example

Close the window containing the cursor.
WINDOW CLOSE CURSOR;

WINDOW OPEN
Opens a previously-closed window in the Debug Tool full-screen session panel.
Any existing windows are resized according to the configuration selected with the
PANEL LAYOUT command.

If the OPEN command is issued without an operand, Debug Tool opens the last
closed window.

��
WINDOW

OPEN
LOG
MONITOR
SOURCE

; �$

LOG
Selects the session log window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Example

Open the monitor window.
WINDOW OPEN MONITOR;

WINDOW SIZE
Controls the relative size of currently visible windows in the Debug Tool
full-screen session panel.

356 Debug Tool User’s Guide and Reference

��
WINDOW

SIZE
integer

CURSOR

LOG
MONITOR
SOURCE

; �$

integer
Specifies the number of rows or columns, as appropriate for the selected
window and the current window configuration.

CURSOR
Selects the window where the cursor is currently positioned unless on the
command line. The cursor form of WINDOW SIZE applies to that window if
integer is specified. Otherwise, it redraws the configuration of windows so that
the intersection of the windows is at the cursor, or if the configuration does not
have a common intersection, so that the nearest border is at the cursor.

LOG
Selects the session log window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

Usage notes

v You cannot use WINDOW SIZE if a window is ZOOMed or if there is only one
window open.

v Each window in any configuration has only one adjustable dimension:
– If one or more windows are as wide as the screen:

- The number of rows is adjustable for each window as wide as the screen
- The number of columns is adjustable for the remaining windows

– If one or more windows are as high as the screen:
- The number of columns is adjustable for each window as high as the

screen
- The number of rows is adjustable for the remaining windows

Examples

v Adjust the size of the Source window to 15 rows.
WINDOW SIZE 15 SOURCE;

v Adjust the size of the window where the cursor is currently positioned to 20
rows.
SIZE 20 CURSOR;

WINDOW ZOOM
Expands the indicated window to fill the entire screen or restores the screen to the
currently defined window configuration.

Chapter 13. Debug Tool commands 357

��
WINDOW

ZOOM
CURSOR

LOG
MONITOR
SOURCE

; �$

CURSOR
Selects the window where the cursor is currently positioned unless on the
command line.

LOG
Selects the session log window.

MONITOR
Selects the monitor window.

SOURCE
Selects the source listing window.

If the selected window is currently ZOOMed, the zoom mode is toggled. That is, the
currently defined window configuration is restored.

Example

Expand the log window.
WINDOW ZOOM LOG;

358 Debug Tool User’s Guide and Reference

Chapter 14. Debug Tool built-in functions

Debug Tool provides you with several built-in functions which allow you to
manipulate variables. All Debug Tool built-in function names begin with a percent
sign (%).

The table below summarizes the Debug Tool built-in functions. Unless otherwise
indicated, the functions can be used with all supported languages.

Debug Tool built-in function Returns

“%GENERATION (PL/I)” A specific generation of a controlled variable

“%HEX” Hexadecimal value of an operand

“%INSTANCES (C/C++ and PL/I)”
on page 360

Maximum value of %RECURSION for a block

“%RECURSION (C/C++ and PL/I)”
on page 361

An automatic variable or a parameter in a specific
instance of a recursive procedure

%STORAGE Changed/unchanged status of a range of bytes in
storage; this function can only be used in an “AT
CHANGE” on page 226 command

%GENERATION (PL/I)
Returns a specific generation of a controlled variable in your program.

�� %GENERATION (reference , expression) �$

reference
A controlled variable.

expression
The generation number n of a controlled variable x, where:
1 ≤ n ≤ ALLOCATION(x)

To return the oldest instance of x, specify:
%GENERATION(x,1)

To return the most recent instance of x, specify:
%GENERATION(x,ALLOCATION(x))

Related tasks
“Accessing PL/I program variables” on page 198

%HEX
Returns the hexadecimal value of an operand.

�� %HEX (reference) �$

© Copyright IBM Corp. 1995, 2001 359

reference
A valid COBOL or PL/I reference, or C/C++ lvalue.

Examples

C/C++: To display the internal representation of the packed decimal variable zvar1
whose external representation is 235, enter the following command.
LIST %HEX(zvar1);

The Log window displays the hexadecimal string 235C.

COBOL: To display the external representation of the packed decimal pvar3,
defined as PIC 9(9), from 1234 as its hexadecimal (or internal) equivalent, enter
the following command.
LIST %HEX (pvar3);

The Log window displays the hexadecimal string 01234F.

Related references
“LIST expression” on page 288

%INSTANCES (C/C++ and PL/I)
Returns the maximum value of %RECURSION (the most recent recursion number) for
a given block.

�� %INSTANCES (reference) �$

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

%INSTANCES can be used like a Debug Tool variable.

Examples

C/C++:
v %INSTANCES and %RECURSION can be used together to determine the number of

times a function is recursively called. They can also give you access to an
automatic variable or parameter in a specific instance of a recursive procedure.
Assume, for example, your program contains the following statements.
int RecFn(unsigned int i) {

if (i == 0) {
__ctest("");

At this point, the __ctest() call gives control to Debug Tool, and you are
prompted for commands. Enter the following command.
LIST %INSTANCES(i);

The Log window displays the number of times that RecFn() was interactively
called.

To display the value of 'i' at the first call of RecFn(), enter the following
command.

360 Debug Tool User’s Guide and Reference

%RECURSION(i, 1);

v If necessary, you can use qualification to specify the parameter. For example, if
the current point of execution is in %block2, and %block3 is a recursive function
containing the variable x, you can write an expression using x by qualifying the
variable, as shown in the example below.
%RECURSION(main:>%block3:>x, %INSTANCES(main:>%block3:>x, y+

v The following example gets a line of input from stdin using the C library
routine gets.
char line[100];
char *result;
result = gets(line);

v The following example removes a file and checks for an error, issuing a message
if an error occurs.
int result;
result = remove("mayfile.dat");
if (result != 0)

perror("could not delete file");

v Debug Tool performs the necessary conversions when a call to a library function
is made. The cast operator can be used. In the following example, the integer 2
is converted to a double, which is the required argument type for sqrt.
double sqrtval;
sqrtval = sqrt(2);

v Nested function calls can be performed, as shown in the example below.
printf("absolute value is %d\n", abs(-55));

v C library variables such as errno and stdout can be used, as shown in the
example below.
fprintf(stdout, "value of errno is %d\n", errno);

Related references
“%RECURSION (C/C++ and PL/I)”

%RECURSION (C/C++ and PL/I)
Returns a specific instance of an automatic variable or a parameter in a recursive
procedure.

�� %RECURSION (reference , expression) �$

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

expression
The recursion number of the variable or parameter.

To return the oldest recursion of x, specify:
%RECURSION(x,1)

To return the most recent recursion of x, specify:
%RECURSION(x,%INSTANCES(x))

Usage notes

Chapter 14. Debug Tool built-in functions 361

v The higher the value of the expression, the more recent the generation of the
variable Debug Tool references.

v %RECURSION can be used like a Debug Tool variable.

Related references
“%INSTANCES (C/C++ and PL/I)” on page 360

362 Debug Tool User’s Guide and Reference

Chapter 15. Debug Tool variables

Debug Tool reserves several variables for its own information. These Debug Tool
variable names begin with a percent sign (%), to distinguish them from program
variables. You can access Debug Tool variables while testing programs in any
supported language.

You can use all Debug Tool variables in expressions. Additionally, the variables
%EPRn., %FPRn., %GPRn., and %LPRn. (representing the various types of
registers) can be modified, as shown in the COBOL example below.
MOVE name_table TO %GPR5;

Note: Use caution when assigning new values to registers. Important program
information can be lost. Do not modify the base register.

To display the value of a Debug Tool variable, use the LIST command, as shown in
the example below.
LIST %GPR15

The table below summarizes the Debug Tool variables.

Debug Tool variable Value

“%ADDRESS” on page 364 Address of the location where your program was interrupted

“%AMODE” on page 365 Current AMODE of the suspended program

“%BLOCK” on page 365 Name of the current block

“%CAAADDRESS” on
page 365

Address of the CAA control block associated with the
suspended program

“%CONDITION” on page 365 Name or number of the condition when Debug Tool is entered
because of an AT OCCURRENCE

“%COUNTRY” on page 366 Current country code

“%CU or %PROGRAM” on
page 366

Name of the primary entry point of the current compile unit

“%EPA” on page 366 Address of the primary entry point in the current compile unit

“%EPRn” on page 366 (C/C++ and PL/I only) Extended-precision floating-point
registers

“%FPRn” on page 367 Single-precision floating-point registers

“%GPRn” on page 367 General-purpose registers at the point of interruption in a
program

“%HARDWARE” on page 368 Type of hardware where the application is running

“%LINE or %STATEMENT” on
page 368

Current source line number

“%LOAD” on page 369 Name of the load module of the current program, or an
asterisk (*)

“%LPRn” on page 369 Double-precision floating-point registers

“%NLANGUAGE” on page 370 National language currently in use

© Copyright IBM Corp. 1995, 2001 363

Debug Tool variable Value

“%PATHCODE” on page 370 Integer identifying the type of change occurring when the
program flow reaches a point of discontinuity, and the path
condition is raised

“%PLANGUAGE” on page 370 Current programming language

%PROGRAM Equivalent to %CU

“%RC” on page 370 Return code from the most recent Debug Tool command

“%RUNMODE” on page 371 String identifying the presentation mode of Debug Tool

%STATEMENT Equivalent to %LINE

“%SUBSYSTEM” on page 371 Name of the underlying subsystem, if any, where the program
is running

“%SYSTEM” on page 371 Name of the operating system supporting the program

You can access Debug Tool variables even when they have no intrinsic meaning in
your operating system or language. For example, when debugging in a VM
environment, accessing the value of %SUBSYSTEM does not result in an error.
However, subsystems occur only on MVS, so %SUBSYSTEM requested during a debug
session under VM always results in NONE.

Related references
“Attributes of Debug Tool variables in different languages” on page 372

%ADDRESS
Contains the address of the location where the program has been interrupted.

Attributes

C/C++: void *

COBOL: USAGE POINTER

Usage notes

COBOL only:
v You can use the OFFSET table in the compiler listing to determine statement

numbers. To determine the offset of the current statement, subtract %EPA (the
address of the primary entry point) from %ADDRESS, as shown in the example
below.
LIST %ADDRESS - %EPA

v %ADDRESS might not locate a statement in your COBOL program in all instances.
When an error occurs outside of the program, in some instances, %ADDRESS
contains the actual interrupt address. This occurs only if Debug Tool is unable to
locate the last statement that was executed before control left the program.

364 Debug Tool User’s Guide and Reference

%AMODE
Contains the current AMODE of the suspended program: 24 or 31. For COBOL
programs, the value is always 31.

Attributes

C/C++: void *

COBOL: PICTURE S9(4) USAGE COMP

%BLOCK
Contains the name of the current block. The block name might not be unique
within a compile unit. To display the name of the current block, use either of the
following commands.
DESCRIBE PROGRAM;

or
LIST %BLOCK;

To change the current block, use the SET QUALIFY command.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

Related references
“DESCRIBE command” on page 263
“LIST expression” on page 288
“SET QUALIFY” on page 335

%CAAADDRESS
Contains the address of the CAA control block associated with the suspended
program.

Attributes

C/C++: void *

COBOL: USAGE POINTER

%CONDITION
Contains the name or number of the condition when Debug Tool is entered
because of an AT OCCURRENCE.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

Chapter 15. Debug Tool variables 365

Related references
“AT OCCURRENCE” on page 237

%COUNTRY
Contains the current country code.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%CU or %PROGRAM
Contains the name of the primary entry point of the current compile unit.

To change the current compile unit, use the SET QUALIFY command.

%CU is equivalent to %PROGRAM.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

Related references
“SET QUALIFY” on page 335

%EPA
Contains the address of the primary entry point of the currently interrupted
program.

Attributes

C/C++: void *

COBOL: USAGE POINTER

%EPRn
(%EPR0 and %EPR4; if the application supports IEEE Floating Point Arithmetic,
you can also use %EPR1, %EPR5, %EPR8, %EPR9, %EPR12, and %EPR13.)

Represent the extended-precision floating-point registers.

To modify one of these registers, assign a value to the associated %EPRn variable.

%EPRn can not be used as the target of an assignment while debugging VisualAge
PL/I for OS/390 programs in full-screen mode.

Attributes

C/C++: long double

366 Debug Tool User’s Guide and Reference

COBOL: these variables are not defined for COBOL programs

Related references
“Expression command (C/C++)” on page 272
“MOVE command (COBOL)” on page 298
“Assignment command (PL/I)” on page 219

%FPRn
(%FPR0, %FPR2, %FPR4, and %FPR6; if the application supports IEEE Floating
Point Arithmetic, you can also use %FPR1, %FPR3, %FPR5, %FPR7, %FPR9,
%FPR11, %FPR13, and %FPR15.)

Represent single-precision floating-point registers.

To modify one of these registers, assign a value to the associated %FPRn variable.

%FPRn can not be used as the target of an assignment while debugging VisualAge
PL/I for OS/390 programs in full-screen mode.

Attributes

C/C++: float

COBOL: USAGE COMP-1

Related references
“Expression command (C/C++)” on page 272
“MOVE command (COBOL)” on page 298
“Assignment command (PL/I)” on page 219

%GPRn
(%GPR0 to %FPR15.)

Represent general-purpose registers at the point of interruption in a program.

To modify one of these registers, assign a value to the associated %GPRn variable.

Attributes

C/C++: signed int

COBOL: PICTURE S9(9)

Usage notes

v If you modify a %GPRn register, the change is reflected when you resume
program execution.

v Do not modify base registers.
v Although assigning new values to variables %GPR12 and %GPR13 does not result in

an error, when any subsequent action is taken the newly set values are reset to
their previous values.

v %GPRn can not be used as the target of an assignment while debugging
VisualAge PL/I for OS/390 programs in full-screen mode.

Chapter 15. Debug Tool variables 367

C/C++ only:
v If you modify the value of %GPR3, then the base register in the program can be

lost.

Examples

COBOL:
MOVE name_table TO %GPR15;

C/C++:
MOVE name_table TO %GPR15;

Related references
“Expression command (C/C++)” on page 272
“MOVE command (COBOL)” on page 298
“Assignment command (PL/I)” on page 219

%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is: 370/ESA.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%LINE or %STATEMENT
Contains the current line number.

If the current statement is not the first statement on the line, then the line number
is followed by a period and the number of the statement with the line. For
example, if %LINE = 4.3, then the current statement is the third statement on the
fourth source line.

If the program is at the entry or exit of a block, then %LINE contains ENTRY or EXIT,
respectively.

If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), then %LINE contains an asterisk (*).

For COBOL, %LINE does not return a relative verb (within the line) for labels.

%LINE is equivalent to %STATEMENT.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

368 Debug Tool User’s Guide and Reference

%LOAD
If the current program is part of a fetched or called load module, then %LOAD
contains the name of the load module.

If the current program is in the load module that was initially loaded, then %LOAD
contains an asterisk (*).

Debug Tool tool uses the value of %LOAD when you make an unqualified reference
to a program or variable.

To change the current load module, use the SET QUALIFY command.

Debug Tool only recognizes load modules that have been loaded by Language
Environment services.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

Related references
“SET QUALIFY” on page 335

%LPRn
(%LPR0, %LPR2, %LPR4, and %LPR6; if the application supports IEEE Floating
Point Arithmetic, you can also use %LPR1, %LPR3, %LPR5, %LPR7, %LPR9,
%LPR11, %LPR13, and %LPR15.)

Represent the double-precision floating-point registers.

To modify one of these registers, assign a value to the associated %LPRn variable.

%LPRn can not be used as the target of an assignment while debugging VisualAge
PL/I for OS/390 programs in full-screen mode.

Attributes

C/C++: double

COBOL: USAGE COMP-2

Related references
“Expression command (C/C++)” on page 272
“MOVE command (COBOL)” on page 298
“Assignment command (PL/I)” on page 219

Chapter 15. Debug Tool variables 369

%NLANGUAGE
Indicates the national language currently in use: ENGLISH, UENGLISH, or JAPANESE.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%PATHCODE
Contains an integer value that identifies the kind of change occurring when the
path of program execution has reached a point of discontinuity and the path
condition is raised.

The possible values vary according to the language of your program.

Attributes

C/C++: signed short int[]

Related references
“%PATHCODE values for C/C++” on page 160
“%PATHCODE values for COBOL” on page 187
“%PATHCODE values for PL/I” on page 196

%PLANGUAGE
Indicates the programming language currently in use.

%PLANGUAGE returns C for both C and C++.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%PROGRAM
Contains the name of the primary entry point of the current program.

%PROGRAM is equivalent to %CU.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%RC
Contains a return code whenever a Debug Tool command ends.

370 Debug Tool User’s Guide and Reference

%RC initially has a value of zero unless the log file cannot be opened, in which case
it has a value of −1.

Note: The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

Attributes

C/C++: signed short int

COBOL: PICTURE S9(4) USAGE COMP

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. The possible
values are listed below.

LINE
SCREEN
BATCH

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
executing. The possible values are listed below.

CICS
IMS
TSO
NONE

Subsystems only occur on MVS, so %SUBSYSTEM is only valid on MVS. Listing this
variable while working with CMS displays NONE.

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

%SYSTEM
Contains the name of the operating system supporting the program. The possible
values are listed below.

MVS
VM

Attributes

C/C++: unsigned char[]

COBOL: PICTURE X(j)

Chapter 15. Debug Tool variables 371

Attributes of Debug Tool variables in different languages
The table below shows the attributes for Debug Tool variables when used with
different programming languages.

Debug Tool variable C/C++ attributes COBOL attributes

%GPRn signed int PICTURE S9(9)

%FPRn float USAGE COMP-1

%LPRn double USAGE COMP-2

%EPRn long double n/a

%ADDRESS void * USAGE POINTER

%AMODE signed short int PICTURE S9(4) USAGE COMP

%BLOCK unsigned char[] PICTURE X(j)

%CAAADDRESS void * USAGE POINTER

%CONDITION unsigned char[] PICTURE X(j)

%COUNTRY unsigned char[] PICTURE X(j)

%CU unsigned char[] PICTURE X(j)

%EPA void * USAGE POINTER

%HARDWARE unsigned char[] PICTURE X(j)

%LINE unsigned char[] PICTURE X(j)

%LOAD unsigned char[] PICTURE X(j)

%NLANGUAGE unsigned char[] PICTURE X(j)

%PATHCODE signed short int PICTURE S9(4) USAGE COMP

%PLANGUAGE unsigned char[] PICTURE X(j)

%PROGRAM unsigned char[] PICTURE X(j)

%RC signed short int PICTURE S9(4) USAGE COMP

%RUNMODE unsigned char[] PICTURE X(j)

%STATEMENT unsigned char[] PICTURE X(j)

%SUBSYSTEM unsigned char[] PICTURE X(j)

%SYSTEM unsigned char[] PICTURE X(j)

372 Debug Tool User’s Guide and Reference

Chapter 16. Using Debug Tool in a production mode

This appendix helps you determine how much of Debug Tool’s testing functions
you want to continue using after you complete major testing of your application
and move into the final tuning phase. Included are discussions of program size
and performance considerations; the consequences of removing hooks, the
statement table, and the symbol table; and using Debug Tool on optimized
programs.

Related tasks
“Fine-tuning your programs with Debug Tool”
“Removing hooks, statement tables, and symbol tables” on page 374
“Using Debug Tool on optimized programs” on page 374

Fine-tuning your programs with Debug Tool
After initial testing, you might want to consider the following options available to
improve performance and reduce size:

Removing hooks
One option for increasing the performance of your program is to compile
with a minimum of hooks or with no hooks. Compiling with the option
TEST(NOLINE, BLOCK, NOPATH) for C programs and TEST(BLOCK) for COBOL
programs causes the compiler to insert a minimum number of hooks while
still allowing you to perform tasks at block boundaries.

Independent studies show that performance degradation is negligible
because of hook-overhead for PL/I programs. Also, in the event you need
to request an attention interrupt, Debug Tool is not able to regain control
without compiled-in hooks. In such a case you can request an interrupt
three times. After the third time, Debug Tool is able to stop program
execution and prompt you to enter QUIT or GO. If you enter QUIT, your
Debug Tool session ends. If you enter GO, control is returned to your
application.

It is a good idea to examine the benefits of maintaining hooks in light of
the performance overhead for that particular program.

Removing statement and symbol tables
If you are concerned about the size of your program, you can remove the
symbol table, the statement table, or both, after the initial testing period.
For C, COBOL, and PL/I programs, compiling with the option
TEST(NOSYM) inhibits the creation of symbol tables.

Before you remove them, however, you should consider their advantages.
The statement table allows you to display the execution history with
statement numbers rather than offsets, and error messages identify
statement numbers that are in error. The symbol table enables you to refer
to variables and program control constants by name. Therefore, you need
to look at the tradeoffs between the size of your program and the benefits
of having symbol and statement tables.

© Copyright IBM Corp. 1995, 2001 373

Removing hooks, statement tables, and symbol tables
Debug Tool can also gain control at program initialization via the PROMPT suboption
of the TEST run-time option. Even if you decide to remove all hooks and the
statement and symbol tables from a production program, Debug Tool receives
control when a condition is raised in your program if you specify ALL or ERROR on
the TEST run-time option, or when a __ctest(), CEETEST, or PLITEST is executed.

When Debug Tool receives control in this limited environment, it does not know
what statement is in error (no statement table), nor can it locate variables (no
symbol table). Thus, you must use addresses and interpret hexadecimal data
values to examine variables. In this limited environment, you can:
v Determine the block that is in control:

list (%LOAD, %CU, %BLOCK);
or
list (%LOAD, %PROGRAM, %BLOCK);

v Determine the address of the error and of the enclosing block:
list (%ADDRESS, %EPA); (where %EPA allowed)

v Display areas of the program in hexadecimal format. Using your listing, you can
find the address of a variable and display the contents of that variable. For
example, you can display the contents at address 20058 in a C/C++ program by
entering:
LIST STORAGE (0x20058);

To display the contents at address 20058 in a COBOL or PL/I program, you
would enter:
LIST STORAGE (X'20058');

v Display registers:
LIST REGISTERS;

v Display program characteristics:
DESCRIBE CU; (for C)

DESCRIBE PROGRAM; (for COBOL)

v Display the dynamic block chain:
LIST CALLS;

v Request assistance from your operating system:
SYSTEM ...;

v Continue your program processing:
GO;

v End your program processing:
QUIT;

If your program does not contain a statement or symbol table, you can use session
variables to make the task of examining values of variables easier.

Even in this limited environment, HLL library routines are still available.

Using Debug Tool on optimized programs
If you want to debug your application program with Debug Tool after compiling
with the OPTIMIZE compiler option (where applicable), you must keep in mind that
optimization decreases the reliability of Debug Tool functions.

374 Debug Tool User’s Guide and Reference

In the case of variable values, Debug Tool displays the contents of the storage
where the variable has been assigned. However, in an optimized program, the
variable might actually be residing in a register. As an example, OPTIMIZE compiler
option consider the following assignments:
a = 5
b = a + 3

In an optimized program, the value of 5 associated with the variable a might never
be placed into storage. Instead, it might be pulled from a machine register. If
Debug Tool is requested to LIST TITLED a;, however, it looks in the storage
assigned to a and displays that value, no matter what it is.

LIST STATEMENT NUMBERS shows the statements that can be used in AT and GOTO
commands. Optimization has a similar effect when trying to determine the source
statement associated with a specific storage location. Normally, the statement table
supplies this information to Debug Tool, but if you request optimization, the
statement table might be incorrect. Code associated with one statement can move
to another storage location, and can appear (according to the statement table) to be
part of a completely different statement. Therefore, the statement number Debug
Tool displays as associated with a particular breakpoint might be incorrect.

Also, if you have requested that your application be optimized, Debug Tool cannot
guarantee that a breakpoint set at a particular statement indeed occurs at the
beginning of the code generated for that statement.

Finally, optimization usually causes the code generated for a statement to be
dependent on register values loaded by the code for preceding statements. Thus, if
you request Debug Tool to change the path of flow in your program, you run the
risk of depriving statements of necessary input.

Chapter 16. Using Debug Tool in a production mode 375

376 Debug Tool User’s Guide and Reference

Chapter 17. Debug Tool messages

All messages are shown in ENGLISH format. The UENGLISH format message text
is the same, but is in uppercase letters.

Each message has a number of the form EQAnnnnx, where EQA indicates that the
message is an Debug Tool message, nnnn is the number of the message, and x
indicates the severity level of each message. The value of x is I, W, E, S, or U, as
described below:

I An informational message calls attention to some aspect of a command
response that might assist the programmer.

W A warning message calls attention to a situation that might not be what is
expected or to a situation that Debug Tool attempted to fix.

E An error message describes an error that Debug Tool detected or cannot
fix.

S A severe error message describes an error that indicates a command
referring to bad data, control blocks, program structure, or something
similar.

U An unrecoverable error message describes an error that prevents Debug
Tool from continuing.

Symbols in messages

Many of the Debug Tool messages contain information that is inserted by the
system when the message is issued. In this publication, such inserted information
is indicated by italicized symbols, as in the following:
EQA1046I The breakpoint-id breakpoint is replaced.

The portion of Debug Tool located on the host notifies you of errors associated
with debugging functions carried out by the host.

Related tasks
z/OS Language Environment Programming Guide

Related references
“Allowable comparisons for the IF command (COBOL)” on page 280
“Allowable moves for the MOVE command (COBOL)” on page 299

EQA0320E Host server not active

Explanation: The host server specified in the debug
options has not been started. Debug Tool cannot
initialize.

EQA0321E Host server not available

Explanation: Debug Tool cannot establish
communications with the host server specified in the
debug options. Debug Tool cannot initialize.

EQA0322E Invalid host server name

Explanation: The host server specified in the debug
options cannot be found. Debug Tool cannot initialize.

EQA0323I Host server busy. Action will complete
when server is available.

Explanation: The host server is busy processing a
request from CODE. Debug Tool cannot proceed until
the previous request completed.

© Copyright IBM Corp. 1995, 2001 377

EQA0324E Fatal communications error. Debug Tool
cannot continue.

Explanation: Debug Tool cannot send/receive
messages from the host server; Debug Tool cannot
continue and will terminate abnormally. Diagnostic
information is included in the EVFERROR.LOG file, in
the path specified by the CODETMPDIR variable in
your CONFIG.SYS file.

EQA1000I TEST (cu_name initialization):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs after Debug
Tool initialization and before any program hooks are
reached. Enter a command. If you are not sure what
you can enter, enter HELP or ?. Information is
displayed identifying the commands you are allowed to
enter.

EQA1001I The window configuration is
configuration; the sequence of window is
sequence

Explanation: Used to display SCREEN as part of
QUERY SCREEN.

EQA1002I One window must be open at all times.

Explanation: Only one window was open when a
CLOSE command was issued. At least one window
must be open at all times, so the CLOSE command is
ignored.

EQA1003I Target window is closed; FIND not
performed.

Explanation: The window specified in the FIND
command is closed.

EQA1004I Target window is closed; SIZE not
performed.

Explanation: The window specified in the SIZE
command is closed.

EQA1005I Target window is closed; SCROLL not
performed.

Explanation: The window specified in the SCROLL
command is closed.

EQA1006I Command

Explanation: It is the character string 'Command' in
the main panel command line.

EQA1007I Step

Explanation: It is the character string 'Step' in the
main panel command line while stepping.

EQA1008I Scroll

Explanation: It is the character string 'Scroll' in the
main panel command line.

EQA1009I DBCS characters are not allowed.

Explanation: The user entered DBCS characters in
scroll, window object id, qualify, prefix, or panel input
areas.

EQA1010I More...

Explanation: It is the character string 'More' in the
main panel command line.

EQA1011I Do you really want to terminate this
session?

Explanation: This is for the END pop-up window.

EQA1012I Enter Y for YES and N for NO

Explanation: This is for the END pop-up window. Y,
YES, N, and NO should NOT be translated.

EQA1013I Current command is incomplete,
pending more input

Explanation: This informational message is displayed
while entering a block of commands, until the
command block is closed by an END statement.

EQA1030I PENDING:

Explanation: Debug Tool needs more input in order to
completely parse a command. This can occur in
COBOL, for example, because PERFORM; was entered
on the last line.

Programmer Response: Complete the command.

EQA1031I The partially parsed command is:

Explanation: The explanation of a command was
requested or a command was determined to be in error.

Programmer Response: Determine the cause of the
error and reenter the command.

EQA1032I The next word can be one of:

Explanation: This title line will be followed by
message 1015.

378 Debug Tool User’s Guide and Reference

EQA1033I list items

Explanation: This message is used to list all the items
that can follow a partially parsed command.

Programmer Response: Reenter the acceptable part of
the command and suffix it with one of the items in this
list.

EQA1046I The breakpoint-id breakpoint is replaced.

Explanation: This alerts the user to the fact that a
previous breakpoint action existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1047I The breakpoint-id breakpoint is replaced.

Explanation: This alerts the user to the fact that a
previous breakpoint action existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1048I Another generation of variable name is
allocated.

Explanation: An ALLOCATE occurred for a variable
where an AT ALLOCATE breakpoint was established.

EQA1049I The breakpoint-id breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is no every_clause. Enabled breakpoints
only. This message is followed by a message of one or
more lines showing the commands performed each
time the breakpoint is hit.

EQA1050I The breakpoint-id breakpoint has an
EVERY value of number, a FROM value
of number, and a TO value of number.
The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. Enabled breakpoints
only. This message is followed by a message of one or
more lines showing the commands performed each
time the breakpoint is hit.

EQA1051I The (deferred) breakpoint-id breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is no every_clause. Deferred and
enabled breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1052I The (deferred) breakpoint-id breakpoint
has an EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. Deferred and
enabled breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1053I The (disabled) breakpoint-id breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is not an every_clause. For disabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1054I The (disabled) breakpoint-id breakpoint
has an EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. For disabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1055I The (disabled and deferred) breakpoint-id
breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is not an every_clause. For disabled and
deferred breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1056I The (disabled and deferred) breakpoint-id
breakpoint has an EVERY value of
number, a FROM value of number, and a
TO value of number. The breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. For disabled and
deferred breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1057I AT stmt-number can be risky because the
code for that statement might have been
merged with that of another statement.

Explanation: You are trying to issue an AT
STATEMENT command against a statement but the
code for that statement was either optimized away or
combined with other statements.

Chapter 17. Debug Tool messages 379

EQA1058I RUNTO is active at statement_id.

Explanation: Display after LIST AT to reflect RUNTO
position.

EQA1076I Direction an unknown program.

Explanation: The program can be written in assembler
language or in an unsupported language. The message
is issued as a result of the LIST CALLS command.

EQA1077I Direction address Address in a PLANG
NOTEST block.

Explanation: The compile unit was compiled without
the TEST option. The message is issued as a result of
the LIST CALLS command.

EQA1078I Direction Place in PLANG CU

Explanation: CU name of the call chain. The message
is issued as a result of the LIST CALLS command.

EQA1086I The previous declaration of variable name
will be removed.

Explanation: You declared a variable whose name is
the same as a previously declared variable. This
declaration overrides the previous one.

EQA1090I The compiler data for program cu_name
is

Explanation: This is the title line for the DESCRIBE
PROGRAM command.

EQA1091I The program was compiled with the
following options:

Explanation: This is the first of a group of DESCRIBE
PROGRAM messages.

EQA1092I compile option

Explanation: Used to display a compile option
without parameters, for example, NOTEST.

EQA1093I compile option (compile suboption)

Explanation: Used to display a compile option with
one parameter, for example, OPT.

EQA1094I compile option (compile suboption, compile
suboption)

Explanation: Used to display a compile option with
two parameters, for example, TEST.

EQA1095I This program has no subblocks.

Explanation: A DESCRIBE PROGRAM command
refers to a program that is totally contained in one
block.

EQA1096I The subblocks in this program are
nested as follows:

Explanation: The names of the blocks contained by
the program are displayed under this title line.

EQA1097I space characters block name

Explanation: The first insert controls the indentation
while the second is the block name without
qualification.

EQA1098I The statement table has the short
format.

Explanation: The statement table is abbreviated such
that no relationship between storage locations and
statement identifications can be determined.

Programmer Response: If statement identifications are
required, the program must be recompiled with
different compiler parameters.

EQA1099I The statement table has the NUMBER
format.

Explanation: The program named in the DESCRIBE
PROGRAM command was compiled with
GONUMBER assumed.

EQA1100I The statement table has the STMT
format.

Explanation: The program named in the DESCRIBE
PROGRAM command was compiled with GOSTMT
assumed.

EQA1101I file name

Explanation: This message is used in listing items
returned from the back end in response to the
DESCRIBE ENVIRONMENT command.

EQA1102I ATTRIBUTES for variable name

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA1103I Its address is address

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

380 Debug Tool User’s Guide and Reference

EQA1104I Compiler: Compiler version

Explanation: Indicate compiler version for DESCRIBE
CU.

EQA1105I Its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA1106I Programming language COBOL does
not return information for DESCRIBE
ENVIRONMENT

Explanation: COBOL run-time library does not return
information to support this command.

EQA1107I There are no open files.

Explanation: This is issued in response to DESCRIBE
ENVIRONMENT if no open files are detected.

EQA1108I The following conditions are enabled:

Explanation: This is the header message issued in
response to DESCRIBE ENVIRONMENT before
issuing the list of enabled conditions.

EQA1109I The following conditions are disabled:

Explanation: This is the header message issued in
response to DESCRIBE ENVIRONMENT before
issuing the list of disabled conditions.

EQA1110I This program has no Statement Table.

Explanation: This message is used for the DESCRIBE
CU command. If a CU was compiled with NOTEST,
no statement table was generated.

EQA1111I Attributes for names in block block name

Explanation: This is a title line that is the result of a
DESCRIBE ATTRIBUTES *;. It precedes the names of
all variables contained within a single block.

EQA1112I variable name and/or attributes

Explanation: The first insert controls the indentation
while the second is the qualified variable name
followed by attribute string. (for C, only the attributes
are given.)

EQA1114I Currently open files are:

Explanation: This is the title line for the list of files
that are known to be open. This is in response to the
DESCRIBE ENVIRONMENT command.

EQA1115I The program has insufficient
compilation information for the
DESCRIBE CU command.

Explanation: This program has insufficient
information. It might be compiled without the TEST
option.

EQA1116I Common Language Environment math
library is being used

Explanation: This is the response for the DESCRIBE
ENVIRONMENT command when the Language
Environment math library is being used.

EQA1117I PL/I Math library is being used

Explanation: This is the response for the DESCRIBE
ENVIRONMENT command when the PL/I math
library is being used.

EQA1140I character

Explanation: This message is used to produce output
for LIST (...).

EQA1141I expression name = expression value

Explanation: This message is used to produce output
for LIST TITLED (...) when an expression is a scalar.

EQA1142I expression element

Explanation: This insert is used for naming the
expression for expression element.

EQA1143I >>> EXPRESSION ANALYSIS <<<

Explanation: First line of output from the ANALYZE
EXPRESSION command.

EQA1144I alignment spaces. It is a bit field with
offset bit offset.

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA1145I Its Offset is offset.

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA1146I column elements

Explanation: This message is used to produce a
columned list. For example, it is used to format the
response to LIST STATEMENT NUMBERS.

Chapter 17. Debug Tool messages 381

EQA1147I name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed.

EQA1148I name structure

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is contained
within an aggregate but is a parent name and not an
elemental data item.

EQA1149I name in parent name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is contained
within an aggregate and is an elemental data item.

EQA1150I name structure in parent name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is an aggregate
contained within another aggregate.

EQA1151I The following names are known in
block block name

Explanation: This is a title line that is the result of a
LIST NAMES command. It precedes the names of all
variables contained within a single block.

EQA1152I The following session names are known

Explanation: This is a title line that is the result of a
LIST NAMES command. It precedes the names of all
session variables contained within a single block.

EQA1153I The following names with pattern
pattern are known in block name

Explanation: This title line precedes the list of variable
names that satisfy the pattern in a LIST NAMES
command.

EQA1154I The following session names with
pattern pattern are known

Explanation: This title line precedes the list of session
names that satisfy the pattern in a LIST NAMES
command.

EQA1155I The following CUs are known in Load
Module name:

Explanation: This title line precedes a list of compile
unit names for noninitial load modules in a LIST
NAMES CUS command.

EQA1156I The following CUs with pattern pattern
are known in Load Module name

Explanation: This title line precedes a list of compile
unit names for noninitial load modules that satisfy the
pattern in a LIST NAMES CUS command.

EQA1157I There are no CUs with pattern pattern in
Load Module name.

Explanation: This line appears when no compile unit
satisfied the pattern in a LIST NAMES CUS command
for noninitial load modules.

EQA1158I The following CUs have pattern pattern

Explanation: This title line precedes a list of compile
unit names for an initial load module in a LIST
NAMES CUS command.

EQA1159I There are no CUs with pattern pattern.

Explanation: This line appears when no compile unit
satisfied the pattern in a LIST NAMES CUS command
for an initial load module.

EQA1160I There are no Procedures with pattern
pattern.

Explanation: This line appears when no Procedures
satisfied the pattern in a LIST NAMES PROCEDURES
command.

EQA1161I The following Procedures have pattern
pattern:

Explanation: This title line precedes a list of Procedure
names for a LIST NAMES PROCEDURES command.

EQA1162I There are no names in block block name

Explanation: The LIST NAMES command found no
variables in the specified block.

EQA1163I There are no session names.

Explanation: The LIST NAMES command found no
variables that had been declared in the session for the
current programming language.

EQA1164I There are no names with pattern pattern
in block name.

Explanation: The LIST NAMES command found
named variables in the named block but none of the
names satisfied the pattern.

382 Debug Tool User’s Guide and Reference

EQA1165I There are no session names with pattern
pattern.

Explanation: The LIST NAMES command found
named variables that had been declared in the session
but none of the names satisfied the pattern.

EQA1166I There are no known session procedures.

Explanation: A LIST NAMES PROCEDURES was
issued but no session procedures exist.

EQA1167I register name = register value

Explanation: Used when listing registers.

EQA1168I No LIST STORAGE data is available for
the requested reference or address.

Explanation: The given reference or address is invalid.

EQA1169I No frequency data is available

Explanation: This message is issued upon failure to
find frequency information.

EQA1170I Frequency of verb executions in cu_name

Explanation: This is the header produced by the LIST
FREQUENCY command.

EQA1171I character string = count

Explanation: This is the frequency count produced by
the LIST FREQUENCY command.

EQA1172I TOTAL VERBS= total statements, TOTAL
VERBS EXECUTED= total statements
executed, PERCENT EXECUTED= percent
executed

Explanation: This is the trailer produced by the LIST
FREQUENCY command.

EQA1173I (history number) ENTRY hook for
cu_name

Explanation: This is a LIST HISTORY message.

EQA1174I (history number) ENTRY hook for block
block name in cu_name

Explanation: This is a LIST HISTORY message.

EQA1175I (history number) EXIT hook for cu_name

Explanation: This is a LIST HISTORY message.

EQA1176I (history number) EXIT hook for block
block name in cu_name

Explanation: This is a LIST HISTORY message.

EQA1177I (history number) STATEMENT hook at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1178I (history number) PATH hook at statement
cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1179I (history number) Before CALL hook at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1180I (history number) CALL CEETEST at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1181I (history number) Waiting for program
input from ddname

Explanation: This is a LIST HISTORY message.

EQA1182I (history number) LOAD occurred at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1183I (history number) DELETE occurred at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1184I (history number) condition name raised at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1185I (history number) LABEL hook at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1186I Unable to display value of variable name.
Use LIST (variable name) for further
details

Explanation: This is used to inform the user that for
some reason one of the variables cannot be displayed
for LIST TITLED.

Chapter 17. Debug Tool messages 383

EQA1187I There are no data members in the
requested object.

Explanation: The requested object does not contain
any data members. It contains only methods.

EQA1188I (history number) DATE hook at statement
cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1226I The EQUATE named EQUATE name is
replaced.

Explanation: This alerts the user to the fact that a
previous EQUATE existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1227I The following EQUATE definitions are
in effect:

Explanation: This is the header for the QUERY
EQUATES command.

EQA1228I EQUATE identifier = "EQUATE string"

Explanation: Used to display EQUATE identifiers and
their associated strings. The string is enclosed in
quotation marks so that any leading or trailing blanks
are noticeable.

EQA1229I The program is currently exiting block
block name.

Explanation: Shows the bearings in an interrupted
program.

EQA1230I The program is currently executing
prolog code for block name.

Explanation: Shows the bearings in an interrupted
program.

EQA1231I You are executing commands within a
__ctest function.

Explanation: Shows the bearings in an interrupted
program.

EQA1232I You are executing commands within a
CEETEST function.

Explanation: Shows the bearings in an interrupted
program.

EQA1233I The established MONITOR commands
are:

Explanation: This is the header produced by LIST
MONITOR.

EQA1234I MONITOR monitor number monitor type

Explanation: This is the line produced by LIST
MONITOR before each command is displayed.

EQA1235I The command for MONITOR monitor
number monitor type is:

Explanation: This is the header produced by LIST
MONITOR monitor number.

EQA1236I The MONITOR monitor number
command is replaced.

Explanation: This is a safety message: the user is
reminded that a MONITOR command is replacing an
old one.

EQA1237I The current qualification is block name.

Explanation: Shows the current point of view.

EQA1238I The current location is cu_name :>
statement id.

Explanation: Shows the place where the program was
interrupted.

EQA1239I The program is currently entering block
block name.

Explanation: Shows the bearings in an interrupted
program.

EQA1240I You are executing commands within a
CALL PLITEST statement.

Explanation: Shows the bearings in an interrupted
program.

EQA1241I You are executing commands from the
run-time command-list.

Explanation: Shows the bearings in an interrupted
program.

EQA1242I You are executing commands in the
breakpoint-id breakpoint.

Explanation: Shows the bearings in an interrupted
program.

384 Debug Tool User’s Guide and Reference

EQA1243I The setting of SET-command object is
status

Explanation: The status of the object of a SET
command is displayed when QUERYed individually.

EQA1244I SET-command object status

Explanation: The status of the object of a SET
command is displayed when issued as part of QUERY
SET.

EQA1245I The current settings are:

Explanation: This is the header for QUERY SET.

EQA1246I PFKEY string command

Explanation: Used to display PFKEYS as part of
QUERY PKFEYS.

EQA1247I colored area color hilight intensity

Explanation: Used to display SCREEN as part of
QUERY SCREEN.

EQA1248I You were prompted because STEP
ended.

Explanation: Shows the bearings in an interrupted
program.

EQA1249I character string - The QUERY source
setting file name is not available.

Explanation: The source listing name is not available.
The source listing was not required or set prior to this
command.

EQA1250I SET INTERCEPT is already set on or off
for FILE filename.

Explanation: You tried to issue the SET INTERCEPT
ON/OFF for a file that is already set to ON/OFF. This
is just an informational message to notify you that you
are trying to duplicate the current setting. The
command is ignored.

EQA1251I You were prompted because RUNTO
ended.

Explanation: The program has stopped because
RUNTO cursor/statement command reached the cursor
location or pointed statement number.

EQA1276I TEST:

Explanation: Debug Tool is ready to accept a
command from the terminal.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA1277I The USE file is empty.

Explanation: Debug Tool tried to read commands
from an empty USE file. If unintentional, this could be
because of an incorrect file specification.

Programmer Response: Correct the file specification
and retry.

EQA1278I alignment spaces command part

Explanation: This is part of a command that is being
displayed in the log or in response to a LIST AT. Since
a group of commands can be involved, their
appearance is improved by indenting the subgroups.
Therefore, the first insert is used for indentation, and
the second to contain the command. This is the
command as it is understood by Debug Tool.
v Truncated keywords are no longer truncated.
v Lowercase to uppercase conversion was done where

appropriate.
v Only a single command is contained in a record. If

multiple commands are involved, additional records
are prepared using this format.

EQA1279I TEST (cu_name:> statement_id):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a statement
and a statement table is available.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA1280I TEST (cu_name ENTRY):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a compile
unit entry.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the
commands you are allowed to enter.

Chapter 17. Debug Tool messages 385

EQA1281I TEST (cu_name:> block name ENTRY):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a block
entry.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the
commands you are allowed to enter.

EQA1282I TEST (cu_name EXIT):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a compile
unit exit.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the
commands you are allowed to enter.

EQA1283I TEST (cu_name:> block name EXIT):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a block
exit.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the
commands you are allowed to enter.

EQA1284I TEST (Application program has
terminated):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at the
termination of the application program.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information will be displayed identifying the
commands you are allowed to enter.

EQA1285I TEST (label-name LABEL);

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
line mode when an initial prompt occurs at a label.

Programmer Response: Enter a command. If you are
not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA1286I (Application program has terminated)

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs at the
termination of the application program.

EQA1287I Unknown

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs and the
location is unknown.

EQA1288I initialization

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs after
Debug Tool initialization and before any program
hooks are reached.

EQA1289I ddname: program output

Explanation: Displays program output with the
ddname preceding the output.

EQA1290I The program is waiting for input from
ddname

Explanation: Debug Tool has gained control because
the program is waiting for input.

EQA1291I Use the INPUT command to enter recsize
characters for the intercepted
fixed-format file.

Explanation: Prompts you for intercepted input of
fixed-format file.

EQA1292I Use the INPUT command to enter up to
a maximum of recsize characters for the
intercepted variable-format file.

Explanation: Prompt user for intercepted input of
variable-formatted file.

EQA1293I TEST (cu-name):

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
linemode when an initial prompt occurs at a statement
and a statement table is not available.

Programmer Response: Enter a command. If you are
not sure of what you can enter, enter HELP or ?.
Information is displayed identifying the available
commands you are allowed to enter.

386 Debug Tool User’s Guide and Reference

EQA1306I You were prompted because the
CONDITION name condition was raised
in your program.

Programmer Response: The program has stopped
running due to the occurrence of the named condition.

EQA1307I You were prompted because an
ATTENTION interrupt occurred.

Explanation: The attention request from the terminal
was recognized and the Debug Tool was given control.

EQA1308I You were prompted because a condition
was raised in your program.

Explanation: The program stopped running due to the
occurrence of a condition whose name is unknown.

EQA1309I CONDITION name is a severity or class
SEVERITY code condition.

Explanation: The condition named is described by its
severity level or class code. See OS/390 Language
Environment Programming Guide.

EQA1316I Block block name contains the following
statements:

Explanation: This message precedes the message that
identifies all statement numbers in the block.

EQA1317I block level space characters block name

Explanation: This message is used instead of
EQA1097I when the number of block levels is greater
than the indentation allowed.

EQA1326I character string

Explanation: This message is used during product
development and service.

EQA1327I character string character string

Explanation: This message is used during product
development and service.

EQA1329I The procedure named procedure name has
the form:

Explanation: This is the information that is produced
when a LIST PROCEDURE command is processed.
This message is followed by a message of one or more
lines showing the commands that form the procedure.

EQA1330I You are not currently within a
procedure.

Explanation: The LIST PROCEDURE command was
issued without naming a session procedure and the
current command context is outside of a session
procedure.

Programmer Response: Verify the request. Reenter the
command and name a specific procedure if necessary.

EQA1331I The RETRIEVE queue is empty.

Explanation: There are no entries in the retrieve
queue.

EQA1332I FIND has continued from top of area.

Explanation: FIND searched the file to the end of the
string without finding it and continues the search from
the top, back to the starting point of the search.

EQA1333I The string was found.

Explanation: FIND was successful in locating the
target string. The line on which the string was found is
displayed just above this message when operating in
line mode.

EQA1334I The operating system has generated the
following message:

Explanation: The Operating System can issue its own
messages. These are relayed to the user.

EQA1335I OS message

Explanation: The operating system can issue its own
messages. These are relayed to the user.

EQA1336I IBM Debug Tool Version 1 Release 2
time stamp 5688-194 (C) Copyright IBM
Corp. 1995

Explanation: This message is used to place the Debug
Tool logo, a timestamp, and copyright at the beginning
of the log. This is for Language Environment.

EQA1337I Its address is address and its length is
length

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1338I Its offset is offset and its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

Chapter 17. Debug Tool messages 387

EQA1339I Its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1340I Its address is address

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1341I Its Offset is offset

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1342I ATTRIBUTES for variable name variable
type

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1343I Presently not in accessible storage

Explanation: The requested variable cannot be
accessed.

EQA1344I The OTHERWISE statement would have
been executed but was not present

Explanation: The was no OTHERWISE clause present
in the SELECT statement and none of the WHEN
clauses were selected. This message is simply indicating
that the OTHERWISE clause would have been
executed if it had been present.

EQA1400E The value entered is invalid.

Explanation: The user entered an invalid value.

EQA1401E The command entered is not a valid
panel sub-command.

Explanation: The user entered a command not
recognized by panel processor.

EQA1402E Each window must have unique letters
of L, M, and S.

Explanation: The user entered either duplicated letters
or just one letter.

EQA1403E Invalid prefix command was entered.

Explanation: The user entered an invalid prefix
command.

EQA1404E Search target not found.

Explanation: The target for the search command was
not found.

EQA1405E No previous search arguments exist;
find not performed.

Explanation: A FIND command was issued without
an argument. Since the FIND command had not been
issued previously, Debug Tool had nothing to search
for.

EQA1406E Invalid window id

Explanation: The window header field contains an
invalid window ID. Valid window IDs are SOURCE,
MONITOR, and LOG.

EQA1407E Invalid scroll amount entered.

Explanation: Scroll field contains an invalid scroll
amount.

EQA1408E Duplicate window ID

Explanation: More than one window header field
contains the same window id.

EQA1430W The EQUATE named EQUATE name was
has not been established.

Explanation: CLEAR EQUATE <name> was
attempted for an EQUATE name that has not been
established.

Programmer Response: For a list of the current
EQUATES definitions, issue QUERY EQUATES.

EQA1431W There are no EQUATE definitions in
effect.

Explanation: CLEAR EQUATE or QUERY EQUATES
was issued but there are no EQUATE definitions.

EQA1432E function is not supported.

Explanation: Language/Country is not supported.

Programmer Response: Set National Language and
Country.

EQA1433E Switching to the programming language
language-name is invalid because there
are no language-name compilation units
in the initial load module.

Explanation: A SET PROGRAMMING LANGUAGE
command was issued, but the initial load module
contains no compilation units compiled in the language
specified (or implied).

388 Debug Tool User’s Guide and Reference

EQA1434E Error in setting debug name to
?????????.

Explanation: Refer to the maximum number of CUs
allowed for debugging.

EQA1435E Error in setting name.

Explanation: This is a generic message for SET
command errors.

EQA1436W SET EXECUTE is OFF -- command will
not be executed.

Explanation: The command was parsed but not
executed.

EQA1437W SET DYNDEBUG can not be executed at
this time. SET DYNDEBUG can only be
executed at the beginning of a
debugging session, before any STEP or
GO commands. The DYNDEBUG status
has not been changed.

Explanation: The settings of dynamic debug can not
be changed to ON in the middle of a debugging
session.

EQA1438W SET DYNDEBUG can not be executed at
this time. SET DYNDEBUG can only be
executed at the beginning of a
debugging session, before any STEP or
GO commands. The DYNDEBUG status
has not been changed.

Explanation: The settings of dynamic debug can not
be changed to OFF in the middle of a debugging
session.

EQA1450E Unable to display the result from
expression evaluation

Explanation: The entire result from the expression
evaluation cannot be displayed; for example, the array
is too large.

EQA1451E operand contains incompatible data type.

Explanation: Comparison or assignment involves
incompatible data types, or incompatible or
unsupported date fields. If you are using COBOL, see
“Allowable comparisons for the IF command
(COBOL)” on page 280 for allowable comparisons for
the Debug Tool IF command, and “Allowable moves
for the MOVE command (COBOL)” on page 299 for
allowable moves for the Debug Tool MOVE command.

EQA1452E argument name is not a valid argument.

Explanation: The specified argument is not valid.

EQA1453E The number of arguments is not correct.

Explanation: There are either too many or too few
arguments specified.

EQA1454E operand name is not a valid operand.

Explanation: The specified operand is undefined or is
an invalid literal.

EQA1455E An unsupported operator/operand is
specified.

Explanation: An operator or an operand was not
understood, and therefore was not processed. Examples
of when this message is issued when using COBOL
include:

v An attempt to perform arithmetic with a nonnumeric
data item

v An attempt to perform arithmetic with a windowed
date field or a year-last date field

EQA1456S The variable variable name is undefined
or is incorrectly qualified.

Explanation: The named variable could not be located
or undefined.

Programmer Response: You need to qualify to a
different block in order to locate the variable.

EQA1457E The exponent exponent contains a
decimal point.

Explanation: This feature is not supported. No
decimal point is allowed in exponent specification.

EQA1458E The address of data item has been
determined to be invalid.

Explanation: This can happen for items within a data
record where the file is not active or the record area is
not available; for items in a structure following Occurs,
depending on the item where the ODO variable was
not initialized; or for items in the LINKAGE SECTION
that are not based on a valid address.

EQA1459E literal string is not a valid literal.

Explanation: The combination of characters specified
for the literal is not a valid literal.

Chapter 17. Debug Tool messages 389

EQA1460E Operand operand name should be
numeric.

Explanation: A nonnumeric operand was found where
a numeric operand was expected.

EQA1461E Invalid data for data item is found.

Explanation: The memory location for a data item
contains data that is inconsistent with the data type of
the item. The item might not have been initialized.

EQA1462E Invalid sign for data item is found.

Explanation: The sign position of a signed data item
contains an invalid sign. The item might not have been
initialized.

EQA1463E A divisor of 0 is detected in a divide
operation.

Explanation: The expression contains a divide
operation where the divisor was determined to be zero.

EQA1464E data item is used as a receiver but it is
not a data name.

Explanation: The target of an assignment is not valid.

EQA1465E The TGT for a program is not available.

Explanation: The program might have been deleted or
canceled.

EQA1466E data item is not a valid subscript or
index.

Explanation: The subscript or index might be out of
range or an ODO variable might not be initialized.

EQA1467E No subscript or index is allowed for data
item

Explanation: One or more subscripts or indexes were
specified for a data item that was not defined as a
table. The reference to the data item is not allowed.

EQA1468E Missing subscripts or indexes for data
item

Explanation: A data item defined as a table was
referenced without specifying any subscripts or
indexes. The reference is not allowed.

EQA1469E Incorrect number of subscripts or
indexes for data item

Explanation: A data item defined as a table was
referenced with incorrect number of subscripts or
indexes. The reference is not allowed.

EQA1470E Incorrect length specification for data
item

Explanation: The length of a data item is incorrect for
the definition, usually due to a faulty ODO object.

EQA1471E Incorrect value for ODO variable data
item

Explanation: The ODO variable might not have been
initialized, or the current value is out of range.

EQA1472E Invalid specification of reference
modification.

Explanation: The specification of the reference
modification is not consonant with the length field.

EQA1473E Invalid zero value for data item

Explanation: The value of a data item is zero. A zero
is invalid in the current context.

EQA1474E procedure name was found where a data
name was expected.

Explanation: Invalid name is specified for a data item.

EQA1475E data item is an invalid qualifier in a
qualified reference.

Explanation: A qualified reference is invalid. One or
more qualifiers might be undefined or not in the same
structure as the desired data item.

EQA1476E Too many qualifiers in a qualified
reference.

Explanation: The qualified reference contains more
than the legal number of qualifiers.

EQA1477E DATA DIVISION does not contain any
entries.

Explanation: There is no data to display for a LIST *
request because the DATA DIVISION does not contain
any entries.

EQA1478E No status available for sort file sort file

Explanation: Status was requested for a sort file.
There is never a status available for a sort file.

EQA1479E Unable to locate any TGT. An attempt to
locate any TGT failed.

Explanation: No COBOL program exists in TEST
mode.

390 Debug Tool User’s Guide and Reference

EQA1480E operand name is an invalid operand for
SET command.

Explanation: The operands for a SET command are
incorrect. At least one of the operands must be index
name.

EQA1481E Too many digits for the exponent of
floating point literal data item

Explanation: The exponent specified for a
floating-point literal contains too many digits.

EQA1482E command name command is terminated
due to an error in processing.

Explanation: The command is terminated
unsuccessfully because an error occurred during
processing.

EQA1483E reference could not be formatted for
display.

Explanation: The requested data item could not be
displayed due to an error in locating or formatting the
data item.

EQA1484E Resources (for example, heap storage)
are not available for processing and the
command is terminated unsuccessfully.

Explanation: The command could not be completed
due to inadequate resources.

Programmer Response: Increase the region size and
restart Debug Tool.

EQA1485E The command is not supported because
the CU is compiled with incorrect
compiler options.

Explanation: For COBOL, the CUs must be compiled
with VS COBOL II Version 1 Release 3 and the TEST
compiler or FDUMP option, or AD/Cycle® COBOL
and the compile-time TEST option.

EQA1486E variable name is presently not in
accessible storage.

Explanation: The variable might be CONTROLLED or
AUTOMATIC and does not yet exist.

EQA1487S The number of dimensions for variable
name is number -- but number have been
specified.

Explanation: The wrong number of subscripts were
specified with the variable reference.

EQA1488E The indices in variable name are invalid.
Use the DESCRIBE ATTRIBUTES
command (without any indices
specified) to see the valid indices.

Explanation: The subscripts with the variable
reference do not properly relate to the variable’s
characteristics.

EQA1489S variable name is not a based variable but
a locator has been supplied for it.

Explanation: A pointer cannot be used unless the
variable is BASED.

Programmer Response: Use additional qualification to
get to the desired variable.

EQA1490S variable name cannot be used as a locator
variable.

Explanation: Only variables whose data type is
POINTER or OFFSET can be used to locator with other
variables.

EQA1491S There is no variable named character
string, and if it is meant to be a built-in
function, the maximum number of
arguments to the character string built-in
function is number, but number were
specified.

Explanation: A subscripted variable could not be
found. Its name, however, is also that of a PL/I built-in
function. If the built-in function was intended, the
wrong number of arguments were present.

EQA1492S There is no variable named character
string, and if it is meant to be a built-in
function, the minimum number of
arguments to the character string built-in
function is number, but number were
specified.

Explanation: A subscripted variable could not be
found. Its name, however, is also that of a PL/I built-in
function. If the built-in function was intended, more
arguments must be present.

EQA1493E There is no variable named character
string, and if it is meant to be a built-in
function, remember built-in functions
are allowed only in expressions.

Explanation: A variable could not be found. Its name,
however, is also that of a PL/I built-in function. If the
built-in function was intended, it is not in the correct
context. Note that in Debug Tool, pseudo-variables
cannot be the target of assignments.

Chapter 17. Debug Tool messages 391

EQA1494S variable name is an aggregate. It cannot
be used as a locator reference.

Explanation: The variable that is being as a locator is
not the correct data type.

EQA1495S The name variable name is ambiguous
and cannot be resolved.

Explanation: Names of structure elements can be
ambiguous if not fully qualified. For example, in DCL 1
A, 2 B, 3 Z POINTER, 2 C, 3 Z POINTER, the names Z
and A.Z are ambiguous.

Programmer Response: Retry the command with
enough qualification so that the name is unambiguous.

EQA1496S The name variable name refers to a
structure, but structures are not
supported within this context.

Explanation: Given DCL 1 A, 2 B FIXED, 2 C FLOAT,
the name A refers to a structure.

Programmer Response: Break the command into
commands for each of the basic elements of the
structure, or use the DECLARE command with a
BASED variable to define a variable overlaying the
structure.

EQA1497S An aggregate cannot be used as an
index into an array.

Explanation: Given DCL A(2) FIXED BIN(15) and
DCL B(2) FIXED BIN(15), references to A(B), A(B+2),
and so on are invalid.

Programmer Response: Use a scalar as the index.

EQA1498S Generation and recursion numbers must
be positive.

Explanation: In %GENERATION(x,y) and
%RECURSION(x,y), y must be positive.

EQA1499S Generation and recursion expressions
cannot be aggregate expressions.

Explanation: In %GENERATION(x,y) and
%RECURSION(x,y), y must be a scalar.

EQA1500S %RECURSION can be applied only to
parameters and automatic variables.

Explanation: In %RECURSION(x,y), x must be a
parameter or an automatic variable.

EQA1501S %RECURSION number of procedure name
does not exist. The present number of
recursions of the block block name is
number.

Explanation: In %RECURSION(x,y), y must be no
greater than the number of recursions of the block
where x is declared.

EQA1502S %Generation can be applied only to
controlled variables.

Explanation: In %GENERATION(x,y), x must be
controlled.

EQA1503S %Generation number of variable name
does not exist. The present number of
allocations of variable name is number.

Explanation: In %GENERATION(x,y), y must be no
greater than the number of allocations of the variable x.

EQA1504S %Generation number of %RECURSION
(procedure name, number) does not exist.
The present number of allocations of
%RECURSION (procedure name, number)
is number.

Explanation: In %GENERATION(x,y), y must be no
greater than the number of allocations of the variable x.

EQA1505S The variable variable name belongs to a
FETCHed procedure and is a
CONTROLLED variable that is not a
parameter. This violates the rules of
PL/I.

Explanation: PL/I does not allow FETCHed
procedures to contain CONTROLLED variable types.

Programmer Response: Correct the program.

EQA1506S The variable character string cannot be
used.

Explanation: The variable belongs to the class of
variables, such as members of structures with REFER
statements, which Debug Tool does not support.

EQA1507E The expression in the QUIT command
must be a scalar that can be converted to
an integer value.

Explanation: The expression in the QUIT command
cannot be an array, a structure or other data aggregate,
and if it is a scalar, it must have a type that can be
converted to integer.

392 Debug Tool User’s Guide and Reference

EQA1508E An internal error occurred in C run time
during expression processing.

Explanation: This message applies to C. An internal
error occurred in the C run time and the command is
terminated.

EQA1509E The unary operator operator name
requires a scalar operand.

Explanation: This message applies to the C unary
operator ! (logical negation).

EQA1510E The unary operator operator name
requires a modifiable lvalue for its
operand.

Explanation: This message applies to the C unary
operators ++ and −−.

EQA1511E The unary operator operator name
requires an integer operand.

Explanation: This message applies to the C unary
operator x (bitwise complement).

EQA1512E The unary operator operator requires an
operand that is either arithmetic or a
pointer to a type with defined size.

Explanation: This message applies to the C unary
operators + and −. These operators cannot be applied
to pointers to void-function designators, or pointers to
functions.

EQA1513E The unary operator operator requires an
arithmetic operand.

Explanation: This message applies to the C unary
operator + and −.

EQA1514E Too many arguments specified in
function call.

Explanation: This message applies to C function calls.

EQA1515E Too few arguments specified in function
call.

Explanation: This message applies to C function calls.

EQA1516E The logical operator operator requires a
scalar operand.

Explanation: This message applies to the C binary
operators && (logical and) and || (logical or).

EQA1517E The operand of the type cast operator
must be scalar.

Explanation: This message applies to the C type casts.

EQA1518E The named type of the type cast
operator must not be an expression.

Explanation: This message applies to the C type casts.

EQA1519E A real type cannot be cast to a pointer
type.

Explanation: This message applies to C type casts. In
the example 'float f;', the type cast '(float *) f' is invalid.

EQA1520E A pointer type cannot be cast to a real
type.

Explanation: Invalid operand for the type cast
operator.

EQA1521E The operand in a typecast must be
scalar.

Explanation: This message applies to C type casts.

EQA1522E Argument argument in function call
function has an invalid type.

Explanation: This message applies to C function calls.

EQA1523E Invalid type for function call.

Explanation: This message applies to C function calls.

EQA1524E The first operand of the subscript
operator must be a pointer to a type
with defined size.

Explanation: This message applies to the C subscript
operator. The subscript operator cannot be applied to
pointers to void, function designators or pointers to
functions.

EQA1525E Subscripts must have integer type.

Explanation: This message applies to the C subscript
operator.

EQA1526E The first operand of the sizeof operator
must not be a function designator, a
typedef, a bitfield or a void type.

Explanation: This message applies to the C unary
operator sizeof.

Chapter 17. Debug Tool messages 393

EQA1527E The second operand of the operator
operator must be a member of the
structure or union specified by the first
operand.

Explanation: This message applies to the C operators
(select member) and –> (point at member).

EQA1528E The first operand of the operator operator
must have type pointer to struct or
pointer to union.

Explanation: This message applies to the C operator
–> (point at member).

EQA1529E The operand of the operator operator
must be an array, a function designator,
or a pointer to a type other than void.

Explanation: This message applies to the C indirection
operator.

EQA1530E The first operand of the operator operator
must have type struct or union.

Explanation: This message applies to the C subscript
operator (select member).

EQA1531E The relational operator operator requires
comparable data types.

Explanation: This message applies to the C relational
operators. For example, <, >, <=, >=, and ==.

EQA1532E The subtraction operator requires that
both operands have arithmetic type or
that the left operand is a pointer to a
type with defined size and the right
operand has the same pointer type or an
integral type.

Explanation: This message applies to the C binary
operator −. The difference between two pointers to void
or two pointers to functions is undefined because sizeof
is not defined for void types and function designators.

EQA1533E Assignment contains incompatible
types.

Explanation: This message applies to C assignments,
for example, +=, −=, and *=.

EQA1534E The TEST expression in the switch
operator must have integer type.

Explanation: This applies to the test expression in a C
switch command.

EQA1535E The addition operator requires that both
operands have arithmetic or that one
operand has integer type and the other
operand is a pointer to a type with
defined size.

Explanation: This message applies to the C binary
operator +.

EQA1536E The operand of the address operator
must be a function designator or an
lvalue that is not a bitfield.

Explanation: This message applies to the C unary
operator & (address).

EQA1537E Invalid constant for the C language.

Explanation: This message applies to C constants.

EQA1538E Argument argument in function call
function is incompatible with the
function definition. Since Warning is
on, the function call is not made.

Explanation: This message applies to C function calls.
The argument must have a type that would be valid in
an assignment to the parameter.

EQA1539E The binary operator operator requires
integer operands.

Explanation: This message applies to the C binary
operator % (remainder), << (bitwise left shift), >>
(bitwise right shift), & (bitwise and), ??¬' (bitwise
exclusive or), |(bitwise inclusive or), and the
corresponding assignment operators (for example, %=,
and <<=).

EQA1540E The binary operator operator requires a
modifiable lvalue for its first operand.

Explanation: This message applies to the C binary
assignment operators.

EQA1541E The binary operator operator requires
arithmetic operands.

Explanation: This message applies to the C binary
operators * and /.

EQA1542E Source in assignment to an enum is not
a member of the enum. Since Warning
is on, the operation is not performed.

Explanation: This message applies to C. You
attempted to assign a value to enum, but the value is
not legitimate for that enum.

394 Debug Tool User’s Guide and Reference

EQA1543E Invalid value for the shift operator
operator. Since Warning is on, the
operation will not be performed.

Explanation: This message applies to the C binary
operators << (bitwise left shift) and >> (bitwise right
shift). Shift values must be nonnegative and less than
33. These tests are made only when WARNING is on.

EQA1544E Array subscript is negative. Since
Warning is on, the operation is not
performed.

Explanation: This message applies to the C subscripts.

EQA1545E Array subscript exceeds maximum
declared value. Since Warning is on, the
operation is not performed.

Explanation: This message applies to the C subscripts.

EQA1546E ZeroDivide would have occurred in
performing a division operator. Since
Warning is on, the operation is not
performed.

Explanation: Divide by zero is detected by C run
time.

EQA1547E variable is presently not in accessible
storage.

Explanation: This message applies to C. Use the LIST
NAMES command to list all known variables.

EQA1548E There is no variable named variable

Explanation: This message applies to C. Use the LIST
NAMES command to list all known variables.

EQA1549E The function call function is not
performed because the function linkages
do not match.

Explanation: This message applies to C function calls
and can occur,for example, when a function’s linkage is
specified as CEE, but the function was compiled with
linkage OS.

EQA1550E There is no typedef identifier named
name

Explanation: This message applies to C. The message
is issued, for example, in response to the command
DESCRIBE ATTRIBUTE typedef x, if x is not a
typedef identifier.

EQA1551E name is the name of a member of an
enum type.

Explanation: This message applies to C.

EQA1552E The name name is invalid.

Explanation: This message applies to C declarations.

EQA1553E Linkage type for function call function is
unknown.

Explanation: This message applies to C function calls.

EQA1554E Function call function has linkage type
PL/I, which is not supported.

Explanation: This message applies to C function calls.

EQA1555E Function call function has linkage type
FORTRAN which is not supported.

Explanation: This message applies to C function calls.

EQA1556E name is a tag name. This cannot be
listed since it has no storage associated
with it.

Explanation: This message applies to C tag names.

EQA1557E name is not an lvalue. This cannot be
listed since it has no storage associated
with it.

Explanation: This message applies to C names.

EQA1558E name has storage class void, not
permitted on the LIST command.

Explanation: This message applies to C. In the
example 'void' funcname (...), the command LIST
TITLED (funcname()) is invalid.

EQA1559E The second operand of the
%RECURSION operator must be
arithmetic.

Explanation: This message applies to C. In
%RECURSION(x,y), the second expression, y, must
have arithmetic type.

EQA1560E The second operand of the
%RECURSION operator must be
positive.

Explanation: This message applies to C. In
%RECURSION(x,y), the second expression, y, must be
positive.

Chapter 17. Debug Tool messages 395

EQA1561E The first operand of the %RECURSION
operator must be a parameter or an
automatic variable.

Explanation: This message applies to C. In
%RECURSION(x,y), the first expression, x, must be a
parameter or an automatic variable.

EQA1562E The first operand of the %INSTANCE
operator must be a parameter or an
automatic variable.

Explanation: This message applies to C. In
%INSTANCE(x,y), the first expression, x, must be a
parameter or an automatic variable.

EQA1563E Generation specified for %RECURSION
is too large.

Explanation: This message applies to C. In
%RECURSION(x,y), the recursion number, y, exceeds
the number of generations of x that are currently active.

EQA1564E The identifier identifier has been
replaced.

Explanation: This message applies to C declarations.

EQA1565E The declaration is too large

Explanation: This message applies to C declarations.

EQA1566E An attempt to modify a constant was
made. Since Warning is on, the
operation is not performed.

Explanation: This message applies to C.

EQA1567E An attempt to take the address of a
variable with register storage was made.
Since Warning is on, the operation is
not performed.

Explanation: This message applies to C.

EQA1568E Type of expression to %DUMP must be
a literal string.

Explanation: This message applies to CALL %DUMP
for C.

EQA1569E Octal constant is too long.

Explanation: This message applies to C constants.

EQA1570E Octal constant is too big.

Explanation: This message applies to C constants.

EQA1571E Hex constant is too long.

Explanation: This message applies to C constants.

EQA1572E Decimal constant is too long.

Explanation: This message applies to C constants.

EQA1573E Decimal constant is too big.

Explanation: This message applies to C constants.

EQA1574E Float constant is too long.

Explanation: This message applies to C constants.

EQA1575E Float constant is too big.

Explanation: This message applies to C constants.

EQA1576E The environment is not yet fully
initialized.

Explanation: You can STEP and try the command
again.

EQA1577E Size of the aggregate is too large

Explanation: This message applies to PL/I constants.

EQA1578E Only "=" and "¬=" are allowed as
operators in comparisons involving
program control data.

Explanation: Other relationships between program
control data are not defined.

Programmer Response: Check to see if a variable was
misspelled.

EQA1579E Program control data may be compared
only with program control data of the
same type.

Explanation: ENTRY vs ENTRY, LABEL vs LABEL,
etc. are okay. LABEL vs ENTRY is not.

EQA1580E Area variables cannot be compared.

Explanation: Equivalency between AREA variables is
not defined.

396 Debug Tool User’s Guide and Reference

EQA1581E Aggregates are not allowed in
conditional expressions such as the
expressions in IF ... THEN, WHILE (...),
UNTIL (...), and WHEN (...) clauses.

Explanation: This is not supported.

Programmer Response: Check to see if the variable
name was misspelled. If this was not the problem, you
must find other logic to perform the task.

EQA1582E Only "=" and "¬=" are allowed as
operators in comparisons involving
complex numbers.

Explanation: Equal and not equal are defined for
complex variables, but you have attempted to relate
them in some other way.

EQA1583E Strings with the GRAPHIC attribute
may be concatenated only with other
strings with the GRAPHIC attribute.

Explanation: You are not allowed to concatenate
GRAPHIC (DBCS) strings to anything other than other
GRAPHIC (DBCS) strings.

EQA1584E Strings with the GRAPHIC attribute
may be compared only with other
strings with the GRAPHIC attribute.

Explanation: Equivalency between the GRAPHIC data
type and other data types has not been defined.

EQA1585E Only numeric data, character strings,
and bit strings may be the source for
conversion to character data.

Explanation: You are trying to convert something to a
character format when such a relationship has not been
defined.

EQA1586E Only numeric data, character strings,
and bit strings may be the source for
conversion to bit data.

Explanation: You are trying to convert something to a
bit format when such a relationship has not been
defined.

EQA1587E Only numeric data, character strings, bit
strings, and pointers may be the source
for conversion to numeric data.

Explanation: You are trying to convert something to a
numeric format when such a relationship has not been
defined.

EQA1588E Aggregates are not allowed in control
expressions.

Explanation: This message applies to PL/I constants.

EQA1589W CONVERSION would have occurred in
performing a CHARACTER to BIT
conversion, but since WARNING is on,
the conversion will not be performed.

Explanation: The specified conversion probably
contained characters that were something other than ’0’
or ’1’. Since the conversion to BIT could therefore not
be done, this message is displayed rather than raising
the CONVERSION condition.

EQA1590W Varying string variable name has a length
that is greater than its declared
maximum. It will not be used in
expressions until it is fixed.

Explanation: The variable named has been declared as
VARYING with length n, but its current length is
greater than n. The variable might be uninitialized or
might have been written over.

EQA1591W Varying string variable name has a
negative string length. It will not be
used in expressions until it is fixed.

Explanation: The variable named has been declared as
VARYING with length n, but its current length is less
than 0. The variable might be uninitialized or it might
have been written over.

EQA1592W Fixed decimal variable variable name
contains bad data. Since WARNING is
on, the operation will not be performed.

Explanation: A variable contains bad decimal data if
its usage would cause a data exception to occur (that is,
its numeric digits are not 0–9 or its sign indicator is
invalid), or it has even precision but its leftmost digit is
nonzero. LIST STORAGE can be used to find the
contents of the variable, and an assignment statement
can be used to correct them.

EQA1593W The size of AREA variable variable name
is less than zero. Since WARNING is
on, the operation will not be performed.

Explanation: Negative sizes are not understood and,
therefore, are not processed.

EQA1594W The size of AREA variable variable name
exceeds its declared maximum size.
Since WARNING is on, the operation
will not be performed.

Explanation: Performing the operation would alter
storage that is outside of the AREA. Such an operation

Chapter 17. Debug Tool messages 397

is not within PL/I, so will be avoided.

EQA1595W Fixed binary variable variable name
contains more significant digits than its
precision allows. Since WARNING is
on, the operation will not be performed.

Explanation: For example, a FIXED BIN(5,0) variable
can have only 5 significant digits thus limiting its valid
range of values to −32 through 31 inclusive.

EQA1596E The subscripted variable variable name
was not found. The name matches a
built-in function, but the parameters are
wrong.

Explanation: This message applies to PL/I constants.

EQA1597E AREA condition would have been
raised

Explanation: This message applies to PL/I constants.

EQA1598E The bounds and dimensions of all
arrays in an expression must be
identical.

Explanation: Array elements of an expression (such
as A + B or A = B) must all have the same number of
dimensions and the same lower and upper bounds for
each dimension.

EQA1599E You cannot assign an array to a scalar.

Explanation: The PL/I language does not define how
a scalar would represent an array; the assignment is
rejected as an error.

EQA1600E Aggregate used in wrong context.

Explanation: This message applies to PLI constants.

EQA1601E The second expression in the built-in
function name built-in function must be
greater than or equal to 1 and less than
or equal to the number of dimensions of
the first expression.

Explanation: The second expression of the named
built-in function is dependent upon the dimensions of
the array (the first built-in function argument).

Programmer Response: Correct the relationship
between the first and second arguments.

EQA1602E The second expression in the built-in
function name built-in function must not
be an aggregate.

Explanation: Debug Tool does not support aggregates
in this context.

EQA1603E The first argument in the built-in function
name built-in function must be an array
expression.

Explanation: The named built-in function expects an
array to be the first argument.

EQA1604E Argument number number in the built-in
function name built-in function must be a
variable.

Explanation: You used something other than a
variable name (for example, a constant) in your
invocation of the named built-in function.

EQA1605E STRING(variable name) is invalid
because the STRING built-in function
can be used only with bit, character and
picture variables.

Explanation: You must use a variable of the correct
data type with the STRING built-in function.

EQA1606E POINTER(variable name ,...) is invalid
because the first argument to the
POINTER built-in function must be an
offset variable.

Explanation: The first argument to POINTER was
determined to be something other than an OFFSET
data type.

EQA1607E POINTER(..., variable name) is invalid
because the second argument to the
POINTER built-in function must be an
area variable.

Explanation: The second argument to POINTER was
determined to be something other than an AREA data
type.

EQA1608E OFFSET(variable name ,...) is invalid
because the first argument to the
OFFSET built-in function must be a
pointer variable.

Explanation: The first argument to OFFSET was
determined to be something other than a POINTER
data type.

EQA1609E OFFSET(..., variable name) is invalid
because the second argument to the
OFFSET built-in function must be an
area variable.

Explanation: The second argument to OFFSET was
determined to be something other than an AREA data
type.

398 Debug Tool User’s Guide and Reference

EQA1610E built-in function name (variable name) is
invalid because the argument to the
built-in function name built-in function
must be a file reference.

Explanation: The name built-in function requires the
name of a FILE to operate. Some other data type was
used as the argument.

EQA1611E COUNT(variable name) must refer to an
open STREAM file.

Explanation: You must name an open STREAM file in
the COUNT built-in function.

EQA1612E LINENO(variable name) must refer to an
open PRINT file.

Explanation: You must name an open PRINT file in
the LINENO built-in function.

EQA1613E SAMEKEY(variable name) must refer to
a RECORD file.

Explanation: You must name a RECORD file in the
SAMEKEY built-in function. This requirement is tested
for all file constants, but is tested for file variables only
if the file variable is associated with an open file.

EQA1614E The argument in the built-in function
name built-in function must be a
variable.

Explanation: The built-in function is expecting a
variable but a constant or some other invalid item
appeared as one of the arguments.

EQA1615E Argument to POINTER is an aggregate
when pointer is being used as a locator.

Explanation: This message applies to PL/I constants.

EQA1616E The result of invoking the GRAPHIC
built-in function must not require more
than 16383 DBCS characters.

Explanation: GRAPHIC(x,y) is illegal if y > 16383,
and GRAPHIC(x) is illegal if length(CHAR(X)) >
16383.

EQA1617W The first argument to the built-in function
name built-in function is negative, but
since WARNING is on, the evaluation
will not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1618W The second argument to the built-in
function name built-in function is
negative, but since WARNING is on, the
evaluation will not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1619W The third argument to the built-in
function name built-in function is
negative, but since WARNING is on, the
evaluation will not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1620E If the CHAR built-in function is
invoked with only one argument, that
argument must not have the GRAPHIC
attribute with length 16383.

Explanation: CHAR(x) is illegal if x is GRAPHIC with
length 16383 since the resultant string would require
32768 characters.

EQA1621E built-in function (variable name) is not
defined since variable name is not
connected.

Explanation: This applies to the PL/I
CURRENTSTORAGE and STORAGE built-in
functions.

EQA1622E built-in function (variable name) is not
defined since variable name is an
unaligned fixed-length bit string.

Explanation: This applies to the PL/I
CURRENTSTORAGE and STORAGE built-in
functions.

EQA1623E built-in function (x) is undefined if
ABS(x) > 1.

Explanation: This applies to the PL/I ASIN and
ACOS built-in functions.

EQA1624E ATANH(z) is undefined if z is
COMPLEX and z = +1 or z = −1.

Explanation: This applies to the PL/I ATANH built-in
function.

EQA1625E ATAN(z) is undefined if z is COMPLEX
and z = +1i or z = −1i.

Explanation: This applies to the PL/I ATAN built-in
function.

Chapter 17. Debug Tool messages 399

EQA1626E Built-in function not defined since the
argument is real and less than or equal
to zero

Explanation: This message applies to PL/I constants.

EQA1627E SQRT(x) is undefined if x is REAL and
x < 0.

Explanation: This applies to the PL/I SQRT built-in
function.

EQA1628E built-in function (x,y) is undefined if x or
y is COMPLEX.

Explanation: This applies to the PL/I ATAN and
ATAND built-in functions.

EQA1629E Built-in function(X,Y) is undefined if
X=0 and Y=0

Explanation: This applies to PL/I constants.

EQA1630E The argument in built-in function is too
large.

Explanation: This applies to the PL/I trigonometric
built-in functions. For short floating-point arguments,
the limits are:

COS and SIN
ABS(X) <= (2**18)*pi

TAN ABS(X) <= (2**18)*pi if x is real and
ABS(REAL(X)) <= (2**17)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**17)*pi if x is complex

COSH, EXP and SINH
ABS(IMAG(X)) <= (2**18)*pi if x is complex

COSD, SIND and TAND
ABS(X) <= (2**18)*180

For long floating-point arguments, the limits are:

COS and SIN
ABS(X) <= (2**50)*pi

TAN ABS(X) <= (2**50)*pi if x is real and
ABS(REAL(X)) <= (2**49)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**49)*pi if x is complex

COSH, EXP and SINH
ABS(IMAG(X)) <= (2**50)*pi if x is complex

COSD, SIND and TAND
ABS(X) <= (2**50)*180

For extended floating-point arguments, the limits are:

COS and SIN
ABS(X) <= (2**106)*pi

TAN ABS(X) <= (2**106)*pi if x is real and
ABS(REAL(X)) <= (2**105)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**105)*pi if x is complex

COSH, EXP and SINH
ABS(IMAG(X)) <= (2**106)*pi if x is complex

COSD, SIND and TAND
ABS(X) <= (2**106)*180

EQA1631E The subject of the SUBSTR
pseudovariable (character string) is not a
string.

Explanation: You are trying to get a substring from
something other than a string.

EQA1632E Argument to pseudovariable must be
complex numeric

Explanation: This message applies to PL/I constants.

EQA1633E The first argument to a pseudovariable
must refer to a variable, not an
expression or a pseudovariable.

Explanation: The arguments that accompany a
pseudovariable are incorrect.

EQA1634E The length of the bit string that would
be returned by UNSPEC is greater than
the maximum for a bit variable.
Processing of the expression will stop.

Explanation: This will occur in UNSPEC(A) where A
is CHARACTER(n) and n > 4095, where A is
CHARACTER(n) VARYING and n > 4093, where A is
AREA(n) and n > 4080, etc.

EQA1635E Maximum number of arguments to
PLIDUMP subroutine is two

Explanation: This message applies to PL/I constants.

EQA1636E Invalid argument in CALL %DUMP

Explanation: This message applies to PL/I constants.

EQA1637E PL/I cannot process the expression
expression name.

Explanation: This applies to PL/I constants.

EQA1638E Argument argument number to the
MPSTR built-in function must not have
the GRAPHIC attribute.

Explanation: GRAPHIC (DBCS) strings are prohibited
as arguments to the MPSTR built-in function.

400 Debug Tool User’s Guide and Reference

EQA1639E ALLOCATION(variable name) is invalid
because the ALLOCATION built-in
function can be used only with
controlled variables.

Explanation: You must name a variable that is
ALLOCATEable.

Programmer Response: The variable by that name
cannot be a controlled variable within the current
context. If the variable exists somewhere else (and is a
controlled variable), you should use qualification with
the variable name.

EQA1640E variable name is an aggregate and hence
is invalid as an argument to the
POINTER built-in function when that
built-in function is used as a locator.

Explanation: The argument to the POINTER built-in
function is invalid. The argument to the POINTER
built-in function should be an OFFSET data type for
the first argument, or an AREA data type for the
second argument.

EQA1641E Structures are not supported within this
context.

Explanation: Given dDCL 1 A, 2 B FIXED, 2 C
FLOAT, the name A refers to a structure.

Programmer Response: Break the command into
commands for each of the basic elements of the
structure, or use the DECLARE command with a
BASED variable to define a variable overlaying the
structure.

EQA1642E The first argument to the built-in function
name built-in function must have
POINTER type.

Explanation: This applies to the POINTERADD
built-in function. The first argument must have pointer
type, and it must be possible to convert the other to
FIXED BIN(31,0).

EQA1643E The argument in the built-in function
name built-in function must have data
type: data type.

Explanation: This message applies to various built-in
functions. By built-in function, the datatypes required
are:

ENTRYADDR
ENTRY

BINARYVALUE
POINTER

BINVALUE
POINTER

EQA1644W STRINGRANGE is disabled and the
SUBSTR arguments are such that
STRINGRANGE ought to be raised.
Debug Tool will revise the SUBSTR
reference as if STRINGRANGE were
enabled.

Explanation: See the Language Reference built-in
function chapter for the description of when
STRINGRANGE is raised. See the Language Reference
condition chapter for the values of the revised SUBSTR
reference.

EQA1645E The subject of the pseudovariable name
pseudovariable must have data type:
data type.

Explanation: This message applies to various
pseudovariables. By pseudovariable, the datatypes
required are:

ENTRYADDR
ENTRY VARIABLE

EQA1646E built-in function (z) is undefined if z is
COMPLEX.

Explanation: This applies to the PL/I ACOS, ASIN,
ATAND, COSD, ERF, ERFC, LOG2, LOG10, SIND and
TAND built-in functions. This applies to PL/I
constants.

EQA1649E Error: see Command Log.

Explanation: An error has occurred during expression
evaluation. See the Debug Tool Command Log for more
detailed information.

EQA1650E The range of statements statement_id -
statement_id is invalid because the two
statements belong to different blocks.

Explanation: AT stmt1-stmt2 is valid only if stmt1
and stmt2 are in the same block.

EQA1651W The breakpoint-id breakpoint has not
been established.

Explanation: You just issued a CLEAR/LIST
command against a breakpoint that does not exist.

Programmer Response: Verify that you referred to the
breakpoint using the same syntax that was used to
establish it. Perhaps a CLEAR command occurred since
the command that established the breakpoint.

Chapter 17. Debug Tool messages 401

EQA1652E Since the program for the statement
statement-number does not have hooks at
statements, AT commands are rejected
for all statements in the program.

Explanation: A compile unit must have been compiled
with TEST(STMT) or TEST(ALL) for hooks to be
present at statements.

EQA1653E A file name is invalid in this context.

Explanation: A command (for example, AT ENTRY)
specified a C file name where a function or compound
statement was expected.

EQA1654E Since the cu cu_name does not have
hooks at block entries and exits, all AT
ENTRY and AT EXIT commands will be
rejected for the cu.

Explanation: A compile unit must have been compiled
with TEST(BLOCK), TEST(PATH) or TEST(ALL) for
hooks to be present at block exits and block entries.

EQA1655E Since the program for the label
label-name does not have hooks at labels,
AT commands are rejected for all labels
in the program.

Explanation: A compilation unit must have been
compiled with TEST(PATH) or TEST(ALL) for hooks
to be present at labels.

EQA1656E statement_id contains a value that is
invalid in this context.

Explanation: %STATEMENT and %LINE are invalid
in AT commands at block entry and block exit, and in
AT and LIST STATEMENT commands at locations that
are outside of the program.

EQA1657W There are no breakpoint-class breakpoints
set.

Explanation: The command CLEAR/LIST AT was
entered but there are no AT breakpoints presently set,
or the command CLEAR/LIST AT class was entered
but there are no AT breakpoints presently set in that
class.

EQA1658W There are no enabled breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no enabled AT breakpoints
presently set in the requested class of breakpoints.

EQA1659W There are no disabled breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no disabled AT breakpoints
presently set in the requested class of breakpoints.

EQA1660W The breakpoint-id breakpoint is not
enabled.

Explanation: You issued a specific LIST AT
ENABLED command against a breakpoint that is not
enabled.

EQA1661W The breakpoint-id breakpoint is not
disabled.

Explanation: You issued a specific LIST AT
DISABLED command against a breakpoint that is not
disabled.

EQA1662W The breakpoint-id breakpoint cannot be
triggered because it is disabled.

Explanation: You cannot TRIGGER a disabled
breakpoint.

EQA1663W There are no breakpoints set. No
breakpoints are currently set.

EQA1664W There are no disabled breakpoints set.

Explanation: No disabled breakpoints are currently
set.

EQA1665W There are no enabled breakpoints set.

Explanation: No enabled breakpoints are currently set.

EQA1666W 1The breakpoint-id breakpoint is already
enabled.

Explanation: You cannot ENABLE an enabled
breakpoint.

EQA1667W The breakpoint-id breakpoint is already
disabled.

Explanation: You cannot DISABLE a disabled
breakpoint.

EQA1668W The attempt to set this breakpoint has
failed.

Explanation: For some reason, when Debug Tool tried
to set this breakpoint, an error occurred. This
breakpoint cannot be set.

402 Debug Tool User’s Guide and Reference

EQA1669W The FROM or EVERY value in a
breakpoint command must not be
greater than the specified TO value.

Explanation: In an every_clause specified with a
breakpoint command, if the TO value was specified,
the FROM or EVERY value must be less than or equal
to the TO value.

EQA1670W GO/RUN BYPASS is ignored. It is valid
only when entered for an AT CALL, AT
GLOBAL CALL, or AT OCCURRENCE.

Explanation: GO/RUN BYPASS is valid only when
Debug Tool is entered for an AT CALL, AT GLOBAL
CALL, or AT OCCURRENCE breakpoint.

EQA1671W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-name
cannot have a reference specified. This
command not processed.

Explanation: The following AT OCCURRENCE
conditions must have a qualifying reference:
CONDITION, ENDFILE, KEY, NAME, PENDING,
RECORD, TRANSMIT and UNDEFINEDFILE. This
would also apply to the corresponding TRIGGER
commands.

EQA1672W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-name
must have a valid reference specified.
This command not processed.

Explanation: The following AT OCCURRENCE
conditions must have a valid qualifying reference:
CONDITION, ENDFILE, KEY, NAME, PENDING,
RECORD, TRANSMIT and UNDEFINEDFILE. This
would also apply to the corresponding TRIGGER
commands.

EQA1673W An attempt to automatically restore an
AT breakpoint type breakpoint failed.

Explanation: Debug Tool was attempting to restore a
breakpoint that had been set in the previous process
and has failed in that attempt. There are two reasons
this could have happened. If the Compile Unit (CU)
has been changed (that is, modified and
recompiled/linked) between one process and the next
and a breakpoint had been established for a statement
or variable that no longer exists due to the change,
when Debug Tool attempts to reestablish that
breakpoint, it will fail with this message.

EQA1674W An attempt to automatically disable an
AT breakpoint type breakpoint failed.

Explanation: Debug Tool was attempting to disable a
breakpoint for a CU that has been deleted from storage
(or deactivated), and failed in that attempt.

EQA1675E variable name is not a LABEL variable or
constant. No GOTO commands can be
issued against it.

Explanation: You are trying to GOTO a variable name
that cannot be associated with a label in the program.

EQA1676S label name is a label variable that is
uninitialized or that has been zeroed
out. It cannot be displayed and should
not be used except as the target of an
assignment.

Explanation: You are trying to make use of a LABEL
variable, but the control block representing that
variable contains improper information (for example,
an address that is zero).

EQA1677S file name is a file variable that is
uninitialized or that has been zeroed
out. It cannot be displayed and should
not be used except as the target of an
assignment.

Explanation: You are trying to make use of a FILE
variable, but the control block representing that
variable contains improper information (for example,
an address that is zero).

EQA1678E The program CU-name has a short
statement number table, and therefore
no statement numbers in the program
can be located.

Explanation: A command requires determining which
statement was associated with a particular storage
address. A statement table could not be located to relate
storage to statement identifications.

Programmer Response: Check to see if the program
had been compiled using release name. If so, was the
statement table suppressed?

EQA1679E variable name is not a controlled variable.
An ALLOCATE breakpoint cannot be
established for it.

Explanation: You cannot establish an AT ALLOCATE
breakpoint for a variable that cannot be allocated.

EQA1680E variable name is a controlled parameter.
An ALLOCATE breakpoint can be
established for it only when the block
in which it is declared is active.

Explanation: Debug Tool cannot, at this time, correlate
a block to the named variable. As a result, a breakpoint
cannot be established.

Programmer Response: Establish the breakpoint via
an AT ENTRY ... AT ALLOCATE

Chapter 17. Debug Tool messages 403

EQA1681E variable name is not a FILE variable or
constant.

Explanation: ON/SIGNAL file-condition (variable) is
invalid because the variable is not a PL/I FILE
variable.

EQA1682E variable name is not a CONDITION
variable.

Explanation: ON/SIGNAL CONDITION (variable) is
invalid because the variable is not a PL/I
CONDITION variable.

EQA1683E Since the cu cu_name does not have
hooks at statements with modified
behavior due to the Millennium
Language Extensions, all AT DATE
commands will be rejected for the cu.

Explanation: A compile unit must have been compiled
with the DATEPROC option and either TEST(STMT) or
TEST(ALL) for hooks to be present at statements
affected by the Millennium Language Extensions.

EQA1700E The session procedure, procedure name, is
either undefined or is hidden within a
larger, containing procedure.

Explanation: This is issued in response to a CALL,
CLEAR, or QUERY command when the target session
procedure cannot be located. It cannot be located for
one of two reasons: it was not defined, or it is
imbedded with another session procedure.

EQA1701E The maximum number of arguments to
the %DUMP built-in subroutine is 2,
but number were specified.

Explanation: %DUMP does not accept more than two
parameters.

EQA1702E Invalid argument in CALL %DUMP.

Explanation: In PL/I, the %DUMP arguments must
be scalar data that can be converted to character. In C,
the %DUMP arguments must be pointers to character
or arrays of character.

EQA1703E No arguments can be passed to a
session procedure.

Explanation: Parameters are not supported with the
CALL procedure command.

EQA1704E Invalid or incompatible dump options
or suboptions

Explanation: This message is from the feedback code
of Language Environment CEE3DMP call.

EQA1705E Dump argument exceeds the maximum
length allowed.

Explanation: The dump option allows a maximum of
255 characters. The dump title allows a maximum of 80
characters.

EQA1706E pgmname must be loaded before calling
the program.

Explanation: The CALL command was terminated
unsuccessfully.

EQA1720E There is no declaration for variable name.

Explanation: A command (for example, CLEAR
VARIABLES) requires the use of a variable, but the
specified variable was not declared (or was previously
cleared).

Programmer Response: For a list of session variables
that can be referenced in the current programming
language, use the LIST NAMES TEST command.

EQA1721E The size of the variable is too large.

Explanation: A variable can require no more than
2**24 - 1 bytes in a non-XA machine and no more than
2**31 - 1 bytes in an XA machine.

EQA1722E Error in declaration; invalid attribute
variable name.

Explanation: A session variable is declared with
invalid or unsupported attribute.

EQA1723E There is no session variables defined.

Explanation: The CLEAR VARIABLES command is
entered but there is no declaration for session variables.

EQA1724E There is no tag type tag named tag name.

Explanation: This message applies to C. It is issued,
for example, after DESCRIBE ATTRIBUTES enum x if
x is not an enum tag.

EQA1725E tag type tag name is already defined.

Explanation: This message applies to C. A tagged
enum, struct, or union type cannot be redefined, unless
all variables and type definitions referring to that type
and then the type itself are first cleared. For example,
given

enum colors {red,yellow,blue} primary, * ptrPrimary;

enum colors cannot be redefined unless primary,
ptrPrimary, and then enum colors are first cleared.

404 Debug Tool User’s Guide and Reference

EQA1726E tag type tag name cannot be cleared while
one or more declarations refer to that
type.

Explanation: This message applies to C. A CLEAR
DECLARE of a tagged enum, struct, or union type is
invalid while one or more declarations refer to that
type. For example, given

enum colors {red,yellow,blue} primary, * ptrPrimary;

CLEAR DECLARE enum colors is invalid until
CLEAR DECLARE (primary, ptrPrimary) is issued.

EQA1727E enum member name is the name of a
declared variable. It cannot be used as
the name of a member of an enum type.

Explanation: This message applies to C. For example,
given

int blue;

The use of the name blue in the following declaration
is invalid:

enum teamColors {blue,gold};

EQA1728E The tag type tag name is recursive: it
contains itself as a member.

Explanation: This message applies to C. A struct or
union type must not contain itself as a member. For
example, the following declaration is invalid:

struct record {
int member;
struct record next;
}

EQA1729E An error occurred during declaration
processing.

Explanation: Unable to process the declaration. The
command is terminated unsuccessfully.

EQA1750E An error occurred during expression
evaluation.

Explanation: Unable to evaluate the expression. The
command is terminated unsuccessfully.

EQA1751E Program pgmname not found.

Explanation: A bad program name is specified in a
CALL command and processing is terminated
unsuccessfully.

EQA1752S Comparison in command-name command
was invalid. The command was ignored.

Explanation: This message applies to COBOL. The
operands to be compared are of incompatible types.

EQA1753S The nesting of "switch" command
exceeded the maximum.

Explanation: This message applies to C. There are too
many nested levels of switch commands.

EQA1754S An error occurred in "switch" command
processing. The command is terminated.

Explanation: This message applies to C. The switch
command is terminated because an error occurred
during processing.

EQA1755S Comparison with the keyword-name
keyword in command-name command
was invalid. The command was ignored.

Explanation: This message applies to COBOL. The
operands to be compared are incompatible. For
example, the following comparison is invalid:

EVALUATE TRUE
When 6 List ('invalid');
when other List ('other');
END-EVALUATE

EQA1766E The target of the GOTO command is in
an inactive block.

Explanation: You are trying to GOTO a block that is
not active. If it is inactive it doesn’t have a register save
area, base registers, and so on (all of the mechanics
established that would allow the procedure to run).

EQA1767S No offset was found for label "label".

Explanation: No offset associated with the label was
found; the code associated with the label might have
been removed by optimization.

EQA1768S The label "label" is not known.

Explanation: The label is not known.

EQA1769S The label "label" is ambiguous - multiple
labels of this name exist.

Explanation: The label is ambiguous; multiple labels
of this name exist.

EQA1770S The GOTO is not permitted, perhaps
because of optimization.

Explanation: The GOTO command is not
recommended. For COBOL, this might be due to
optimization, or because register contents other than
the code base cannot be guaranteed for the target.

Chapter 17. Debug Tool messages 405

EQA1771S The GOTO is not permitted due to
language rules.

Explanation: The GOTO command is not
recommended. For COBOL, this might be due to
optimization, or because register contents other than
the code base cannot be guaranteed for the target.

EQA1772S The GOTO was not successful.

Explanation: There are various reasons why a GOTO
command can be unsuccessful; this message covers all
the other situations not covered by the other message
in the GOTO LABEL messages group.

EQA1773E GOTO is invalid when the target
statement number is in a C function.

Explanation: The target statement number in a GOTO
command must belong to an active procedure.

EQA1786W There are no entries in the HISTORY
table.

Explanation: Debug Tool has not yet encountered any
of the situations that cause entries to be put into the
HISTORY table; so it is empty.

EQA1787W There are no STATEMENT entries in the
HISTORY table.

Explanation: LIST STATEMENTS or LIST LAST n
STATEMENTS was entered, but there are no
STATEMENT entries in the HISTORY table. Debug
Tool was not invoked for any STATEMENT hooks.

EQA1788W There are no PATH entries in the
HISTORY table.

Explanation: LIST PATH or LIST LAST n PATH was
entered, but there are no PATH entries in the
HISTORY table. Debug Tool was not invoked for any
PATH hooks.

EQA1789W Requested register(s) not available.

Explanation: You are trying to work with a register
but none exist in this context (for example, during
environment initialization).

EQA1790W There are no active blocks.

Explanation: The LIST CALLS command was issued
prior to any STEP or GO.

EQA1791E The pattern pattern is invalid.

Explanation: A pattern is invalid if it is longer than
128 bytes or has more than 16 parts. (Each asterisk and
each name fragment forms a part.)

EQA1792S Only the ADDR and POINTER built-in
functions may be used to specify an
address in the LIST STORAGE
command.

Explanation: LIST STORAGE(built-in function(...)) is
invalid if the built-in function is not the ADDR or
POINTER built-in function.

EQA1793S ENTRY, FILE, LABEL, AREA, EVENT or
TASK variables are not valid in a LIST
command.

Explanation: The contents of these program control
variables can be displayed by using the HEX or
UNSPEC built-in functions or by using the LIST
STORAGE command.

EQA1806E The command element character is
invalid.

Explanation: The command entered could not be
parsed because the specified element is invalid.

EQA1807E The command element character is
ambiguous.

Explanation: The command entered could not be
parsed because the specified element is ambiguous.

EQA1808E The hyphen cannot appear as the last
character in an identifier.

Explanation: COBOL identifiers cannot end in a
hyphen.

EQA1809E Incomplete command specified.

Explanation: The command, as it was entered,
requires additional command elements (for example,
keywords, variable names). Refer to the definition of
the command and verify that all required elements of
the command are present.

EQA1810E End-of-source has been encountered
after an unmatched comment marker.

Explanation: A /* ... was entered but an */ was not
present to close the comment. The command is
discarded.

Programmer Response: You must either add an */ to
the end of the comment or explicitly indicate
continuation with an SBCS hyphen.

406 Debug Tool User’s Guide and Reference

EQA1811E End-of-source has been encountered
after an unmatched quotation mark.

Explanation: The start of a constant was entered (a
quotation mark started the constant) but another
quotation mark was not found to terminate the
constant before the end of the command was reached.

Programmer Response: There could be several
solutions for this, among them:
1. You must either add a quotation mark to the end of

the constant or explicitly indicate continuation (with
an SBCS hyphen).

2. If DBCS is ON you should also verify that you
didn’t try to start a constant with an SBCS
quotation mark and terminate it with a DBCS
quotation mark (or vice versa).

3. You might have entered a character constant that
contained a quotation mark -- and you didn’t
double it.

EQA1812E A decimal exponent is required.

Explanation: In COBOL, an E in a float constant must
be followed by at least one decimal digit (optionally
preceded by a sign). In C, if a + or − sign is specified
after an E in a float constant, it must followed by at
least one decimal digit.

EQA1813E Error reading DBCS character codes.

Explanation: An unmatched or nested shift code was
found.

EQA1814E Identifier is too long.

Explanation: All identifiers must be contained in 255
bytes or less. COBOL identifiers must be contained in
30 bytes or less and C identifiers in 255 bytes or less.

EQA1815E Invalid character code within DBCS
name, literal or DBCS portion of mixed
literal.

Explanation: A character code point was encountered
that was not within the defined code values for the first
or second byte of a DBCS character.

EQA1816E An error was found at line line-number
in the current input file.

Explanation: An error was detected while parsing a
command within a USE file, or within a file specified
on the run-time TEST option. It occurred at the record
number that was displayed.

EQA1817E Invalid hexadecimal integer constant
specified.

Explanation: A hexadecimal digit must follow 0x.

EQA1818E Invalid octal integer constant specified.

Explanation: Only an octal digit can follow a digit-0.

EQA1819E A COBOL DBCS name must contain at
least one nonalphanumeric double byte
character.

Explanation: All COBOL DBCS names must have at
least one double byte character not defined as double
byte alphanumeric. For EBCDIC, these are characters
with X'42' in the leading byte, with the trailing byte in
the range X'41' to X'FE'. For ASCII, the leading byte is
X'82' and the trailing byte is in the range X'40' to X'7E'.

EQA1820E Invalid double byte alphanumeric
character found in a COBOL DBCS
name. Valid COBOL double byte
alphanumeric characters are: A-Z, a-z,
0-9.

Explanation: Alphanumeric double-byte characters
have a leading byte of X'42' in EBCDIC and X'82' in
ASCII. The trailing byte is an alphanumeric character.
The valid COBOL subset of these is A-Z, a-z, 0-9.

EQA1821E The DBCS representation of the hyphen
was the first or last character in a DBCS
name.

Explanation: COBOL DBCS names cannot have a
leading or trailing DBCS hyphen.

EQA1822E A DBCS Name, DBCS literal or mixed
SBCS/DBCS literal may not be
continued.

Explanation: Continuation rules do not apply to DBCS
names, DBCS literals or mixed SBCS/DBCS literals.
These items must appear on a single line.

EQA1823E An end of line was encountered before
the end of a DBCS name or DBCS
literal.

Explanation: An end of line was encountered before
finding a closing shift-in control code. This message is
for the System/370 environment.

EQA1824E A DBCS literal or DBCS name contains
no DBCS characters.

Explanation: A shift-out shift-in pair of control
characters were found with no intervening DBCS

Chapter 17. Debug Tool messages 407

characters. This message is for the System/370
environment.

EQA1825E End-of-source was encountered while
processing a DBCS name or DBCS
literal.

Explanation: No closing Shift-In control code was
found before end of file. This message is for the
System/370 environment.

EQA1826E A DBCS literal was not delimited by a
trailing quote or apostrophe.

Explanation: No closing quotation mark

EQA1827E Invalid separator character found
following a DBCS name.

EQA1828E Fixed binary constants are limited to 31
digits.

Explanation: A fixed binary constant must be between
−2**31 and 2**31 exclusive.

EQA1829E Fixed decimal constants are limited to 15
digits.

Explanation: A fixed decimal constant must be
between −10**15 and 10**15 exclusive.

EQA1830E Float binary constants are limited to 109
digits.

Explanation: This limit applies to all PL/I FLOAT
BINARY constants.

EQA1831E Float decimal constants are limited to 33
digits.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1832E Floating-point exponents are limited to 3
digits.

Explanation: This limit applies to all C float constants
and to all PL/I FLOAT BINARY constants.

EQA1833E Float decimal exponents are limited to 2
digits.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1834E Float binary constants must be less than
1E+252B.

Explanation: This limit applies to all PL/I FLOAT
BINARY constants.

EQA1835E Float decimal constants must be less
than
7.23700557733226221397318656304298E+75.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1836E Float constants are limited to 35 digits.

Explanation: This limit applies to all C float constants.

EQA1837E Float constants must be bigger than
5.3976053469340278908664699142502496E-79
and less than
7.2370055773322622139731865630429929E+75.

Explanation: This is the range of values allowed by C.

EQA1872E An error occurred while opening file: file
name.

Explanation: An error during the initial processing
(OPEN) of the file occurred.

EQA1873E An error occurred during an input or
output operation.

Explanation: An error occurred performing an input
or output operation.

EQA1874I The command command name can be
used only in full screen mode.

Explanation: This command is one of a collection that
is allowed only when your terminal is operating in
full-screen mode. The function is not supported in line
mode or in a batch mode.

EQA1875I Insufficient storage available.

Explanation: This message is issued when not enough
storage is available to process the last command issued
or to handle the last invocation.

EQA1876E Not enough storage to display results.

Explanation: Increase size of virtual storage.

EQA1877E An error occurred in writing messages
to the dump file.

Explanation: This could be caused by a bad file name
specified with the call dump FNAME option.

408 Debug Tool User’s Guide and Reference

EQA1878E The cursor is not positioned at a
variable name.

Explanation: A command, such as LIST, LIST
TITLED, LIST STORAGE, or DESCRIBE
ATTRIBUTES, which takes input from the source
window was entered with the cursor in the source
window, but the cursor was not positioned at a variable
name.

Programmer Response: Reposition the cursor and
reenter.

EQA1879E The listing file name given is too long.

Explanation: Under MVS, data definition names are
limited to 8 characters and data set names are limited
to 44 characters. If a partitioned data set is named, the
member name must be specified (with up to 8
characters, enclosed in parentheses).

EQA1880E You may not resume execution when the
program is waiting for input.

Explanation: The user attempted to issue a
GOS/RUN or STEP request when the program was
waiting for input. The input must be entered to resume
execution.

EQA1881E The INPUT command is only valid
when the program is waiting for input.

Explanation: The user attempted to enter the INPUT
command when the program was not waiting for any
input.

EQA1882E The logical record length for filename is
out of bounds. It will be set to the
default.

Explanation: The logical record length is less than 32
bytes or greater than 256 bytes.

EQA1883E Error closing previous log file; Return
code = rc

Explanation: The user attempted to open a new log
file and the old one could not be closed; the new log
file is used, however.

EQA1884E An error occurred when processing the
source listing. Check return code return
code in the Using the Debug Tool
manual for more detail.

Explanation: An error occurred during processing of
the list lines command. Possible return codes:

2 - The listing file could not be found or allocated.

5 - The CU was not compiled with the correct
compile option.

7 - Failed due to inadequate resources.

EQA1902W The command has been terminated
because of the attention request.

Explanation: The previously-executing command was
terminated because of an attention request. Normal
debugging can continue.

EQA1903E An attention request has been issued.
Enter QUIT to terminate Debug Tool or
GO or RUN to resume execution.

Explanation: The attention key was pressed three
times because the application was looping either in
system code or application code without debugging
hooks. Only the GO/RUN and QUIT commands are
valid at this point.

EQA1904E The STEP and GO/RUN commands are
not allowed at termination.

Explanation: The STEP and GO/RUN commands are
not allowed after the application program ends.

EQA1905W You cannot trigger a condition in your
program at this time.

Explanation: The environment is in a position that it
would not be meaningful to trigger a condition. For
example, you have control during environment
initialization.

EQA1906S The condition named CONDITION name
is unknown.

Explanation: A condition name was expected, but the
name entered is not the name of a known condition.

EQA1907W The attempt to trigger this condition has
failed.

Explanation: For some reason, when Debug Tool tried
to trigger the specified condition, it failed and the
condition was not signaled.

EQA1918S The block name block-qualification :>
block_name is ambiguous.

Explanation: There is another block that has the same
name as this block.

Programmer Response: Provide further block name
qualification: by load module name, by compile unit
name, or by additional block names if a nested block.

Chapter 17. Debug Tool messages 409

EQA1919E The present block is not nested. You
cannot QUALIFY UP.

Explanation: While you can QUALIFY to any block,
you cannot QUALIFY UP (for example, change the
qualification to the block’s parent) unless there really is
a parent of that block. In this case, there is no parent of
the currently-qualified block.

Programmer Response: You have either
misinterpreted your current execution environment or
you have to qualify to some block explicitly.

EQA1920E The present block has no dynamic
parent. You cannot QUALIFY RETURN.

Explanation: While you can QUALIFY to any block
you cannot QUALIFY RETURN (for example, change
the qualification to the block’s invoker) unless there
really is an invoker of that block. In this case, there is
no invoker of the currently-qualified block.

Programmer Response: You have either
misinterpreted your current run-time environment or
you have to qualify to some block explicitly.

EQA1921S There is no block named block_name.

Explanation: The block that you named could not be
located by Debug Tool.

Programmer Response: Provide further block name
qualification: by load module name, by compile unit
name, or by additional block name(s) if a nested block.

EQA1922S There is no block named block_name
within block block-qualification.

Explanation: The qualification you are using (or the
spelling of the block names) prevented Debug Tool
from locating the target block.

Programmer Response: Verify that the named block
should be within the current qualification.

EQA1923S There is no compilation unit named
cu_name.

Explanation: The compilation unit (program) that you
named could not be located by Debug Tool.

EQA1924S Statement statement_id is not valid.

Explanation: The statement number does not exist or
cannot be used. Note that the statement number could
exist but is unknown.

EQA1925S There is no load module named load
module name.

Explanation: Load module qualification is referring to
a load module that cannot be located.

Programmer Response: The load module might be
missing or it might have been loaded before Debug
Tool was first used. On the System/370, Debug Tool is
aware of additional load modules only if they were
FETCHed after Debug Tool got control for the first
time.

EQA1926S There is no cu named cu_name within
load module load module name.

Explanation: The compilation unit might be
misspelled or missing.

EQA1927S There are number CUs named cu_name,
but neither belongs to the current load
module.

Explanation: The compilation unit you named is not
unique.

Programmer Response: Add further qualification so
that the correct load module will be known.

EQA1928S The block name block_name is
ambiguous.

Explanation: There is another block that has the same
name as this block.

Programmer Response: Provide further block name
qualification: by load module name, by compile unit
name, or by additional block names if a nested block.

EQA1929S Explicit qualification is required
because the location is unknown.

Explanation: The current location is unknown; as
such, the reference or statement must be explicitly
qualified.

Programmer Response: Either explicitly set the
qualification using the SET QUALIFY command or
supply the desired qualification to the command in
question.

EQA1930S There is no compilation unit named
CU-name in the current enclave.

Explanation: The compilation unit (program) that you
named could not be located in the current enclave by
Debug Tool.

410 Debug Tool User’s Guide and Reference

EQA1931S There is no cu named CU-name within
load module load module name in the
current enclave.

Explanation: The compilation unit might be
misspelled or missing, or it might be outside of the
current enclave.

EQA1932S Block or CU block_name is not currently
available

Explanation: The block or CU that you named could
not be located by Debug Tool.

Programmer Response: Provide further block name
qualification--by load module name, by compile unit
name, or by additional block names(s) if a nested block.

EQA1940E variable name is a not a level-one
identifier.

Explanation: You are trying to clear an element of a
structure. You must clear the entire structure by naming
its level-one identifier.

EQA1941E ATANH(x) is undefined if x is REAL
and ABS(x) >= 1.

Explanation: This applies to the PL/I ATANH built-in
function.

EQA1942E LOG(z) is undefined if z is COMPLEX
and z = 0.

Explanation: This applies to the PL/I LOG built-in
function.

EQA1943E built-in function (x) is undefined if x is
REAL and x <= 0.

Explanation: This applies to the PL/I LOG, LOG2
and LOG10 built-in functions.

EQA1944E built-in function (x,y) is undefined if x=0
and y=0.

Explanation: This applies to the PL/I ATAN and
ATAND built-in functions.

EQA1950E The MONITOR table is empty. If the
first MONITOR command entered is
numbered, it must have number 1.

Explanation: A MONITOR n command was issued
when the MONITOR table is empty, but n is greater
than 1.

EQA1951E The number of entries in the
MONITOR table is monitor-number. New
MONITOR commands must be
unnumbered or have a number less than
or equal to monitor-number.

Explanation: A MONITOR n command was issued
but n is greater than 1 plus the highest numbered
MONITOR command.

EQA1952E The MONITOR command table is full.
No unnumbered MONITOR commands
will be accepted.

Explanation: A MONITOR command was issued but
the MONITOR table is full.

EQA1953E No command has been set for
MONITOR monitor-number.

Explanation: A LIST MONITOR n or CLEAR
MONITOR n command was issued, but n is greater
than the highest numbered MONITOR command.

EQA1954E The command for MONITOR
monitor-number has already been cleared.

Explanation: A CLEAR MONITOR n command was
issued, but MONITOR has already been cleared.

EQA1955E There are no MONITOR commands
established.

Explanation: A LIST MONITOR or CLEAR
MONITOR command was issued, but there are no
MONITOR commands established.

EQA1956E No previous FIND argument exists.
FIND operation not performed.

Explanation: A FIND command must include a string
to find when no previous FIND command has been
issued.

EQA1957E String could not be found.

Explanation: A FIND attempt failed to find the
requested string.

EQA1958E The requested SYSTEM command could
not be run.

Explanation: A SYSTEM command was issued. The
underlying operating system received it but did not
process it successfully.

Chapter 17. Debug Tool messages 411

EQA1959E The requested SYSTEM command was
not recognized.

Explanation: The underlying operating system was
passed a command that was not recognized. The
system could not process the command.

EQA1960S There is an error in the definition of
variable variable name. Attribute
information cannot be displayed.

Explanation: The specified variable has an error in its
definition or length and address information is not
currently available in the execution of the program.

EQA1963S The command command is not supported
on this platform.

Explanation: The given command is not supported on
the current platform.

EQA1964E Source or Listing data is not available.

Explanation: The source or listing information is not
available. Some of the possible conditions that could
cause this are: The listing file could not be found, the
CU was not compiled with the correct compile options,
inadequate resources were available.

EQA1965E Attributes of source of assignment
statement conflict with target variable
name. The assignment cannot be
performed.

Explanation: The assignment contains incompatible
data types; the assignment cannot be made.

EQA1966E The AREA condition would have been
raised during an AREA assignment, but
since WARNING is on, the assignment
will not be performed.

Explanation: The operation, if performed, would
result in the AREA condition. The condition is being
avoided by rejecting the operation.

EQA1967E The subject of the built-in function name
pseudovariable (character string) must be
complex numeric.

Explanation: You are trying to get apply the PL/I
IMAG or REAL pseudovariable to a variable that is
not complex numeric.

EQA1968W You cannot use the GOTO command at
this time.

Explanation: The program environment is such that a
GOTO cannot be performed correctly. For example,
you could be in control during environment

initialization and base registers (supporting the GOTOs
logic) have not been established yet.

EQA1969E GOTO label-constant will not be
permitted because that constant is the
label for a FORMAT statement.

Explanation: There are several statement types that
are not allowable as the target of a GOTO. FORMAT
statements are one of them.

EQA1970E The 3-letter national language code national
language is not supported for this
installation of Debug Tool. Uppercase
United States English (UEN) will be
used instead.

Explanation: The national-language-specified conflicts
with the supported national languages for this
installation of Debug Tool. Verify that the Language
Environment run-time NATLANG option is correct.

EQA1971E The return code in the QUIT command
must be nonnegative and less than 1000.

Explanation: For PL/I, the value of the return code
must be nonnegative and less than 1000.

EQA1972E variable name is not a LABEL constant No
AT commands can be issued against it

Explanation: LABEL variables cannot be the object of
the AT command.

EQA1973E The FIND argument cannot exceed a
string length of 64

Explanation: Shorten the search argument to a string
length 64 or less.

EQA1974E The FIND argument is invalid, the
string length is zero

Explanation: Supply a search argument inside the
quotes.

EQA1975E error message string

Explanation: Unable to evaluate the expression. See
output string provided.

EQA1980E Invalid symbolic_destination_name -
symbolic_destination_name.

Explanation: Conversation initialization failed due to
an invalid symbolic_destination_name in the Session
Parameter. The symbolic_destination_name was either not
found in the APPC/MVS side information file, or it is
longer than 8 characters.

Programmer Response: If the length of the

412 Debug Tool User’s Guide and Reference

symbolic_destination_name is valid, contact your
APPC/MVS system administrator to verify its existence
in the side information file. For a description of the
Session Parameter and its contents, see the Debug Tool
manual.

EQA1981E Invalid mode name, transaction program
name, or partner LU name associated
with symbolic_destination_name.
Mode_name= mode_name and
partner_LU_name= partner_LU_name

Explanation: A conversation allocation request failed
due to invalid conversation characteristics obtained
from the APPC/MVS side information file. There could
be several reasons for this:
1. The mode_name characteristic specifies a mode name

that is either not recognized by the LU as valid or is
reserved for SNA service transaction programs.

2. The TP_name characteristic specifies an SNA service
transaction program name.

3. The partner_LU_name characteristic specifies a
partner LU name that is not recognized by the LU
as being valid.

Programmer Response: Contact your APPC/MVS
system administrator to modify the characteristics
associated with the given symbolic_destination_name in
the side information file. For information about the
recommended values for mode_name and TP_name, see
the CODE/370 Installation manual. The OS/2 system
error log can contain valuable diagnostic information.
To access the system error log, select System Error Log
from the FFST/2™ folder or type SYSLOG at the OS/2
command line.

EQA1982E Permanent conversation allocation
failure for symbolic_destination_name.
Partner_LU_name= partner_LU_name and
mode_name= mode_name

Explanation: The conversation cannot be allocated
because of a condition that is not temporary. There
could be several reasons for this:

1. The workstation where the partner_LU_name is
defined is turned off or Communications
Manager/2 is not started.

2. The partner_LU_name has not been defined.

3. The current session limit for the specified
partner_LU_name and mode_name pair is zero.

4. A system definition error or a session-activation
protocol error has occurred.

Programmer Response: Ensure that you specified the
correct symbolic_destination_name or contact your
APPC/MVS system administrator to correct the
condition. The OS/2 system error log can contain
valuable diagnostic information. To access the system
error log, select System Error Log from the FFST/2
folder or type SYSLOG at the OS/2 command line.

EQA1983E Temporary conversation allocation
failure for symbolic_destination_name.
Partner_LU_name= partner_LU_name and
mode_name= mode_name.

Explanation: The conversation cannot be allocated
because of a condition that might be temporary. There
could be several reasons for this:

1. Undefined mode_name (not temporary)

2. Temporary lack of resources at the host LU or
workstation LU

Verify that mode_name is defined on the target
workstation using the CM/2 Communication Manager
Setup panels. If mode_name is defined on the
workstation, contact your MVS/ESA system
programmer to ensure that mode_name is also defined
on the MVS system. The OS/2 system error log can
contain valuable diagnostic information. To access the
system error log, select System Error Log from the
FFST/2 folder or type SYSLOG at the OS/2 command
line.

EQA1984E The workstation transaction program is
permanently unavailable at
symbolic_destination_name.
Partner_LU_name= partner_LU_name.

Explanation: Partner_LU_name rejected the allocation
request because the host program specified a
workstation program that partner_LU_name recognizes
but it cannot start. There could be several reasons for
this:

1. Missing transaction program definition on the
workstation.

2. Invalid OS/2 program path and file name specified
in the transaction program definition.

Programmer Response: Define the transaction
program on the workstation or ensure that the
transaction program definition is correct. The
symbolic_destination_name can be used to obtain the
workstation transaction program name from the
APPC/MVS side information table. For information
about the recommended values for TP_name, see the
CODE/370 Installation manual. The OS/2 system error
log can contain valuable diagnostic information. To
access the system error log, select System Error Log
from the FFST/2 folder or type SYSLOG at the OS/2
command line.

EQA1985E Unrecognized transaction program name
at symbolic_destination_name.
Partner_LU_name= partner_LU_name.

Explanation: Partner_LU_name rejected the allocation
request because the host program specified a
workstation TP_name that partner_LU_name does not
recognize. The transaction program definition is
missing on the workstation.

Chapter 17. Debug Tool messages 413

Programmer Response: Define the transaction
program on the workstation. The
symbolic_destination_name can be used to obtain the
workstation transaction program name from the
APPC/MVS side information table. For information
about the recommended values for TP_name, see the
CODE/370 Installation manual. The OS/2 system error
log can contain valuable diagnostic information. To
access the system error log, select System Error Log
from the FFST/2 folder or type SYSLOG at the OS/2
command line.

EQA1986E Unexpected LU 6.2 error. Module=
module_name, Location= location_id, CPI-C
call= call_type, return_code= rc.

Explanation: The host communications code received
an unexpected return code from a CPI-C call. The
information displayed is for diagnostic purposes.
v module_name is the name of the communications

module issuing the CPI-C call
v location_id is an internal 3 digit identifier for the

CPI-C call within the module
v call_type is the CPI-C call type (for example, CMINIT

or CMALL)
v rc is the unexpected return_code that is displayed in

decimal.

Programmer Response: Forward a copy of this
message to your APPC/MVS system administrator.
Diagnostic information was recorded in either the
EVFERROR.LOG or the EQALU62.LOG. The path
where these logs are stored is in the CODETMPDIR
environment variable in CONFIG.SYS. The OS/2
system error log can contain valuable diagnostic
information for your IBM service representative. To
access the system error log, select System Error Log
from the FFST/2 folder or type SYSLOG at the OS/2
command line.

EQA1987E Debugger terminated, execution
continues.

Explanation: The initialization of the LU 6.2
conversation between the host and the workstation (in
a batch process) has failed. The debugger is terminated
and the execution of the batch application continues.
Note the accompanying messages as to possible causes.

EQA1988E Severe internal error. PWS Debug Tool
terminated.

Explanation: PWS Debug Tool detected a severe
internal error. It has been shutdown.

Programmer Response: Diagnostic information was
recorded in either the EVFERROR.LOG or the
EQALU62.LOG. The path where these logs are stored is
in the CODETMPDIR environment variable in
CONFIG.SYS.S

EQA1989E Invalid session ID - session_ID

Explanation: Conversation initialization failed due to
an invalid session ID in the Session Parameter. There
could be several reasons for this,

1. The session ID is longer than 8 characters or
contains invalid characters. Valid session IDs consist
of 1-8 alphanumeric characters.

2. There is already another PWS Debug Tool session
with the given session ID.

Programmer Response: Diagnostic information is
recorded in either the EVFERROR.LOG or the
EQALU62.LOG. The path where these logs are stored is
in the CODETMPDIR environment variable in
CONFIG.SYS. If there is already an existing PWS
Debug Tool session with the given session ID then a
different session ID must be provided for concurrent
debug sessions on the same workstation. If a session ID
is not specified, it defaults to CODEDT. For a
description of the Session Parameter and its contents,
see the Debug Tool manual.

EQA1990E Invalid session parameter -
session_parameter

Explanation: Conversation initialization failed. A batch
program, attempting to start an LU 6.2 debug session,
has passed an invalid Session Parameter. For example,
LU2 or MFI has been specified for session type or a
session ID longer than eight characters has been
specified. For a description of the Session Parameter
and its contents, see the Debug Tool manual.

Programmer Response: Correct the Session Parameter
and invoke the batch application again.

EQA1991E CICS terminal TERM is not accessible

Explanation: The terminal id specified to receive
Debug Tool screen was detected but not acquired.

Programmer Response: Correct the Debug Tool Term
Id using DTCN Replace function or logon to already
defined one.

EQA1992E Missing workstation parameter

Explanation: Keywords APPC&, VADAPPC&, and
VADTCPIP& require a workstation ID to be entered.

Programmer Response: Correct or enter the
workstation destination name.

EQA1993E Invalid TCP/IP portid parameter

Explanation: Keyword VADTCPIP requires a port ID
to be entered. The value of tihs port id ranges from 1 to
65535 (’FFFF’x). If not entered or in error, a default
value of 2112 is used.

414 Debug Tool User’s Guide and Reference

Programmer Response: Correct or enter the TCP/IP
port id.

EQA1997I VTAM 3270 waiting for LU lu_name

Explanation: This message is issued if the specified
VTAM terminal is currently in use.

EQA1998S VTAM 3270 error_type error, RC=rc
insert1 insert2 insert3

Explanation: error_type, insert1, insert2, and insert3
vary as shown in the following table.

This message is issued whenever a permanent error is
detected communicating with the VTAM terminal. A
terminal condition is then signaled to LE causing
program termination.

Table 4. Definitions for error_type, insert1, insert2, and
insert3

error_type insert1 insert2 insert3

RPL or
INQUIRE
RPL

ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

rcrnoooo
where:
rc-R15,rn-
R0, or
rcrn-
RPLSense if
RtnCodeFdBk2=0404
or 0403, and
oooo-Error
Offset in
EQAYVTAM

ppddkkkk
where:
pp-RPLCode,
dd-RtnCode,
and
kkkk-FdBk2

ACB ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

ACBERR

MODCB ggnnoommwhere:
gg - CsFlag,
nn - CsFunc,
oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

MODCB
R15

Logic ggnnoommwhere:
gg - CsFlag,
nn - CsFunc,
oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

0

Table 4. Definitions for error_type, insert1, insert2, and
insert3 (continued)

error_type insert1 insert2 insert3

Function ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

EQAYVTAM
function
code

Storage ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

0

Undefined
LU

ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

0

Unknown ggnnoomm
where: gg -
CsFlag, nn -
CsFunc, oo -
CSFlagOf,
and mm -
CSReqMod

Error Offset
in
EQAYVTAM

0

EQA2001E Ambiguous conversion between "&1"
and "&2".

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ type)

Explanation: The debugger was not able to find a
single type common to the two specified types and was
therefore unable to convert from one to the other.

Programmer Response: Explicitly cast the type to an
intermediate type and then convert to requested type.

EQA2002E A return value is not allowed for this
function.

Explanation: A function with a return type of "void"
cannot return a value.

Programmer Response: Remove the value or
expression from the return statement, remove the
return statement, or change the return type of the
function.

Chapter 17. Debug Tool messages 415

||

|
|

||
|

|
|

|
|
|
|

||
|

||||

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|

|
|
|

|

||
|
|
|
|
|
|

|
|
|

|
|

||
|
|
|
|
|
|

|
|
|

|

|
|

||||

||
|
|
|
|
|
|

|
|
|

|
|
|

||
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

|

||
|
|
|
|
|
|

|
|
|

|

|

|

EQA2003E Identifier "&1" is undefined.

Problem Determination: (where &1 is a C/C++ name)

Explanation: The specified identifier is used but has
not been defined.

Programmer Response: Define the identifier before
using it. Check its spelling. If the identifier has been
defined in a header file, check that any required macros
have been defined.

EQA2004E &1 member "&2" cannot be accessed.

Problem Determination: (where &1 is the keyword
"private" or "protected" &2 is a class member name)

Explanation: The specified member is private,
protected, or is a member of a private base class and
cannot be accessed from the current scope.

Programmer Response: Check the access specification
rules for the member function and change the access
specifier if necessary. If the member function belongs to
a base class, check the access specifier of the base class
where the current class is defined.

EQA2005E Return value of type "&1" is expected.

Problem Determination: (where &1 is a C/C++ type)

Explanation: No value is returned from the current
function, but the function is expecting a nonvoid return
value. The function was declared with a return type
but the debugger did not detect a return statement.
Only functions with a void return type can have no
return statement or have a return statement with no
return value.

Programmer Response: Return a value from the
function or change the function’s return type to void.

EQA2006E "&1" cannot be made a &2 member.

Problem Determination: (where &1 is a class member
name &2 is the keyword "public", "protected" or
"private")

Explanation: An attempt is made to give private
access to a base class member or to give an access that
is different from the access the member was declared
with. A derived class can only change the access of a
base class member to public or protected if the access
of that member was not private in the base class.

Programmer Response: Remove the invalid access
statement or change the access specifier in the base
class.

EQA2007E The array boundary in "&1" is missing.

Problem Determination: (where &1 is a C/C++ type)

Explanation: An array must be defined with at least
one element. Use a pointer if you want to dynamically
allocate memory for the array.

Programmer Response: Add an array bound.

EQA2008E The bit-field length must be an integral
constant expression.

Explanation: The bit-field length, which is the value to
the right of the colon, must be an integer. A constant
expression has a value that can be determined during
compilation and does not change during execution.

Programmer Response: Change the bit-field length to
an integral constant expression.

EQA2009E "&1" is not a base class of "&2".

Problem Determination: (where &1 is a class name &2
is a class name)

Explanation: A derived class attempted to access
elements of a class it did not inherit from. A derived
class can only access elements of its base class or base
classes.

Programmer Response: Ensure the class names are
correct and the classes are derived properly.

EQA2010E The array bound must be a positive
integral constant expression.

Explanation: The debugger detected an array
declaration that did not have a constant that is greater
than 0 for the array bounds. Use pointers if you want
to dynamically allocate storage for arrays.

Programmer Response: Change the array bound to an
integral constant expression or change it to a pointer. A
constant expression has a value that can be determined
during compilation and does not change during
execution.

EQA2011E "&1" has the same name as its
containing class.

Problem Determination: (where &1 is a C++name)

Explanation: The debugger has detected conflicting
names for objects within a class declaration. Nested
class declarations must have different names.

Programmer Response: Change the name of the
conflicting class.

416 Debug Tool User’s Guide and Reference

EQA2012E A destructor can only be used in a
function declaration or in a function
call.

Explanation: The debugger has detected an incorrect
destructor call.

Programmer Response: Check the call to the
destructor to ensure no braces are missing. If the braces
are correct, remove the destructor call.

EQA2013E An initializer is not allowed for "&1".

Problem Determination: (where &1 is a C/C++ name
or keyword)

Explanation: The debugger detected an initializer
where one is not allowed. For example, a class member
declarator cannot contain an initializer.

Programmer Response: Remove the initializer.

EQA2014E The string must be terminated before
the end of the line.

Explanation: The debugger detected a string that was
not terminated before an end-of-line character was
found.

Programmer Response: End the string before the end
of the line, or use "\" to continue the string on the next
line. The "\" must be the last character on the line.

EQA2015E An expression of type "&1" cannot be
followed by the function call operator ().

Explanation: The debugger detected an expression
followed by the function call operator. The expression
must be of type function, pointer to function, or
reference to function.

Programmer Response: Change the type of expression
or remove the function call operator.

EQA2016E The "this" keyword is only valid in class
scope.

Explanation: An attempt to use the C++ keyword this
was detected outside class scope. The keyword this
cannot be used outside a class member function body.

Programmer Response: Remove or move the this
keyword.

EQA2017E A destructor cannot have arguments.

Programmer Response: Remove the arguments from
the destructor.

EQA2018E A declaration has been made without a
type specification.

Explanation: The debugger detected a typedef
specification that did not have a type associated with it.

Programmer Response: Add a type specification to
the declaration.

EQA2019E Class qualification for "&1" is not
allowed.

Problem Determination: (where &1 is a C++ name)

Explanation: Explicit class qualification is not allowed
in this context.

Programmer Response: Remove the class
qualification.

EQA2020E The "&1" operator is not allowed
between "&2" and "&3".

Problem Determination: (where &1 is a C/C++
operator &2 is a C/C++ type &3 is a C/C++ type)

Explanation: The debugger detected an illegal
operator between two operands. For user-defined
types, you must overload the operator to accept the
user-defined types.

Programmer Response: Change the operator or
change the operands.

EQA2021E "&1" cannot be converted to "&2".

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ type)

Explanation: The type conversion cannot be
performed because there is no conversion between the
types. This can occur in an initialization, assignment, or
expression statement.

Programmer Response: Change one of the types or
overload the operator.

EQA2022E Operand for "&1" must be a pointer or
an array.

Problem Determination: (where &1 is a C/C++
operator)

Explanation: The specified operator must have an
operand that is a pointer or an array.

Programmer Response: Change the operand to either
a pointer or an array.

EQA2023E Syntax error - "&1" is not a class name.

Problem Determination: (where &1 is a C++ name)

Explanation: A class name must be specified in this
context.

Chapter 17. Debug Tool messages 417

Programmer Response: Specify a class name. Check
the spelling.

EQA2024E Operand of "&1" operator must be an
lvalue.

Problem Determination: (where &1 is a C/C++
operator)

Explanation: The debugger detected an operand that
is not an lvalue. An lvalue is an expression that
represents an object. For example, the left hand side of
an assignment statement must be an lvalue.

Programmer Response: Change the operand to an
lvalue.

EQA2025E const expression cannot be modified.

Explanation: You can initialize a const object, but its
value cannot change afterwards.

Programmer Response: Eliminate the const type
qualifier from the expression or do not use it with the
increment/decrement operators.

EQA2026E An expression of type "&1" is not
allowed on the left side of "&2&3".

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ operator &3 is a C/C++ name)

Explanation: The debugger detected a mismatch
between the operands of an operator.

Programmer Response: Change the operand type or
use a different operator.

EQA2027E "&1" is neither an immediate base class
nor a nonstatic data member of class
"&2".

Problem Determination: (where &1 is a C++ name)

Explanation: The debugger has detected an element of
the initializer list that is not an element of the member
list. In the constructor initializer list, you can only
initialize immediate base classes and data members not
inherited from a base class.

Programmer Response: Change the constructor
initializer list.

EQA2028E Constructor initializer list is not allowed
for nonconstructor function.

Explanation: An attempt is being made to give a
constructor initializer list to a nonconstructor function.
A constructor initializer list is only allowed for a
constructor function.

Programmer Response: Remove the constructor
initializer list.

EQA2029E Variable "&1" is not allowed in an
argument initializer.

Problem Determination: (where &1 is a C++ name)

Explanation: The debugger has detected a default
argument initialized by a parameter.

Programmer Response: Remove the parameter from
the default argument initialization.

EQA2030E There are too many initializers in the
initializer list.

Explanation: The debugger detected more initializers
than were present in the function declaration.

Programmer Response: Remove one or more
initializers from the initializer list. Make sure the
number of initializers in the initializer list corresponds
to the number of arguments in the function declaration.

EQA2031E An initializer is not allowed for an array
allocated by "new".

Programmer Response: Remove the initializer or
remove the "new" allocation.

EQA2032E The bit-field length must not be more
than &1.

Problem Determination: (where &1 is a number)

Explanation: The bit-field length must not exceed the
maximum bit size of the bit-field type.

Programmer Response: Reduce the bit-field length.

EQA2033E The type of "&1" cannot be "&2".

Problem Determination: (where &1 is a C++ construct
&2 is a C++ type)

Explanation: The debugger detected a conflict in a
type declaration.

Programmer Response: Change the type.

EQA2034E Function overloading conflict between
"&1" and "&2".

Problem Determination: (where &1 is a function type
&2 is a function type)

Explanation: The debugger detected function
argument types that did not match.

Programmer Response: Change the argument
declarations of the functions.

418 Debug Tool User’s Guide and Reference

EQA2035E Declarations of the same &1 must not
specify default initializers for the same
argument.

Problem Determination: (where &1 is the word
"function" or the keyword "template")

Explanation: The debugger has detected a duplicate
default initializer value for the same argument in both
overloaded functions or in both templates.

Programmer Response: Ensure that you wanted to
declare the same function or template. If that is the
case, remove one of the default initializers. Otherwise,
remove one of the declarations or overload the
function.

EQA2036E Call does not match any argument list
for "&1".

Problem Determination: (where &1 is a function
name)

Explanation: No variant of the overloaded function
matches the argument list. The argument mismatch
could be by type or number of arguments.

Programmer Response: Change the argument list on
the call to the overloaded function or change the
argument list on one of the overloaded function
variants so that a match is found.

EQA2037E Call to "&1" matches more than one
function.

Problem Determination: (where &1 is a function
name)

Explanation: More than one variant of the overloaded
function matches equally well with the argument list
specified on the call.

Programmer Response: Change the argument list on
the call to the overloaded function or change the
argument list on one of the overloaded function
variants so that only one match is found.

EQA2038E The "operator" declaration must declare
a function.

Explanation: The keyword "operator" can only be
used to declare an operator function.

Programmer Response: Check the declaration of the
operator and make sure the function declarator ()
appears after it. Use the "operator" keyword to declare
an operator function or remove it.

EQA2039E Operand for "&1" is of type "&2" that is
not of type pointer to member.

Problem Determination: (where &2 is a C++ type)

Explanation: The specified operator must have an

operand that is of type pointer to member.

Programmer Response: Change the operand to type
pointer to member.

EQA2040E "&1" is not allowed as a function return
type.

Problem Determination: (where &1 is a C/C++ type)

Explanation: You cannot declare a function with a
function or an array as its return type.

Programmer Response: Declare the function to return
a pointer to the function or the array element type.

EQA2041E "&1" is not allowed as an array element
type.

Problem Determination: (where &1 is a C/C++ type)

Explanation: The declaration of an array of functions
or references, or an array of type void is not valid.

Programmer Response: Remove the declaration or
change the declaration so that it is an array of pointer
to functions, pointers to references, or pointers to void.

EQA2042E const variable "&1" does not have an
initializer.

Problem Determination: (where &1 is a variable
name)

Explanation: You can only assign a value to a const
variable using an initializer. This variable has no
initializer, so it can never be given a value.

Programmer Response: Initialize the variable or
remove the const keyword.

EQA2043E Nonstatic member "&1" must be
associated with an object or a pointer to
an object.

Problem Determination: (where &1 is a class member
name)

Explanation: The debugger detected a nonstatic
member making a reference to an object that has not
been instantiated. You can reference only static
members without associating them with an instance of
the containing class.

Programmer Response: Check the spelling and the
class definition. Change the name of the class or
function, or define the function as static in that class.

EQA2044E "&1" is not a member of "&2".

Problem Determination: (where &1 is a C++ name &2
is a class name)

Explanation: The class is used explicitly as the scope
qualifier of the member name, but the class does not

Chapter 17. Debug Tool messages 419

contain a member of that name.

Programmer Response: Check the spelling of the
scope qualifier. Change the scope qualifier to the class
containing that member, or remove it.

EQA2045E Wrong number of arguments for "&1".

Problem Determination: (where &1 is a function or
type name)

Explanation: A function or an explicit cast has been
specified with the wrong number of arguments.

Programmer Response: Use the correct number of
arguments. Ensure that overloaded functions have the
correct number and type of arguments.

EQA2046E "&1" must be a class member.

Problem Determination: (where &1 is a C++ name)

Explanation: Conversion functions and certain
operator functions must be class members. They cannot
be defined globally.

Programmer Response: Remove the global definition
or make the function a class member.

EQA2047E An argument type of "&1" is not
allowed for "&2".

Problem Determination: (where &1 is a C/C++ type
&2 is a function name)

Explanation: The function being declared has
restrictions on what types its arguments can have. The
specified type is not allowed for this argument.

Programmer Response: Change the argument type.

EQA2048E "&2" cannot have a return type of "&1".

Problem Determination: (where &1 is a C++ type &2
is an operator function)

Explanation: The specified operator function has the
wrong return type.

Programmer Response: Change the return type.

EQA2049E The array operator must have one
operand of pointer type and one of
integral type.

Explanation: This error can result from the incorrect
use of the array operator.

Programmer Response: Change the operands of the
array operator.

EQA2050E Wrong number of arguments specified
in the function call.

Explanation: The number of arguments in the function
call does not match the number of arguments in the
function declaration.

Programmer Response: Ensure the function
declaration and function call specify the same number
of arguments.

EQA2051E "&1" operator is not allowed for type
"&2".

Problem Determination: (where &1 is a C/C++
operator &2 is a C/C++ type)

Explanation: The specified operator cannot be used
with operands of this type.

Programmer Response: Change either the operator or
the operands.

EQA2052E Syntax error - expected "&1" and found
"&2".

Problem Determination: (where &1 is a C++ token &2
is a C++ token)

Explanation: A syntax error was found while parsing
the expression. The message identifies what the
debugger expected and what it actually found. Often
the source of the error is an unmatched parenthesis or
a missing semicolon.

Programmer Response: Correct the syntax.

EQA2053E "&1" is not allowed for &2.

Problem Determination: (where &1 is a keyword &2
is a C++ construct)

Explanation: The attribute or name cannot be
specified in the given context. The debugger detected
incompatible names that conflict with the language
definition.

Programmer Response: Remove the attribute or name.

EQA2054E "&1" conflicts with previous "&2"
declaration.

Problem Determination: (where &1 is a keyword &2
is a keyword)

Explanation: The declaration conflicts with a previous
declaration of the same symbol.

Programmer Response: Remove one of the
declarations or make them identical.

420 Debug Tool User’s Guide and Reference

EQA2055E The "operator–>" function must return a
class type that contains an "operator–>"
function.

Explanation: The "operator–>" function must return
either a class type, a reference to a class type, or a
pointer to class type, and the class type must itself
have an "operator–>" function.

Programmer Response: Change the return value of
the "operator–>" function.

EQA2056E Unused "&1" definition.

Problem Determination: (where &1 is the keyword
struct or class)

Explanation: An unnamed class or struct definition
was found that has no object associated with it. The
definition can never be referenced. A class can be
unnamed, but it cannot be passed as an argument or
returned as a value. An unnamed class cannot have
any constructors or destructors.

Programmer Response: Create an object for the class
or struct, or remove the definition.

EQA2057E Internal debugger error at line &1 in
module "&2": &3.

Explanation: The debugger detected an error within
itself from which it cannot recover. The error was
found within the debugger itself.

Programmer Response: Note the line and module
references in this message. Contact your IBM
Representative Debug Tool support.

EQA2058E Reference to member "&1" of undefined
class "&2".

Problem Determination: (where &1 is a member name
&2 is a class name)

Explanation: The member has been explicitly given
the specified class as a scope qualifier but the class
(and hence the member) has not been defined.

Programmer Response: Check the spelling of the
scope qualifier. Change the scope qualifier to the class
containing that member, or remove it.

EQA2059E Pointer conversion may be wrong if the
classes are related in a multiple
inheritance hierarchy.

Explanation: The relationship between the classes in a
pointer conversion is not known. If the target class is
later defined as a base class of the source class in a
multiple inheritance, this conversion will be wrong if
the value of the pointer should have been modified by
the conversion.

Programmer Response: Change the ambiguous
reference in the conversion.

EQA2060E The reference variable "&1" is
uninitialized.

Problem Determination: (where &1 is a variable
name)

Explanation: Reference variables must be initialized.

Programmer Response: Initialize the reference
variable or remove it.

EQA2061E "&1" must already be declared.

Problem Determination: (where &1 is a class or enum
name)

Explanation: The specified class or enum name must
have been declared before this use of the name.

Programmer Response: Declare the class or enum
name before you use it. Check the correct spelling of
the name.

EQA2062E Unrecognized source character "&1",
code point &2.

Problem Determination: (where &1 is a character &2
is an integer)

Explanation: The specified character is not a valid
character in a C/C++ expression. The code point
displayed represents its hexadecimal value.

Programmer Response: Remove the character.

EQA2063E A local class cannot have a non-inline
member function "&1".

Problem Determination: (where &1 is a function
name)

Explanation: A class declared within a function must
have all of its member functions defined inline, because
the class will be out of scope before non-inline
functions can be defined.

Programmer Response: Define the functions inline, or
move the class definition out of the scope of the
function.

EQA2064E The size of "&1" is unknown in "&2"
expression.

Problem Determination: (where &1 is a C/C++ type)

Explanation: The operation cannot be performed
because the size of the specified type is not known.

Programmer Response: Ensure the size of the type is
known before this expression.

Chapter 17. Debug Tool messages 421

EQA2065E Assignment in logical expression.

Explanation: The logical expression contains an
assignment (=). An equality comparison (==) might
have been intended.

Programmer Response: Change the operator or the
expression.

EQA2066E Conversion from "&1" to "&2" may
cause truncation.

Problem Determination: (where &1 is a C/C++ type
&2 is a C/C++ type)

Explanation: The specified conversion from a wider to
a narrower type might cause the loss of significant
data.

Programmer Response: Remove the conversion from a
wider to a narrower type.

EQA2067E "goto &1" bypasses initialization of
"&2".

Problem Determination: (where &1 is the C/C++
label used with the goto keyword &2 is the variable
being initialized)

Explanation: Jumping past a declaration with an
explicit or implicit initializer is not valid unless the
declaration is in an inner block or unless the jump is
from a point where the variable has already been
initialized.

Programmer Response: Enclose the initialization in a
block statement.

EQA2068E References to "&1" may be ambiguous.
The name is declared in base classes
"&2" and "&3".

Problem Determination: (where &3 is a C++ class
name)

Explanation: The debugger detected the base classes
of a derived class have members with the same names.
This will cause ambiguity when the member name is
used. This is only an informational message because
the declaration of a member with an ambiguous name
in a derived class is not an error. The ambiguity is only
flagged as an error if you use the ambiguous member
name.

Programmer Response: Change one of the names, or
always fully qualify the name.

EQA2069E Ambiguous reference to "&1", declared
in base classes "&2" and "&3".

Problem Determination: (where &3 is a C++ class
name)

Explanation: The derived class made a reference to a

member that is declared in more than one of its base
classes and the debugger cannot determine which base
class member to choose.

Programmer Response: Change one of the names, or
always fully qualify the name.

EQA2070E Conversion from "&1" to "&2" is
ambiguous.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: There is more than one way to perform
the specified conversion. This ambiguity can be caused
by an overloaded function.

Programmer Response: Change or remove the
conversion.

EQA2071E "&1" is only valid for non-static member
functions.

Problem Determination: (where &1 is the keyword
const or volatile)

Explanation: const and volatile are only significant for
nonstatic member functions, since they are applied to
the "this" pointer.

Programmer Response: Remove const and volatile
from all static members.

EQA2072E Character literal is null.

Explanation: An empty character literal has been
specified. A string literal might have been intended.

Programmer Response: Remove the character literal,
change it to a string literal, or give it a value.

EQA2073E "&1" has more than one base class "&2".

Problem Determination: (where &1 is a class name &2
is a class name)

Explanation: A derived class has inherited the same
base class in more than one path and the debugger
cannot determine which one to choose.

Programmer Response: Remove one of the
inheritances.

EQA2074E "&1" is a &2 base class of "&3".

Problem Determination: (where &1 is a class name &2
is the keyword private or protected &3 is a class name)

Explanation: An attempt is being made to convert a
pointer to a derived class into a pointer to a private or
protected base class.

Programmer Response: Remove the pointer
conversion.

422 Debug Tool User’s Guide and Reference

EQA2075E &1 "&2" is not allowed in a union.

Problem Determination: (where &1 is a C++ construct
&2 is a C++ name)

Explanation: Unions must not be declared with base
classes, virtual functions, static data members, members
with constructors, members with destructors, or
members with class copying assignment operators.

Programmer Response: Remove any such members
from the union declaration.

EQA2076E union "&1" cannot be used as a base
class.

Problem Determination: (where &1 is a union name)

Explanation: Unions cannot be used as base classes
for other class declarations.

Programmer Response: Remove the union as a base
class for other class declarations.

EQA2077E Local variable "&1" is inaccessible from
"&2".

Problem Determination: (where &1 is a variable name
&2 is a class name)

Explanation: An automatic variable within a function
is not accessible from local classes declared within the
function.

Programmer Response: Remove the reference to the
local variable, or move the variable to a different scope.

EQA2078E Value of enumerator "&1" is too large.

Problem Determination: (where &1 is an enumerator
name)

Explanation: The value of an enumerator must be a
constant expression that is promotable to a signed
integer value.

Programmer Response: Reduce the value of the
enumerator.

EQA2079E A constant is being used as a
conditional expression.

Explanation: The condition to an if, for, or switch is
constant and therefore, that condition will always hold.

Programmer Response: Remove the constant or ignore
this message.

EQA2080E The argument to a not (!) operator is
constant.

Explanation: The debugger has detected a constant
after the ! operator that might be a coding error.

Programmer Response: Remove the constant or ignore
this message.

EQA2081E There is more than one character in a
character constant.

Explanation: Using more than one character in a
character constant (for example, ’ab’) might not be
portable across machines.

Explanation: Remove the extra character(s) or change
the character constant to a string constant.

EQA2082E Possible pointer alignment problem
with the "&1" operator.

Problem Determination: (where &1 is a C/C++
operator)

Explanation: A pointer that points to a type with less
strict alignment requirements is being assigned, cast,
returned or passed as a parameter to a pointer that is a
more strictly aligned type. This is a potential portability
problem.

Programmer Response: Remove the pointer reference
or change the alignment.

EQA2083E A constant expression is being cast to a
pointer.

Explanation: Casting a constant value to a pointer is
not portable to other platforms.

Programmer Response: Remove the constant
expression from the cast expression.

EQA2084E Precision will be lost in assignment to
(possibly sign-extended) bit-field "&1".

Explanation: A constant is being assigned to a signed
bit field that cannot represent the constant. Precision
might be lost and the stored value will be incorrect.

Programmer Response: Increase the size of the bit
field.

EQA2085E Precision will be lost in assignment to
bit-field "&1".

Explanation: A constant is being assigned to a bit
field, and because the bit field has a smaller size, the
precision will be lost.

Programmer Response: Change the assignment
expression.

EQA2086E Enumeration type clash with the "&1"
operator.

Problem Determination: (where &1 is a C++ operator)

Explanation: Operands from two different
enumerations are used in an operation.

Chapter 17. Debug Tool messages 423

Programmer Response: Ensure both operands are
from the same enumeration.

EQA2087E Comparison of an unsigned value with
a negative constant.

Explanation: An unsigned value is being compared to
a negative number. The unsigned value will always
compare greater than the negative number. This might
be a programming error.

Programmer Response: Remove the comparison or
change the type.

EQA2088E Unsigned comparison is always true or
always false.

Explanation: The comparison is either "unsigned >=
0", which is always true, or "unsigned < 0", which is
always false.

Programmer Response: Remove or change the
comparison.

EQA2089E Comparison is equivalent to "unsigned
value &1 0".

Explanation: The comparison is either "unsigned > 0"
or "unsigned <= 0", and could be written as "unsigned
!= 0" or "unsigned == 0".

Programmer Response: Change the comparison.

EQA2090E Argument &1 for "&2" must be of type
"&3".

Problem Determination: (where &1 is an argument
number &2 is a function name &3 is a C++ type)

Explanation: The indicated function requires an
argument of a particular type. However, the argument
specified is of a different type than the type required.

Programmer Response: Ensure that the argument is of
the correct type.

EQA2091E Definition of "&1" is not allowed.

Problem Determination: (where &1 is the keyword
class, struct, union or enum.)

Explanation: You cannot define a type in a type cast
or a conversion function declaration.

Programmer Response: Move the definition to a new
location, or remove it.

EQA2092E Reference to "&1" is not allowed.

Problem Determination: (where &1 is a C++ name)

Explanation: The name has a special meaning in a
C++ program and cannot be referenced in this way.

Programmer Response: Remove the reference.

EQA2093E Escape sequence &1 is out of the range
0-&2. Value is truncated.

Problem Determination: (where &2 is the maximum
allowed value of the escape sequence)

Programmer Response: Make the escape sequence
small enough to fit the specified range.

EQA2094E A wide character constant is larger than
the size of a "wchar_t". Only the last
character is used.

Explanation: A wide character constant can only
contain one character.

Programmer Response: Make the wide character
constant smaller.

EQA2095E A character constant is larger than the
size of an "int". Only the rightmost &1
characters are used.

Problem Determination: (where &1 is an integer
number)

Programmer Response: Make the character constant
smaller.

EQA2096E Linkage specification must be at file
scope.

Explanation: A linkage specification can only be
defined at file scope, that is, outside all functions and
classes.

Programmer Response: Move the linkage specification
or remove it.

EQA2097E Default initializers cannot be followed
by uninitialized arguments.

Explanation: If a default initializer is specified in an
argument list, all following arguments must also have
default initializers.

Programmer Response: Remove the default
initializers, or provide them for the following
arguments, or move the arguments to the end of the
list.

EQA2098E You cannot take the address of "&1".

Problem Determination: (where &1 is a C++ name)

Explanation: You cannot take the address of a
constructor, a destructor or a reference member.

Programmer Response: Remove the address operator
(&) from the expression or remove the expression.

424 Debug Tool User’s Guide and Reference

EQA2099E Duplicate qualifier "&1" ignored.

Problem Determination: (where &1 is a keyword)

Explanation: The keyword has been specified more
than once. Extra occurrences are ignored.

Programmer Response: Remove one of the duplicate
qualifiers.

EQA2100E "&1" operator cannot be overloaded.

Problem Determination: (where &1 is an operator
name)

Explanation: The specified operator cannot be
overloaded using an operator function. The following
operators cannot be overloaded: . .* :: ?:

Programmer Response: Remove the overloading
declaration or definition.

EQA2101E At least one argument of "&1" must be
of class or enum type.

Problem Determination: (where &1 is an operator
function name)

Explanation: The nonmember operator function must
have at least one argument which is of class or enum
type.

Programmer Response: Add an argument of class or
enum type.

EQA2102E The divisor for the modulus or division
operator cannot be zero.

Programmer Response: Change the expression used in
the divisor.

EQA2103E The address of the bit-field "&1" cannot
be taken.

Problem Determination: (where &1 is a member
name)

Explanation: An expression attempts to take the
address of a bit-field, or to use the bit-field to initialize
a reference variable or argument.

Programmer Response: Remove the expression
causing the error.

EQA2104E "&1" must not have default initializers.

Problem Determination: (where &1 is an operator
function name or "template function")

Explanation: Default initializers are not allowed
within the declaration of an operator function or a
template function.

Programmer Response: Remove the default
initializers.

EQA2105E The &1 "&2" cannot be initialized
because it does not have a default
constructor.

Problem Determination: (where &1 is ’base class’ or
’class member’ &2 is a C++ name)

Explanation: The specified base class or member
cannot be constructed since it is not initialized in the
constructor initializer list and its class has no default
constructor.

Programmer Response: Specify a default constructor
for the class or initialize it in the constructor initializer
list.

EQA2106E Template class "&1" has the wrong
number of arguments.

Problem Determination: (where &1 is a template class
name)

Explanation: A template class instantiation has a
different number of template arguments than the
template declaration.

Programmer Response: Ensure that the template class
has the same number of declarations as the template
declaration.

EQA2107E Non-&1 member function "&2" cannot
be called for a &1 object.

Problem Determination: (where &2 is a function name
with arguments)

Explanation: The member function is being called for
a const or volatile object but the member function has
not been declared with the const or volatile qualifier.

Programmer Response: Supply a version of the
member function with the correct set of "const" and
"volatile" qualifiers.

EQA2108E Null statement.

Explanation: Possible extraneous semicolon has been
specified.

Programmer Response: Check for extra semicolons in
statement.

EQA2109E Bit-field "&1" cannot be used in a
conditional expression that is to be
modified.

Explanation: The bit-field is part of a conditional
expression that is to be modified. Only objects that can
have their address taken are allowed as part of such an
expression, and you cannot take the address of a bit
field.

Programmer Response: Remove the bit-field from the
conditional expression.

Chapter 17. Debug Tool messages 425

EQA2110E The "&1" qualifier cannot be applied to
"&2".

Problem Determination: (where &2 is a name or a
type)

Explanation: The qualifier is being applied to a name
or a type for which it is not valid.

Programmer Response: Remove the qualifier.

EQA2111E Local type "&1" cannot be used as a &2
argument.

Problem Determination: (where &2 is either the
keyword template or the keyword function)

Explanation: The type cannot be used as a function
argument or in the instantiation of a template because
the scope of the type is limited to the current function.

Programmer Response: Remove the local type.

EQA2112E Default initializers for nontype template
arguments are only allowed for class
templates.

Explanation: Default initializers have been given for
nontype template arguments, but the template is not
declaring a class.

Programmer Response: Remove the default
initializers.

EQA2113E A function argument must not have type
"void".

Explanation: A function argument can be an
expression of any object type. However, "void" is not
the type of any object and cannot be used as an
argument type.

Programmer Response: Change the type of the
function argument.

EQA2114E Insufficient memory in line &1 of file
"&2".

Problem Determination: (where &1 is a line number
&2 is a file name)

Explanation: The debugger ran out of memory.

Programmer Response: Increase your storage and
rerun.

EQA2115E Unable to initialize source conversion
from codepage &1 to codepage &2.

Problem Determination: (where &1 is a codepage
name i.e. IBM-1047 &2 is a codepage name i.e.
IBM-1047)

Explanation: An error occurred when attempting to
convert source between the codepages specified.

Programmer Response: Ensure the codepages are
correct and that conversion between these codepages is
supported.

EQA2116E An object of abstract class "&1" cannot
be created.

Problem Determination: (where &1 is a class name)

Explanation: You cannot create instances of abstract
classes. An abstract class is a class that has or inherits
at least one pure virtual function.

Programmer Response: Derive another object from the
abstract class.

EQA2117E Invalid use of an abstract class.

Explanation: An abstract class must not be used as an
argument type, as a function return type, or as the type
of an explicit conversion.

Programmer Response: Derive another class from the
abstract, instantiate it so it becomes a concrete object,
and then use it instead.

EQA2118E "&1" has been used more than once in
the same base class list.

Problem Determination: (where &1 is base class
name)

Explanation: A base class can only be specified once
in the base class list for a derived class.

Programmer Response: Remove one of the
specifications.

EQA2119E Template argument &1 of type "&2"
does not match declared type "&3".

Problem Determination: (where &1 is an integer
number &2 is a C++ type &3 is a C++ type)

Explanation: A nontype template argument must have
a type that exactly matches the type of the
corresponding argument in the template declaration.

Programmer Response: Ensure that the types match.

EQA2120E Template argument &1 of type "&2" is
not an allowable constant value or
address.

Problem Determination: (where &1 is an integer
number &2 is a C++ type)

Explanation: A nontype template argument must be a
constant value or the address of an object, function, or
static data member that has external linkage. String
literals cannot be used as template arguments because
they have no name, and therefore no linkage.

Programmer Response: Change the template
argument.

426 Debug Tool User’s Guide and Reference

EQA2121E Template argument list is empty.

Explanation: At least one template argument must be
specified in a template declaration.

Programmer Response: Specify a template argument
in the declaration.

EQA2122E Formal template argument &1 is of type
"&2" which is not an allowable integral,
enumeration, or pointer type.

Problem Determination: (where &1 is an integer
number &2 is a C++ type)

Explanation: A nontype template argument must be of
integral, or enumeration, or pointer type, so that it can
be matched with a constant integral value.

Programmer Response: Change the template
argument.

EQA2123E "&1" is defined in a template
declaration but it is not a static member.

Problem Determination: (where &1 is a C++ name)

Explanation: A member of a template class defined in
a template declaration must be a static member.

Programmer Response: Make the member static or
remove it from the template declaration.

EQA2124E Template argument "&1" is not used in
the declaration of the name or the
argument list of "&2".

Problem Determination: (where &1 is a template
argument name &2 is a C++ name)

Explanation: All template arguments for a nonclass
template must be used in the declaration of the name
or the function argument list.

Programmer Response: Ensure all template arguments
are used in the declaration of the name or the function
argument list.

EQA2125E Template declaration does not declare a
class, a function, or a template class
member.

Explanation: Following the template argument, a
template declaration must declare a class, a function, or
a static data member of a template class.

Programmer Response: Change the template
declaration to declare a class, a function, or a template
class member.

EQA2126E Return type "&1" for function "&2"
differs from previous return type of
"&3".

Problem Determination: (where &1 is a C/C++ type
&2 is a function name &3 is a C/C++ type)

Explanation: The declaration of the function differs
from a previous declaration in only the return type.

Programmer Response: Change the return type so
that it matches the previous return type.

EQA2127E "&1" is a member of "&2" and cannot be
used without qualification.

Problem Determination: (where &2 is a possibly
qualified class name)

Explanation: The specified name is a class member,
but no class qualification has been used to reference it.

Programmer Response: Add a class qualification to
the class member.

EQA2128E "&1" cannot be initialized multiple
times.

Explanation: (where &1 is a member or base class
name)

Explanation: An initializer was already specified in
the constructor definition.

Programmer Response: Remove the additional
initializer.

EQA2129E No suitable copy assignment operator
exists to perform the assignment.

Explanation: A copy assignment operator exists but it
does not accept the type of the given parameter.

Programmer Response: Change the copy assignment
operator.

EQA2130E Explicit call to constructor "&1" is not
allowed.

Problem Determination: (where &1 is a constructor
name)

Explanation: You cannot call a constructor explicitly. It
is called implicitly when an object of the class is
created.

Programmer Response: Remove the call to the
constructor.

EQA2131E No default constructor exists for "&1".

Problem Determination: (where &1 is a class name)

Explanation: An array of class objects must be

Chapter 17. Debug Tool messages 427

initialized by calling the default constructor, but one
has not been declared.

Programmer Response: Declare a default constructor
for the array.

EQA2132E More than one default constructor exists
for "&1".

Problem Determination: (where &1 is a class name)

Explanation: An array of class objects must be
initialized by calling the default constructor, but the call
is ambiguous.

Programmer Response: Ensure that only one default
constructor exists.

EQA2133E The debugger cannot generate a default
copy constructor for "&1".

Explanation: The default copy constructor cannot be
generated for this class because there exists a member
or base class that has a private copy constructor, or
there are ambiguous base classes, or this class has no
name.

Programmer Response: Ensure that a member or base
class does not have a private copy constructor. If not
then ensure the class is named and there are no
ambiguous references to base classes.

EQA2134E The debugger cannot generate a default
copy assignment operator for "&1".

Explanation: The default copy assignment operator
cannot be generated for this class because it has a const
member or a reference member or a member (or base
class) with a private copy assignment operator.

Programmer Response: Ensure there are no const
members, reference members or members with a
private copy assignment operator.

EQA2135E Pure virtual function called.

Explanation: A call has been made to a pure virtual
function from a constructor or destructor. In such
functions, the pure virtual function would not have
been overridden by a derived class and a run-time
error would occur.

Programmer Response: Remove the call to the pure
virtual function.

EQA2136E "&1" is not allowed as a conversion
function type.

Problem Determination: (where &1 is a C/C++ type)

Explanation: A conversion function cannot be declared
with a function or an array as its conversion type, since
the type cannot be returned from the function.

Programmer Response: Declare the function as
converting to a pointer to the function or the array
element type.

EQA2137E Syntax error - "&1" is followed by "&3"
but is not the name of a &2.

Problem Determination: (where &1 is a C++ name &2
is the keyword class or template &3 is the token '::' or
'<')

Explanation: The name is not a class or template
name but the context implies that it should be.

Programmer Response: Change the name to a class or
template name.

EQA2138E The previous &1 messages apply to the
definition of template "&2".

Problem Determination: (where &1 is an integer
number &2 is a template name)

Explanation: The instantiation of the specified
template caused the messages, even though the line
numbers in the messages refer to the original template
declaration.

Programmer Response: This message supplies
additional information for previously emitted messages.
Refer to the descriptions of those messages for recovery
information.

EQA2139E The previous message applies to the
definition of template "&1".

Problem Determination: (where&1 is a template
name)

Explanation: The instantiation of the specified
template caused the message, even though the line
number in the message refers to the original template
declaration.

Programmer Response: This message supplies
additional information for previously emitted messages.
Refer to the descriptions of those messages for recovery
information.

EQA2140E No suitable constructor exists for
conversion from "&1" to "&2".

Problem Determination: (where &1 is a class name &2
is a C++ type)

Explanation: A constructor is required for the class
but no user-defined constructor exists and the debugger
could not generate one.

Programmer Response: Create a suitable constructor
for conversion.

428 Debug Tool User’s Guide and Reference

EQA2141E class "&1" does not have a copy
assignment operator.

Problem Determination: (where &1 is a class name)

Explanation: A copy assignment operator is required
for the class but no user-defined copy assignment
operator exists and the debugger could not generate
one.

Programmer Response: Create a copy assignment
operator.

EQA2142E "&1" cannot be used as a template name
since it is already known in this scope.

Explanation: (where &1 is a C++ name) A template
name must not match the name of an existing template,
class, function, object, value or type.

Programmer Response: Change one of the template
names.

EQA2143E "&1" is expected for template argument
&2.

Problem Determination: (where &1 is either
’expression’ or ’type name’ &2 is an integer number)

Explanation: Either the argument is a type and the
template has a nontype argument, or the argument is
an expression and the template has a type argument.

Programmer Response: Ensure the argument matches
the template.

EQA2144E "&1" cannot be defined before the
template definition of which it is an
instance.

Problem Determination: (where &1 is a class template
name)

Explanation: An explicit definition of a template class
cannot be given before the corresponding template
definition.

Programmer Response: Move the template definition
so that it occurs before any template class definitions.

EQA2145E An ellipsis (...) cannot be used in the
argument list of a template function.

Explanation: Since an exact match is needed for
template functions, an ellipsis cannot be used in the
function argument list.

Programmer Response: Remove the ellipsis from the
argument list.

EQA2146E The suffix for the floating point
constant is not valid.

Explanation: You have provided an incorrect suffix for
the floating point constant. Valid suffixes for floating
point constants are L and F.

Programmer Response: Change the suffix for the
floating point constant.

EQA2147E Statement has no effect.

Explanation: The expression has no side effects and
produces a result that is not used.

Programmer Response: Remove the statement or use
its result.

EQA2148E The suffix for the integer constant is not
valid.

Explanation: The integer constant is a suffix letter that
is not recognized as a valid suffix.

Programmer Response: Change the suffix to either "u"
or "l".

EQA2149E The expression contains a division by
zero.

Programmer Response: Remove the division by zero
from the expression

EQA2150E The expression contains a modulus by
zero.

Programmer Response: Remove the modulus by zero
from the expression.

EQA2151E Static member "&1" can only be defined
at file scope.

Programmer Response: Move the static member so
that it is defined at file scope.

EQA2152E "&1" needs a constructor because &2
"&3" needs a constructor initializer.

Problem Determination: (where &1 is a class name &2
is ’class member’ or ’base class’ &3 is the member or
base class name.)

Explanation: You have not provided a constructor for
the class, because the member or base class does not
have a default constructor.

Programmer Response: Add a constructor.

Chapter 17. Debug Tool messages 429

EQA2153E Conversion from "&1" to a reference to a
non-const type "&2" requires a
temporary.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A temporary can only be used for
conversion to a reference type when the reference is to
a const type.

Programmer Response: Change to a const type.

EQA2154E "&2" is too small to hold a value of type
"&1".

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A conversion from a pointer type to an
integral type is only valid if the integral type is large
enough to hold the pointer value.

Programmer Response: Remove the conversion from a
pointer type to an integral type or use a larger integral
type.

EQA2155E Object of type "&1" cannot be
constructed from "&2" expression.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: There is no constructor taking a single
argument that can be called using the given expression.

Programmer Response: Change the expression.

EQA2156E The debugger cannot generate a copy
constructor for conversion to "&1".

Problem Determination: (where &1 is a C++ type)

Explanation: A copy constructor is required for the
conversion. No suitable user-defined copy constructor
exists and the debugger could not generate one.

Programmer Response: Create a copy constructor for
the conversion.

EQA2157E No suitable constructor or conversion
function exists for conversion from "&1"
to "&2".

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A constructor or conversion function is
required for the conversion but no such constructor or
function exists.

Programmer Response: Create a constructor or
conversion function for the conversion.

EQA2158E Syntax error - "&1" has been inserted
before "&2".

Problem Determination: (where &1 is a token &2 is a
token)

Explanation: A syntax error was found while parsing
the expression. The message identifies what the
debugger expected and what it actually found.

Programmer Response: Correct the syntax.

EQA2159E Call to "&1" matches some functions
best in some arguments, but no function
is a best match for all arguments.

Problem Determination: (where &1 is a function
name)

Explanation: No function matches each call argument
as well as or better than all other functions.

Programmer Response: Change the function call so
that it matches only one function.

EQA2160E Call matches "&1".

Problem Determination: (where &1 is a function name
and type)

Explanation: The debugger detected an overloaded
function or operator that is similar to another and is
providing additional information.

Programmer Response: Ensure this is the desired
match.

EQA2161E Cannot adjust access of "&1::&2"
because a member in "&3" hides it.

Problem Determination: (where &1 is a class name &2
is a member name &3 is the name of the derived class.)

Explanation: You cannot modify the access of the
specified member because a member of the same name
in the specified class hides it.

Programmer Response: Remove the access adjustment
expression or unhide the member.

EQA2162E "&1" cannot be redeclared.

Problem Determination: (where &1 is a C++ name)

Explanation: The specified name cannot be redeclared
because it has already been used.

Programmer Response: Change or remove one of the
declarations.

430 Debug Tool User’s Guide and Reference

EQA2163E Syntax error - "&1" is not allowed; "&2"
has already been specified.

Problem Determination: (where &1 is a keyword &2
is a keyword)

Explanation: You cannot use both of the specified
attributes in the same declaration.

Programmer Response: Remove the attributes.

EQA2164E Call to "&1" matches more than one
template function.

Problem Determination: (where &1 is a function name
and type)

Explanation: More than one template for the function
matches equally well with the argument list specified
on the call.

Programmer Response: Change the call so that it
matches only one template function.

EQA2165E "&1" is declared inline, but is
undefined.

Problem Determination: (where &1 is a function name
and type)

Explanation: An inline function must be defined in
every compilation unit in which it is used.

Programmer Response: Define the inline function in
this compilation unit.

EQA2166E Non-&1 member function called for a
&1 object via pointer of type "&2".

Problem Determination: (where &2 is a pointer or
member-pointer type)

Explanation: The member function is being called
indirectly for a const or volatile object but it has not
been declared with the corresponding const or volatile
attribute.

Programmer Response: Ensure that the function call
and the function declaration match.

EQA2167E "&1" cannot be a base of "&2" because
"&3" contains the type name "&2".

Problem Determination: (where &1 is a class name &2
is both the derived class name and a type name &3 is
the class containing &2)

Explanation: A class cannot inherit a type name that is
the same as the class name.

Programmer Response: Change the name of either the
derived class or the inherited class.

EQA2168E "&1" cannot be a base of "&2" because
"&3" contains the enumerator "&2".

Problem Determination: (where &1 is a class name &2
is both the derived class name and the enumerator
name &3 is the class containing &2)

Explanation: A class cannot inherit an enumerator
with the same name as the class name.

Programmer Response: Change the name of either the
derived class or the inherited enumerator.

EQA2169E Symbol length of &1 exceeds limit of
&2 bytes.

Problem Determination: (where &1 is an integer
number &2 is an integer number)

Explanation: The debugger limit for the length of a
symbol has been exceeded.

Programmer Response: Shorten the symbol length.

EQA2170E The result of this pointer to member
operator can be used only as the
operand of the function call operator ().

Explanation: If the result of the .* or –>* is a function,
that result can be used only as the operand for the
function call operator ().

Programmer Response: Make the result the operand
of the function call operator ().

EQA2171E When "&1" is used as an operand to the
arrow or dot operator, the result must be
used with the function call operator ().

Problem Determination: (where &1 is a member
name)

Explanation: If the result of the dot or arrow operator
is a function, that result can be used only as the
operand for the function call operator ().

Programmer Response: Make the result the operand
of the function call operator ().

EQA2172E A class with a reference or const
member needs a constructor.

Explanation: const and reference members must be
initialized in a constructor initializer list.

Programmer Response: Add a constructor to the class.

EQA2173E Base class initializers cannot contain
virtual function calls.

Explanation: The virtual function table pointers are
not set up until after the base classes are initialized.

Programmer Response: Remove the call to a virtual
function in the base class initializer.

Chapter 17. Debug Tool messages 431

EQA2174E The previous declaration of "&1" did
not have a linkage specification.

Explanation: If you want to declare a linkage
specification for a function, it must appear in the first
declaration of the function.

Programmer Response: Add a linkage specification to
the first declaration of the function.

EQA2175E The destructor for "&1" does not exist.
The call is ignored.

Problem Determination: (where &1 is a C++ type)
The destructor call is for a type that does not have a
destructor. The call is ignored.

Programmer Response: Add a destructor to the type.

EQA2176E "&1" has been added to the scope of
"&2".

Problem Determination: (where &1 is the name on a
friend declaration &2 is a class name)

Explanation: Because the friend class has not been
declared yet, its name has been added to the scope of
the class containing the friend declaration.

Programmer Response: If this is not intended, move
the declaration of the friend class so that it appears
before it is declared as a friend.

EQA2177E The body of friend member function
"&1" cannot be defined in the member
list of "&2".

Problem Determination: (where &1 is the friend
member function &2 is a class name)

Explanation: A friend function that is a member of
another class cannot be defined inline in the member
list.

Programmer Response: Define the body of the friend
function at file scope.

EQA2178E The initializer list must be complete
because "&1" does not have a default
constructor.

Problem Determination: (where &1 is a class without
a default constructor.)

Explanation: An array of objects of a class with
constructors uses the constructors in initialization. If
there are fewer initializers in the list than elements in
the array, the default constructor is used. If there is no
default constructor the initializer list must be complete.

Programmer Response: Complete the initializer list or
add a default constructor to the class.

EQA2179E A pure virtual destructor needs an
out-of-line definition in order for its
class to be a base of another class.

Programmer Response: Move the definition of the
pure virtual destructor so that it is not inline.

EQA2180E The braces in the initializer are
incorrect.

Programmer Response: Correct the braces on the
initializer.

EQA2181E Invalid octal integer constant.

Explanation: The octal integer constant contains an ’8’
or a ’9’. Octal numbers include 0 through 7.

Programmer Response: Ensure that the octal integer
constant is valid.

EQA2182E All the arguments must be specified for
"&1" because its default arguments have
not been checked yet.

Problem Determination: (where &1 is a function name
and type)

Explanation: For member functions, names in default
argument expressions are bound at the end of the class
declaration. Calling a member function as part of a
second member function’s default argument is an error
if the first member function’s default arguments have
not been checked and the call does not specify all of
the arguments.

Programmer Response: Specify all the arguments for
the function.

EQA2183E Ellipsis (...) cannot be used for "&1".

Problem Determination: (where &1 is an operator
name)

Explanation: An operator function has been specified
with an ellipsis (...), but since the number of operands
of an operator are fixed, an ellipsis is not allowed.

Programmer Response: Remove the ellipsis, and
specify the correct number of operands.

EQA2184E Syntax error - expected "&1" or "&2" and
found "&3".

Problem Determination: (where &1 is a token &2 is a
token &3 is a token)

Explanation: A syntax error was found while parsing
the program. The message identifies what the debugger
expected and what it actually found.

Programmer Response: Correct the syntax error.

432 Debug Tool User’s Guide and Reference

EQA2185E A character constant must end before
the end of the line.

Explanation: The debugger detected a character
constant that was not terminated before an end-of-line
character was found.

Programmer Response: End the character constant or
use "\" to continue it on the next line. The "\" must be
the last character on the line.

EQA2186E A pure virtual function initializer must
be 0.

Explanation: To declare a pure virtual function use an
initializer of 0.

Programmer Response: Set the virtual function
initializer to 0.

EQA2187E "&1" is given "&2" access.

Problem Determination: (where &1 is a member name
&1 is the keyword public, protected or private)

Explanation: Access of the class has changed.

Programmer Response: Ensure this change is as
intended.

EQA2188E "&1" has been qualified with the "this"
pointer.

Problem Determination: (where &1 is a member
name)

Programmer Response: Ensure this qualification is
intended.

EQA2189E Invalid escape sequence; the backslash
is ignored.

Explanation: You have provided invalid character(s)
after the backslash that does not represent an escape
sequence. Therefore, the backslash is ignored and the
rest of the escape sequence is read as is.

Programmer Response: Ensure the escape sequence is
valid.

EQA2190E The result of an address expression is
being deleted.

Programmer Response: Ensure this action is intended.

EQA2191E Conversion from "&1" to "&2" matches
more than one conversion function.

Explanation: More than one conversion function could
be used to perform the specified conversion.

Programmer Response: Create a new conversion
function for this conversion or change one of the types.

EQA2192E Conversion matches "&1".

Problem Determination: (where &1 is a function name
and type)

Programmer Response: Ensure this is the intended
match.

EQA2193E "&1" cannot be initialized with an
initializer list.

Problem Determination: (where &1 is a class name)

Explanation: Only an object of a class with no
constructors, no private or protected members, no
virtual functions and no base classes can be initialized
with an initializer list.

Programmer Response: Remove the class from the
initializer list.

EQA2194E A pointer to a virtual base "&1" cannot
be converted to a pointer to a derived
class "&2".

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A pointer to a class B can be explicitly
converted to a pointer to a class D that has B as a
direct or indirect base class, only if an unambiguous
conversion from D to B exists, and B is not a virtual
base class.

Programmer Response: Remove the conversion of the
pointer.

EQA2195E The arguments passed using the ellipsis
may not be accessible.

Explanation: Arguments passed using an ellipsis are
only accessible if there is an argument preceding the
ellipsis and the preceding argument is not passed by
reference.

Programmer Response: Ensure that there is an
argument preceding the ellipsis and that the preceding
argument is not passed by reference.

EQA2196E Assignment to a constant expression is
not allowed.

Explanation: The left hand side of the assignment
operator is an expression referring to a "const" location.
For example, in "a.b", either "b" is a "const" member or
"a" is a "const" variable.

Programmer Response: Remove the assignment.

Chapter 17. Debug Tool messages 433

EQA2197E Assignment to const variable "&1" is not
allowed.

Problem Determination: (where &1 is the variable
name)

Explanation: The left hand side of the assignment
operator is a variable with the "const" attribute. "const"
variables can be initialized once at the point where they
are declared, but cannot be subsequently assigned new
values.

Programmer Response: Remove the assignment to the
const variable.

EQA2198E The return type for the "operator–>"
cannot be the containing class.

Explanation: The return type for the "operator–>"
must be a pointer to a class type, a class type, or a
reference to a class type. If it is a class or reference, the
class must be previously defined and must contain an
"operator–>" function.

Programmer Response: Change the return type for the
"operator–>".

EQA2199E The previous message applies to
function argument &1.

Problem Determination: (where &1 is an integer
corresponding to the function argument number)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

EQA2200E Conversion from "&1" to a reference to a
non-const type "&2" requires a
temporary.

Problem Determination: (where &1 is a C++ type &2
is a C++ type)

Explanation: A temporary can only be used for
conversion to a reference type when the reference is to
a const type. This is a warning rather than an error
message because the "compat" language level is active.

Programmer Response: Change the reference so that it
is to a const type.

EQA2201E The pointer to member function must
be bound to an object when it is used
with the function call operator ().

Explanation: The pointer to member function must be
associated with an object or a pointer to an object when
it is used with the function call operator ().

Programmer Response: Remove the pointer or
associate it with an object.

EQA2202E The direct base "&1" of class "&2" is
ignored because "&1" is also an indirect
base of "&2".

Problem Determination: (where &1 is a base class
name)

Explanation: A reference to a member of "&1" will be
ambiguous because it is inherited from two different
paths.

Programmer Response: Remove the indirect
inheritance.

EQA2203E The "&1" operator cannot be applied to
undefined class "&2".

Problem Determination: (where &1 is a class type)

Explanation: A class is undefined until the definition
of its tag has been completed. A class tag is undefined
when the list describing the name and type of its
members has not been specified. The definition of the
tag must be given before the operator is applied to the
class.

Programmer Response: Complete the definition of the
class before applying an operator to it.

EQA2204E "&1" hides the &2 "&3".

Problem Determination: (where&1 is the name of the
derived class’s member &2 is "pure virtual" or "virtual"
&3 is the name of the hidden virtual function)

Explanation: A member in the derived class hides a
virtual function member in a base class.

Programmer Response: Ensure the hiding of the
virtual function member is intended.

EQA2205E "&1" is not the name of a function.

Problem Determination: (where &1 is a C++ name)

Explanation: A function name is required in this
context. The specified name has been declared but it is
not the name of a function.

Programmer Response: Check the spelling. If
necessary, change to a function name.

EQA2206E The virtual functions "&1" and "&2" are
ambiguous since they override the same
function in virtual base class "&3".

Problem Determination: (where &1 is a function name
and type &2 is a function name and type)

Explanation: The two functions are ambiguous and
the virtual function call mechanism will not be able to
choose the correct one at run time.

Programmer Response: Remove one of the virtual
functions.

434 Debug Tool User’s Guide and Reference

EQA2207E The "this" address for "&1" is
ambiguous because there are multiple
instances of "&2".

Problem Determination: (where &1 is a function name
and type &2 is a class name)

Explanation: Two or more "this" addresses are
possible for this virtual function. The virtual function
call mechanism will not be able to determine the
correct address at run time.

Programmer Response: Remove the "this" expression
or change the function name.

EQA2208E Conversion from "&1" matches more
than one conversion function.

Problem Determination: (where &1 is a function name
and type)

Explanation: More than one conversion function could
be applied to perform the conversion from the specified
type.

Programmer Response: Create a new conversion
function or remove the conversion

EQA2209E "&1" cannot be a base of "&2" because
"&3" contains a member function called
"&2".

Problem Determination: (where &1 is a class name &2
is both the derived class name and the member
function &3 is the class containing &2)

Explanation: A class cannot inherit a function that has
the same as the class.

Programmer Response: Change the name of either the
base class or the inherited function.

EQA2210E Forward declaration of the enumeration
"&1" is not allowed.

Explanation: The declaration of an enumeration must
contain its member list.

Programmer Response: Fully declare the enumeration.

EQA2211E The previous message applies to
argument &1 of function "&2".

Problem Determination: (where &1 is the argument
number &2 is the function name and type)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

EQA2212E The nested class object "&1" needs a
constructor so that its &2 members can
be initialized.

Problem Determination: (where &1 is the nested class
name &2 is the word const or reference)

Programmer Response: Create a constructor for the
nested class object.

EQA2213E The integer constant is out of range.

Explanation: You have provided an integer constant
that is out of range. For the range of integer constants
check limits.h.

Programmer Response: Ensure the integer constant is
in range.

EQA2214E The floating point constant is out of
range.

Explanation: You have provided a floating point
constant that is out of range. For the range of floating
point constants check float.h.

Programmer Response: Ensure the floating point
constant is in range.

EQA2215E The &1 member "&2" must be
initialized in the constructor’s initializer
list.

Problem Determination: (where &1 is the word const
or reference &2 is the member name)

Explanation: Using the constructor’s member
initializer list is the only way to initialize nonstatic
const and reference members.

Programmer Response: Initialize the member in the
constructor’s initializer list.

EQA2216E Constructors and conversion functions
are not considered when resolving an
explicit cast to a reference type.

Explanation: You cannot resolve an explicit cast to a
reference type using constructors or conversion
functions.

Programmer Response: Cast the type to a temporary
type and then take the reference to it.

EQA2217E A character string literal cannot be
concatenated with a wide string literal.

Explanation: A string that has a prefix L cannot be
concatenated with a string that is not prefixed.

Programmer Response: Ensure both strings have the
same prefix, or no prefix at all.

Chapter 17. Debug Tool messages 435

EQA2218E All members of type "&1" must be
explicitly initialized with all default
arguments specified.

Problem Determination: (where &1 is a class name &2
is the member name)

Explanation: Default arguments for member functions
are not checked until the end of the class definition.
Default arguments for member functions of nested
classes are not semantically checked until the
containing class is defined. A call to a member function
must specify all of the arguments before the default
arguments have been checked.

Programmer Response: Specify all default arguments
with all members of the type.

EQA2219E The address of an overloaded function
can be taken only in an initialization or
an assignment.

Programmer Response: Ensure the address of an
overloaded function is used on an initialization or an
assignment, or remove the expression.

EQA2220E Syntax error - found "&1 &2" : "&1" is
not a type name.

Problem Determination: (where &1 is a token &2 is a
token)

Explanation: The debugger detected a nontype symbol
where a type is required. A type must be used to
declare an object.

Programmer Response: Change to a type name or
remove the expression.

EQA2221E A temporary of type "&1" is needed:
"&2" is an abstract class.

Explanation: The debugger has determined that it
must use a temporary to store the result of the
expression, but the result is an abstract base type. An
abstract base type cannot be used to create an object.

Programmer Response: Change the type of the result.

EQA2222E "&1" hides pure virtual function "&2" in
the nonvirtual base "&3".

Problem Determination: (where &1 is the derived
member’s name &2 is the name of the pure virtual
function &3 is the name of the class that contains the
pure virtual)

Explanation: The pure virtual function in a nonvirtual
base cannot be overridden once it has been hidden.

Programmer Response: Make the pure virtual
function visible, or make the base it is derived from
virtual.

EQA2223E The class qualifier "&1" for "&2" must
be a template class that uses the
template arguments.

Problem Determination: (where &1 is a (possibly
qualified) class name. &2 is a C++ name.)

Explanation: A nonclass template can only declare a
global function or a member of a template class. If it
declares a member of a template class, the template
class arguments must include at least one of the
nonclass template arguments.

Programmer Response: Change the template
declaration so that it either declares a global function or
a member of a template class that uses the nonclass
template arguments.

EQA2224E The class "&1" cannot be passed by
value because it does not have a copy
constructor.

Problem Determination: (where &1 is a class name)

Explanation: The debugger needs to generate a
temporary to hold the return value of the function. To
generate the temporary object, a copy constructor is
needed to copy the contents of the object being
returned into the temporary object.

Programmer Response: Create a copy constructor for
the class or change the argument to pass by value.

EQA2225E "&1" cannot have an initializer list.

Problem Determination: (where &1 is a function
name)

Explanation: A member function that is not a
constructor is defined with an initializer list.

Programmer Response: Remove the initializer list.

EQA2226E Return value of type "&1" is expected.

Problem Determination: (where &1 is a C/C++ type)

Explanation: No return value is returned from the
current function but the function is expecting a
nonvoid return value.

Programmer Response: Ensure a value is returned, or
change the return type of the function to void.

EQA2227E "&1" bypasses initialization of "&2".

Problem Determination: (where &1 is one of the
keywords default, case &2 is the variable being
initialized)

Explanation: It is invalid to jump past a declaration
with an explicit or implicit initializer unless the
declaration is in an inner block that is also jumped
past.

436 Debug Tool User’s Guide and Reference

Programmer Response: Enclose the initialization in a
block statement.

EQA2228E "&1" is being redeclared as a member
function. It was originally declared as a
data member.

Problem Determination: (where &1 is a variable
name)

Explanation: The template redeclares a data member
of a class template as a member function.

Programmer Response: Change the original
declaration of the variable to a member function, or
change the redeclaration of the variable to a data
member.

EQA2229E "&1" is being redeclared as a
nonfunction member or has syntax
errors in its argument list.

Problem Determination: (where &1 is a variable
name)

Explanation: The template redeclares a member
function of a class template as a data member. There
might be syntax errors in the declaration.

Programmer Response: Change one of the
declarations, if necessary.

EQA2230E A string literal cannot be longer than &1
characters.

Problem Determination: (where &1 is a number. This
number is system dependent.)

Explanation: The debugger limit for the length of a
string literal has been exceeded. The string literal is too
long for the debugger to handle.

Programmer Response: Specify a shorter string literal.

EQA2231E A wide string literal cannot be longer
than &1 characters.

Problem Determination: (where &1 is a number. This
number is system dependent.)

Explanation: The debugger limit for the length of a
wide string literal has been exceeded. The wide string
literal is too long for the debugger to handle.

Programmer Response: Specify a shorter string literal.

EQA2232E Invalid "multibyte character sequence
character" (MBCS) character.

Explanation: The debugger has detected a multibyte
character sequence that it does not recognize.

Programmer Response: Replace the "multibyte
character sequence character" (MBCS) character.

EQA2233E "&1" is an undefined pure virtual
function.

Explanation: The user tried to call a member function
that was declared to be a pure virtual function.

Programmer Response: Remove or define the function
as pure virtual.

EQA2234E Template "&1" cannot be instantiated
because the actual argument for formal
argument "&2" has more than one
variant.

Problem Determination: (where &1 is the name of a
function template. &2 is the name of a formal template
argument.)

Explanation: The argument is a function template or
an overloaded function with two or more variants. The
debugger cannot decide which variant to choose to
bind to the argument type.

Programmer Response: Change the formal template
argument or remove the extra variants.

EQA2235E Pointer to a built-in function not
allowed.

Explanation: Because you cannot take the address of a
built-in function, you cannot declare a pointer to a
built-in function.

Programmer Response: Remove the pointer.

EQA2236E Built-in function "&1" not recognized.

Problem Determination: (where &1 is the name of a
function.)

Explanation: The function declared as a built-in is not
recognized by the debugger as being a built-in
function.

Programmer Response: Ensure the function is a
built-in function or remove the built-in keyword from
the declaration.

EQA2237E "&1" is not supported.

Problem Determination: (where &1 is a C++ operator)

Programmer Response: Remove the operator from the
expression.

EQA2238E Function calls are not supported.

Explanation: You can only generate this message in
the debugger, when you use an expression that
includes a function call.

Programmer Response: Remove function calls from
the expression.

Chapter 17. Debug Tool messages 437

EQA2239E The expression is too complicated.

Programmer Response: Simplify the expression.

EQA2240E Evaluation of the expression requires a
temporary.

Programmer Response: Change the expression so that
a temporary object is not required.

EQA2241E "&1" is an overloaded function.

Problem Determination: (where &1 is the name of a
function.)

Explanation: The identifier refers to an overloaded
function with two or more variants. The debugger
requires a prototype argument list to decide which
variant to process.

Programmer Response: Specify a prototype argument
list or remove variants of the overloaded function.

EQA2242E The bit-field length must not be
negative.

Explanation: The bit-field length must be a
nonnegative integer value.

Programmer Response: Change the bit-field length to
a nonnegative integer value.

EQA2243E A zero-length bit-field must not have a
name.

Explanation: A named bit-field must have a positive
length; a zero-length bit-field is used for alignment
only, and must not be named.

Programmer Response: Remove the name from the
zero-length bit-field.

EQA2244E The bit-field is too small; &1 bits are
needed for "&2".

Problem Determination: (where &2 is a C++ name)

Explanation: The bit-field length is smaller than the
number of bits needed to hold all values of the enum.

Programmer Response: Increase the bit-field length.

EQA2245E The bit-field is larger than necessary;
only &1 bits are needed for "&2".

Problem Determination: (where &2 is a C++ name)

Explanation: The bit-field length is larger than the
number of bits needed to hold all values of the enum.

Programmer Response: Decrease the bit-field length.

EQA2246E A template friend declaration can only
declare, not define, a class or function.

Explanation: The class or function declared in the
template friend declaration must be defined at file
scope.

Programmer Response: Remove the definition from
the template friend declaration.

EQA2247E The function "&1" must not be declared
"&2" at block scope.

Problem Determination: (where &2 is a C++
keyword.)

Explanation: There can be no static or inline function
declarations at block scope.

Programmer Response: Move the function so that it is
not defined at block scope.

EQA2248E The previous &1 messages apply to
function argument &2.

Problem Determination: (where &1 is an integer
corresponding to the function argument number)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

EQA2249E The previous &1 messages apply to
argument &2 of function "&3".

Problem Determination: (where &1 is the number of
messages &2 is the argument number &3 is the
function name and type)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

EQA2250E "&1" is not a static member of "&2".

Problem Determination: (where &2 is a class name.)

Explanation: Nonstatic data members cannot be
defined outside the class definition.

Programmer Response: Make the member a static
member or move it into the class definition.

EQA2251E The initializer must be enclosed in
braces.

Explanation: Array element initializers must be
enclosed in braces.

438 Debug Tool User’s Guide and Reference

Programmer Response: Put braces around the
initializer.

EQA2252E union "&1" has multiple initializers
associated with its constructor "&2".

Explanation: A union can only contain one member
object at any time, and therefore can be initialized to
only one value.

Programmer Response: Remove all but one of the
initializers.

EQA2253E You cannot override virtual function
"&1" because "&3" is an ambiguous base
class of "&2".

Problem Determination: (where &3 is the class name
of an ambiguous base of &2)

Explanation: The debugger must generate code to
convert the actual return type into the type that the
overridden function returns (so that calls to the original
overridden function is supported). However, the
conversion is ambiguous.

Programmer Response: Clarify the base class.

EQA2254E "&1" is not initialized until after the
base class is initialized.

Problem Determination: (where &1 is the class
member referenced in the base class initializer.)

Explanation: First, the base classes are initialized in
declaration order, then the members are initialized in
declaration order, then the body of the constructor is
executed.

Programmer Response: Do not reference the class
member in the base class initializer.

EQA2255E The expression to the left of the "&1"
operator is a relational expression
("&2"). The "&3" operator might have
been intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: The debugger has detected the mixing of
relational and bitwise operators in what was
determined to be a conditional expression.

Programmer Response: Ensure the correct operator is
being used.

EQA2256E The expression to the left of the "&1"
operator is a logical expression ("&2").
The "&3" operator may have been
intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: The debugger has detected the mixing of
relational and bitwise operators in what was
determined to be a conditional expression.

Programmer Response: Ensure the correct operator is
being used.

EQA2257E The expression to the left of the "&1"
operator is an equality expression
("&2"). The "&3" operator may have
been intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: The debugger has detected the mixing of
relational and bitwise operators in what was
determined to be a conditional expression.

Programmer Response: Ensure the correct operator is
being used.

EQA2258E The expression to the right of the "&1"
operator is a relational expression
("&2"). The "&3" operator may have
been intended.

Problem Determination: (where &1 is the bitwise
operator | or &. &2 is one of the relational operators.
&3 is either the operator || or the operator &&.)

Explanation: This message is generated by the /Wcnd
option. This option warns of possible redundancies or
problems in conditional expressions involving relational
expressions and bitwise operators.

Programmer Response: Ensure the correct operator is
being used.

EQA2259E Assignment to the "this" pointer is not
allowed.

Explanation: The "this" pointer is a const pointer and
cannot be modified.

Programmer Response: Remove the assignment to the
"this" pointer.

EQA2260E "&1" must not have any arguments.

Problem Determination: (where &1 is a special
member function.)

Programmer Response: Remove all arguments from

Chapter 17. Debug Tool messages 439

the special member function.

EQA2261E The second operand to the "offsetof"
operator is not valid.

Explanation: The second operand to the "offsetof"
operator must consist only of "." operators and "[]"
operators with constant bounds.

Programmer Response: Remove or change the second
operand.

EQA2262E "&1" is a member of "&2" and cannot be
used without qualification.

Problem Determination: (where &2 is a possibly
qualified class name)

Explanation: The specified name is a class member,
but no class qualification has been used to reference it.

Programmer Response: Use the scope operator (::) to
qualify the name.

EQA2263E sdq.&1" is undefined. Every variable of
type "&2" will assume "&1" has no
virtual bases and no multiple
inheritance.

Problem Determination: (where &2 is a pointer to
member type)

Explanation: The definition of the class is not given
but the debugger must implement the pointer to
member. It will do so by assuming the class has at
most one nonvirtual base class.

Programmer Response: If this assumption is incorrect,
define the class before declaring the member pointer.

EQA2264E "&1" is undefined. The delete operator
will not call a destructor.

Problem Determination: (where &1 is a name of a
class, struct, or union)

Explanation: The definition of the class is not given so
the debugger does not know whether the class has a
destructor. No destructors will be called.

Programmer Response: Define the class.

EQA2265E Label "&1" is undefined.

Problem Determination: (where &1 is a C++ name)

Explanation: The specified label is used but is not
defined.

Programmer Response: Define the label before using
it.

EQA2266E The initializer for enumerator "&1" must
be an integral constant expression.

Problem Determination: (where &1 is an enumerator
name)

Explanation: The value of an enumerator must be a
constant expression that is promotable to a signed int
value. A constant expression has a value that can be
determined during compilation and does not change
during program execution.

Programmer Response: Change the initializer to an
integral constant expression.

EQA2267E Overriding virtual function "&1" may
not return "&2" because class "&3" has
multiple base classes or a virtual base
class.

Problem Determination: (where &1 is the name of a
virtual function &2 is an abstract declarator &3 is the
class being returned)

Explanation: Contravariant virtual functions are
supported only for classes with single inheritance and
no virtual bases.

Programmer Response: Ensure the class has single
inheritance and no virtual bases.

EQA2268E Virtual function "&1" is not a valid
virtual function override because "&3" is
an inaccessible base class of "&2".

Problem Determination: (where &3 is the class name
of an inaccessible base of &2)

Explanation: The debugger must generate code to
convert the actual return type into the type that the
overridden function returns (so that calls to the original
overridden function is supported). However, the target
type is inaccessible to the overriding function.

Programmer Response: Make the base class accessible.

EQA2269E "&1" is a member of &2 classes. To
reference one of these members, "&3"
must be qualified.

Problem Determination: (where &1 is a C++ member
name &2 is an integer greater than 1 &3 is a C++
member name)

Explanation: The class member specified is defined in
more than one class nested within the base class and
cannot be referenced from the base class if it is not
qualified. This message is generated by the /Wund
option.

Programmer Response: Use the scope operator (::) to
qualify the name.

440 Debug Tool User’s Guide and Reference

EQA2270E "&1" is not the name of a function.

Problem Determination: (where &1 is a name)

Explanation: A function name is required in this
context. The specified name has been declared but it is
not the name of a function.

Programmer Response: Ensure the name is the
correctly spelled name of a function.

EQA2271E Enum type "&1" cannot contain both
negative and unsigned values.

Explanation: The enumerator type values should fit
into an integer. Specifying both unsigned and negative
values will exceed this limit.

Programmer Response: Remove the negative or
unsigned values.

EQA2272E Cannot take the address of the
machine-coded function "&1".

Explanation: Because the function is machine-coded,
you cannot take its address.

Programmer Response: Remove the reference to that
function.

EQA2273E An initializer is not allowed for the
nonvirtual function "&1".

Problem Determination: (where &1 is a function
name)

Explanation: The declaration of a pure virtual function
must include the keyword virtual.

Programmer Response: Remove the initializer.

EQA2274E A local variable or debugger temporary
is being used to initialize reference
member "&1".

Explanation: The local variable is only active until the
end of the function, but it is being used to initialize a
member reference variable.

Programmer Response: Ensure that no part of your
program depends on the variable or temporary.

EQA2275E "&1" is not the SOM name of a SOM
class.

Explanation: A SOM name that represents a SOM
class is expected, and was not found. The SOM name
of a class might differ from its C++ name.

Programmer Response: Ensure that you use the
correct SOM name for the class.

EQA2276E Definition of "&1" is only allowed at
file scope.

Problem Determination: (where &1 is a C++ template
class type)

Explanation: A template class is being defined in a
scope other than file scope. Because all template class
names have file scope this definition is not allowed.

Programmer Response: Move the template class
definition to file scope.

EQA2277E Class template "&1" cannot be used
until its containing template has been
instantiated.

Problem Determination: (where &1 is a C++ class
template type)

Explanation: The class template referenced cannot be
used until the template that contains it has been
instantiated.

Programmer Response: Declare the class template at
file scope or instantiate the template that contains it.

EQA2278E Invalid wchar_t value &1.

Problem Determination: (where &1 is the value which
is not valid)

Explanation: A multibyte character or escape sequence
in a literal has been converted to an invalid value for
type wchar_t.

Programmer Response: Change the character or
escape sequence.

EQA2279E The string must be terminated before
the end of the line.

Explanation: The debugger detected a string that was
not terminated before an end-of-line character was
found.

Programmer Response: End the string or use "\" to
continue the string on the next line. The "\" must be
the last character on the line.

EQA2280E A character constant must end before
the end of the line.

Explanation: The debugger detected a character
constant that was not terminated before an end-of-line
character was found.

Programmer Response: End the character constant or
use "\" to continue it on the next line. The "\" must be
the last character on the line.

Chapter 17. Debug Tool messages 441

EQA2281E A matching &1 function named "&2"
could not be found.

Problem Determination: (where &1 is one of ’const’,
’volatile’ or ’const volatile’. &2 is the name of the called
function (without the argument list).)

Explanation: The call might have failed because no
member function exists that accepts the ’const/volatile’
qualifications of the object.

Programmer Response: Ensure the type qualifier is
correct and that the function name is spelled correctly.

EQA2282E "&1" is a type name being used where a
variable name is expected.

Problem Determination: (where &1 is a C/C++ name)

Explanation: The identifier must be a variable name
not a type name.

Programmer Response: Check that the identifier is a
variable name and ensure the variable is not hidden by
a type name.

EQA2283E Template "&1" has a missing or incorrect
template argument list.

Problem Determination: (where &1 is a C++ name)

Explanation: A template name was found where a
variable name was expected.

Programmer Response: Complete the template
argument list or change the identifier to a variable
name.

EQA2284E Template friend declaration does not
declare a class or a function.

Explanation: A template friend declaration must
declare a class or a function following the template
arguments.

Programmer Response: Change the template
declaration to declare a class or a function.

EQA2285E The ’const’ object has been cast to a
non-’const’ object.

Explanation: A cast has been used to possibly modify
a ’const’ object. This might cause undefined behaviour
at run time.

Programmer Response: Remove the cast or make the
object nonconst.

EQA2286E Global friend functions may not be
defined in a local class.

Explanation: A local class cannot have a friend
function.

Programmer Response: Make the function a member
function in the local class.

EQA2287E The address of data member "&1"
cannot be taken because the member is
being referenced through a _get_
function.

Explanation: An attribute is access through a "_get_"
method if its backing data is not accessible, or if the
SOMNoDataDirect pragma is in effect for the class.
Since the "__get" method returns the value of the
member, and not its address, it isn’t possible to use the
address operator "&" on the member to create an
ordinary pointer. This error can also be generated if
you haven’t used the "&" operator explicitly, but the
debugger needs to use it to implement your code. You
can create a pointer-to-member that refers to an
attribute.

Programmer Response: Rewrite the expression that
causes the address to be taken, or remove the
SOMAttribute pragma.

EQA2288E ’!’ was specified for "&1", which was
introduced in the current class.

Problem Determination: (where &1 is a C++ member
name.)

Explanation: ’!’ must only be used for names
introduced in a base class.

Programmer Response: Remove the ’!’ from the
SOMReleaseOrder entry.

EQA2289E Function linkage differs from that of
overridden function "&1".

Explanation: The linkage of a virtual function must
agree with the linkage of base class member functions
that it overrides.

Programmer Response: Change the linkage keyword
to agree with the base class method.

EQA2290E The physical size of a struct or union is
too large.

Explanation: The debugger cannot handle any size
which is too large to be represented internally.

Programmer Response: Reduce the size of the struct
or union members.

EQA2291E The "&1" qualifier is not supported on
the target platform.

Explanation: A qualifier has been specified on a
platform that does not support it.

Programmer Response: Remove the qualifier.

442 Debug Tool User’s Guide and Reference

EQA2292E The array bound is too large.

Explanation: The array bound should be a value less
than or equal to max int.

Programmer Response: Reduce the number of
elements in the array.

EQA2293E "&1" was not specified in the previous
declaration of "&2".

Problem Determination: (where &1 is an attribute. &2
is a name.)

Explanation: An attribute has been specified that
conflicts with the previous declaration of a name.

Programmer Response: Remove the attribute.

EQA2500E Incorrect or missing data

Explanation: The data at the cursor location is either
incorrect or some data is missing. There could be
several reasons for this:
1. Invalid combination of options specified.
2. Invalid data for field.
3. Data not entered, when required by options given.
4. Quotes specified when not allowed.

Programmer Response: Correct the entry where the
cursor is positioned and invoke the function again. You
can use Help (PF1) to find the context sensitive help for
that field.

EQA2501E DTCN internal error

Explanation: DTCN discovered an internal error.

Programmer Response: Contact IBM service.

EQA2502E Internal CICS error

Explanation: During processing, DTCN discovered an
internal CICS error

Programmer Response: Correct the error and issue the
command again. If the error persists, contact your CICS
system programmer and/or IBM service.

EQA2503E Key Not Defined.

Explanation: There is no action defined with the PF
key used by the user.

Programmer Response: Use the keys displayed in the
bottom line. For more information about the actions
defined for this panel, use PF2 key for general help.

EQA2504E Add failed - profile exists

Explanation: The add command failed because a
profile for that terminal is already stored in the Debug
Tool Profile Repository.

Programmer Response: You can use Show(PF7)
command to display the profile or modify the
TermId+TranId and Add a new profile.

EQA2505E Replace failed - profile does not exist

Explanation: The profile for that terminal does not
exist in the Debug Tool Profile Repository and cannot
be updated. Specify different terminal to update.

Programmer Response: You can use Next(PF8)
command to browse the Profile Repository starting
from any point.

EQA2506E Delete failed - profile does not exist

Explanation: The profile for the terminal does not
exist in the Debug Tool Profile Repository and cannot
be updated.

Programmer Response: Specify different
Terminal+Transaction Id to delete. You can use
Next(PF8) command to browse the Profile Repository
starting from any point.

EQA2507E Show failed - profile does not exist

Explanation: The profile for the Terminal does not
exist in the Debug Tool Profile Repository.

Programmer Response: Specify different Terminal to
display. You can use Next(PF8) command to browse the
Profile Repository from any point.

EQA2508E Next failed - profile does not exist

Explanation: There are no more profiles in the Debug
Tool Profile Repository.

EQA2510I DTCN closed

Explanation: DTCN deleted all profiles stored in the
Debug Tool Profiles Repository. This action affects all
users working with that CICS region.

EQA2511E Specify at least one resource to debug

Explanation: DTCN needs at least one identifier to
identify the resource you want to debug.

Programmer Response: Provide one or more resources
to be debugged. DTCN uses a combination of resource
IDs to uniquely identify a resource. You should specify
adequate resource qualification to ensure that you
debug only the tasks you wish to debug.

EQA2512E TCP/IP SOCKETS for CICS is not active

Explanation: You have tried to set up a debug session
using TCP/IP, but TCP/IP SOCKETS for CICS is not
active in the CICS region.

Programmer Response: Either set up a non-TCP/IP

Chapter 17. Debug Tool messages 443

session, or refer to the TCP/IP SOCKETS for CICS
publications for guidance on activating it.

EQA2514I Debug Tool profile saved

Explanation: A profile was saved in the Debug Tool
Profile Repository.

EQA2515I Debug Tool profile replaced

Explanation: Existing profile was updated in the
Debug Tool Profile Repository.

EQA2516I Debug Tool profile deleted

Explanation: Existing profile was deleted from the
Debug Tool Profile Repository

EQA2517I Profile not saved. Press PF4, or PF3
again to exit without saving.

Explanation: PF3 has been pressed, but the new
profile has not been saved in the repository.

Programmer Response: Press PF4 to save the profile
in the repository, or press PF3 again to exit from DTCN
without saving the new profile.

EQA2518I Duplicate profile exists. Specify
additional debug resources.

Explanation: An attempt has been made to save a
profile in the DTCN repository, but its debug resources
match an existing profile.

Programmer Response: Provide additional resource
IDs to qualify your debugging needs better.

EQA9995E REQUIRED TEXT

Explanation: All EQA9995E messages signify a severe
error has occurred in the Debug Tool SVC routine
while processing an 0A91 instruction.

Programmer Response:
1. Make sure none of the applications you are

debugging issue the reserved 0A91 (SVC 145)
instruction.

2. If you have non-IBM products installed on your
system, make sure none of them issue the reserved
0A91 (SVC 145) instruction.

3. Try running the Dynamic Debug/SVC IVP
(Installation Verification Program). This program
can be found in member EQAWIVP4 of data set
EQAW.V1R2M0.SEQASAMP.

4. Have your system support person re-install the
Debug Tool SVC using member EQAWISVC of data
set EQAW.V1R2M0.SEQASAMP and then run the
IVP (see step 3).

5. Report the error message text, return code, and
reason code to your IBM representative.

EQA9996E ERROR DESCRIPTION

Explanation: A severe error has occurred in the Debug
Tool Authorized Debug Facility SVC routine
EQA01SVC. EQA01SVC is SVC 109 with extended
function code 51.

Programmer Response: Report the error message text,
return code, and reason code to your IBM
representative.

EQA9999E ERROR DESCRIPTION

Explanation:

Severe Internal Error in Debug Tool Module
Please contact your IBM Representative
Failure address - xxxxxxxx
Program Check at module+offset

444 Debug Tool User’s Guide and Reference

||

|

|
|
|
|

Chapter 18. Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with the local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1995, 2001 445

|

Copyright license
This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or functions of these programs.

Programming interface information
This book is intended to help you debug application programs. This publication
documents intended Programming Interfaces that allow you to write programs to
obtain the services of Debug Tool.

Trademarks and service marks
The following terms, denoted by an asterisk (*) on the first occurrence in this
publication, are trademarks or service marks of International Business Machines
Corporation in the United States or other countries:

AD/Cycle
C/370
CICS
CICS/ESA
COBOL/370
DB2
FFST/2
IBM

Language Environment
OS/2
OS/390
SP
System/390
System/370
VisualAge
z/OS

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, or both.

Windows and Windows NT are trademarks or registered trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

446 Debug Tool User’s Guide and Reference

Bibliography

High level language publications
z/OS C/C++

Compiler and Run-Time Migration Guide,
SC09-4763
Language Reference, SC09-4764
Programming Guide, SC09-4765
Reference Summary, SX09-1319
User’s Guide, SC09-4767
Curses, SA22-7820
Run-Time Library Reference, SA22-7821

COBOL for OS/390 & VM

Licensed Program Specifications, GC26-9044
Installation and Customization under MVS,
GC26-9045
Language Reference, SC26-9046
Diagnosis Guide, GC26-9047
Fact Sheet, GC26-9048
Programming Guide, SC26-9049
Compiler and Run-Time Migration Guide,
GC26-4764

COBOL for MVS & VM

Programming Guide, SC26-4767
Language Reference, SC26-4769
Licensed Program Specifications, GC26-4761
Compiler and Run-Time Migration Guide,
GC26-4764
Installation and Customization under MVS,
GC26-4766
Diagnosis Guide, SC26-3138

VisualAge PL/I for OS/390

Fact Sheet, GC26-9470
Licensed Program Specifications, GC26-9471
Installation and Customization under OS/390,
SC26-9472
Programming Guide, SC26-9473
Compiler and Run-time Migration Guide,
SC26-9474
Diagnosis Guide, SC26-9475
Language Reference, SC26-9476
Messages and Codes, SC26-9478

PL/I for MVS & VM

Programming Guide, SC26-3113
Language Reference, SC26-3114
Licensed Program Specifications, GC26-3116
Compiler and Run-Time Migration Guide,
SC26-3118
Installation and Customization under MVS,
SC26-3119
Diagnosis Guide, SC26-3149
Compile-Time Messages and Codes, SC26-3229
Reference Summary, SX26-3821

Related publications
z/OS Language Environment

Debugging Guide, GA22-7560
Programming Guide, SA22-7561
Programming Reference, SA22-7562
Writing ILS Applications, SA22-7563
Customization, SA22-7564
Run-Time Migration Guide, GA22-7565
Concepts Guide, SA22-7567
Vendor Interfaces, SA22-7568

CoOperative Development Environment/370

General Information, GC09-2048
Using CoOperative Development Environment/370
with VS COBOL II and OS PL/I, SC09-1862-01

MVS/ESA

JCL User’s Guide, GC28-1653
JCL Reference, GC28-1654
Application Development Guide, GC28-1821
System Commands, GC28-1826

VM/ESA*

Operating System CP System Command Reference,
SC24-5434

TSO

MVS/ESA TSO Programming, GC28-1565

CICS

Application Programming Primer (VS COBOL II),
SC33-0674

© Copyright IBM Corp. 1995, 2001 447

|
|

Application Programming Reference, SC33-1688
Application Programming Guide, SC33-1687

IMS

IMS Application Programming: Database
Manager, SC26-9422
IMS Application Programming: Design Guide,
SC26-9423
IMS Application Programming: EXEC CL/I
Commands for CICS & IMS, SC26-9424
IMS Application Programming: Transaction
Manager, SC26-9425
IMS/ESA Application Programming: Database
Manager, SC26-8727
IMS/ESA Application Programming: Design
Guide, SC26-8728
IMS/ESA Application Programming: EXEC CL/I
Commands for CICS & IMS, SC26-8726
IMS/ESA Application Programming: Transaction
Manager, SC26-8729

DB2 for MVS

Master Index, GC26-3271
Licensed Program Specifications, GC26-3272
Administration Guide, SC26-3265
Application Programming and SQL Guide,
SC26-3266
Command Reference, SC26-3267
Installation Guide, SC26-3456
Messages and Codes, SC26-3268
Data Sharing: Planning and Administration,
SC26-3269
Release Guide, SC26-3394
SQL Reference, SC26-3270
Reference for Remote DRDA* Requesters and
Servers, SC26-3282
Reference Summary, SX26-3829
Utilities Guide and Reference, SC26-3395
Diagnosis Guide and Reference, LY27-9618
Diagnostic Quick Reference Card, LY27-9622

DB2 and SQL/DS

Application Programming Guide, SC26-4293
Administration Guide, SC26-4374
SQL Reference, SC26-4346

Softcopy publications
Online publications are distributed on CD-ROMs
and can be ordered through your IBM
representative. Debug Tool User’s Guide and
Reference is distributed on the following collection
kit:

z/OS Collection Kit, SK3T4269

Online publications can also be downloaded from
the IBM web site. Visit the IBM web site for each
product to find online publications for that
product.

448 Debug Tool User’s Guide and Reference

Glossary

This glossary defines technical terms and
abbreviations used in Debug Tool User’s Guide and
Reference documentation. If you do not find the
term you are looking for, refer to the index of the
appropriate Debug Tool User’s Guide and Reference
or view IBM Glossary of Computing Terms, located
at:
http://www.ibm.com/networking/nsg/nsgmain.htm

A
active block . The currently executing block that
invokes Debug Tool or any of the blocks in the CALL
chain that leads up to this one.

active server . A server that is being used by a
CODE/370 session. Contrast with inactive server. See
also server.

alias . An alternative name for a field used in some
high-level programming languages.

animation . The execution of instructions one at a
time with a delay between each so that any results of
an instruction can be viewed.

attention interrupt . An I/O interrupt caused by a
terminal or workstation user pressing an attention key,
or its equivalent.

attention key . A function key on terminals or
workstations that, when pressed, causes an I/O
interrupt in the processing unit.

attribute . A characteristic or trait the user can specify.

Autosave . A choice allowing the user to automatically
save work at regular intervals.

B
batch . Pertaining to a predefined series of actions
performed with little or no interaction between the user
and the system. Contrast with interactive.

batch job . A job submitted for batch processing. See
batch. Contrast with interactive.

batch mode . An interface mode for use with the MFI
Debug Tool that does not require input from the
terminal. See batch.

block . In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it.

breakpoint . A place in a program, usually specified
by a command or a condition, where execution can be
interrupted and control given to the user or to Debug
Tool.

C
century window (COBOL). The 100-year interval in
which COBOL assumes all windowed years lie. The
start of the COBOL century window is defined by the
COBOL YEARWINDOW compiler option.

Change . A push button that changes a value
associated with an entry or entries in a list to another
value specified by the user.

CODE/370 . The IBM product formally called the
CoOperative Development Environment/370, an
application development and maintenance facility for
editing, compiling, and debugging third-generation
programming languages.

command list . A grouping of commands that can be
used to govern the startup of Debug Tool, the actions
of Debug Tool at breakpoints, and various other
debugging actions.

compile . To translate a program written in a high
level language into a machine-language program.

compile unit . A sequence of HLL statements that
make a portion of a program complete enough to
compile correctly. Each HLL product has different rules
for what comprises a compile unit.

compiler . A program that translates instructions
written in a high level programming language into
machine language.

condition . Any synchronous event that might need to
be brought to the attention of an executing program or
the language routines supporting that program.
Conditions fall into two major categories: conditions
detected by the hardware or operating system, which
result in an interrupt; and conditions defined by the
programming language and detected by
language-specific generated code or language library
code. See also exception.

container . A system object that contains and
organizes source files. For example, a VM minidisk, or
an MVS partitioned data set.

conversational . A transaction type that accepts input
from the user, performs a task, then returns to get more
input from the user.

© Copyright IBM Corp. 1995, 2001 449

currently qualified. See qualification.

D
data type . A characteristic that determines the kind of
value that a field can assume.

data set . The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

date field . A COBOL data item that can be any of the
following:

v A data item whose data description entry includes a
DATE FORMAT clause.

v A value returned by one of the following intrinsic
functions:

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
YEAR-TO-YYYY
YEARWINDOW

v The conceptual data items DATE and DAY in the
ACCEPT FROM DATE and ACCEPT FROM DAY
statements, respectively.

v The result of certain arithmetic operations.

The term date field refers to both expanded date field and
windowed date field. See also nondate..

date processing statement. A COBOL statement that
references a date field, or an EVALUATE or SEARCH
statement WHEN phrase that references a date field.

DBCS . See double-byte character set.

debug . To detect, diagnose, and eliminate errors in
programs.

Debug Tool procedure . A sequence of Debug Tool
commands delimited by a PROCEDURE and a
corresponding END command.

Debug Tool variable . A predefined variable that
provides information about the user’s program that the
user can use during a session. All of the Debug Tool
variables begin with %, for example, %BLOCK or %CU.

default . A value assumed for an omitted operand in
a command. Contrast with initial setting.

double-byte character set (DBCS) . A set of characters
in which each character is represented by two bytes.
Languages such as Japanese, which contain more
symbols than can be represented by 256 code points,
require double-byte character sets. Because each
character requires two bytes, the typing, displaying,

and printing of DBCS characters requires hardware and
programs that support these characters.

dynamic . In programming languages, pertaining to
properties that can only be established during the
execution of a program; for example, the length of a
variable-length data object is dynamic. Contrast with
static.

dynamic link library (DLL) . A file containing
executable code and data bound to a program at load
time or run time. The code and data in a dynamic link
library can be shared by several applications
simultaneously. See also load module.

E
enclave . An independent collection of routines in
Language Environment, one of which is designated as
the MAIN program. The enclave contains at least one
thread and is roughly analogous to a program or
routine. See also thread.

entry point . The address or label of the first
instruction executed on entering a computer program,
routine, or subroutine. A computer program can have a
number of different entry points, each perhaps
corresponding to a different function or purpose.

exception . An abnormal situation in the execution of
a program that typically results in an alteration of its
normal flow. See also condition.

execute . To cause a program, utility, or other machine
function to carry out the instructions contained within.
See also run.

execution time . See run time.

execution-time environment . See run-time
environment.

expanded date field . A COBOL date field containing
an expanded (four-digit) year. See also date field and
expanded year.

expanded year. In COBOL, four digits representing a
year, including the century (for example, 1998).
Appears in expanded date fields. Compare with
windowed year.

expression . A group of constants or variables
separated by operators that yields a single value. An
expression can be arithmetic, relational, logical, or a
character string.

F
file . A named set of records stored or processed as a
unit. An element included in a container: for example,
a VM file, an MVS member or partitioned data set. See
container. See also data set.

450 Debug Tool User’s Guide and Reference

frequency count . A count of the number of times
statements in the currently qualified program unit have
been run.

full-screen mode . An interface mode for use with a
nonprogrammable terminal that displays a variety of
information about the program you are debugging.

H
high level language (HLL) . A programming language
such as C, COBOL, or PL/I.

HLL. See high level language.

hook . An instruction inserted into a program by a
compiler at compile-time. Using a hook, you can set
breakpoints to instruct Debug Tool to gain control of
the program at selected points during its execution.

I
inactive block . A block that is not currently
executing, or is not in the CALL chain leading to the
active block. See also active block, block.

initial setting . A value in effect when the user’s
Debug Tool session begins. Contrast with default.

interactive . Pertaining to a program or system that
alternately accepts input and then responds. An
interactive system is conversational; that is, a
continuous dialog exists between the user and the
system. Contrast with batch.

I/O . Input/output.

L
Language Environment . An IBM software product
that provides a common run-time environment and
common run-time services for IBM high level language
compilers.

library routine . A routine maintained in a program
library.

line mode. An interface mode for use with a
nonprogrammable terminal that uses a single command
line to accept Debug Tool commands.

line wrap . The function that automatically moves the
display of a character string (separated from the rest of
a line by a blank) to a new line if it would otherwise
overrun the right margin setting.

link-edit . To create a loadable computer program
using a linkage editor.

linkage editor . A program that resolves
cross-references between separately compiled object

modules and then assigns final addresses to create a
single relocatable load module.

listing . A printout that lists the source language
statements of a program with all preprocessor
statements, includes, and macros expanded.

load module . A program in a form suitable for
loading into main storage for execution. In this
document this term is also used to refer to a Dynamic
Load Library (DLL).

LU. See 451.

logical unit. (1) A type of network accessible unit that
enables users to gain access to network resources and
communicate with each other. (2) A name used by
VTAM to identify a terminal or other resource.

M
multitasking . A mode of operation that provides for
concurrent performance, or interleaved execution of
two or more tasks.

N
nonconversational . A transaction type that accepts
input, performs a task, and then ends.

nondate . A COBOL data item that can be any of the
following:

v A data item whose date description entry does not
include the DATE FORMAT clause

v A literal

v A reference modification of a date field

v The result of certain arithmetic operations that may
include date field operands; for example, the
difference between two compatible date fields.

The value of a nondate may or may not represent a
date.

O
Options . A choice that lets the user customize objects
or parts of objects in an application.

P
panel . In Debug Tool, an area of the screen used to
display a specific type of information.

parameter . Data passed between programs or
procedures.

Glossary 451

|

|
|
|
|

partitioned data set (PDS) . A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

path point . A point in the program where control is
about to be transferred to another location or a point in
the program where control has just been given.

PDS. See partitioned data set.

prefix area . The eight columns to the left of the
program source or listing containing line numbers.
Statement breakpoints can be set in the prefix area.

primary entry point. See entry point.

procedure . In a programming language, a block, with
or without formal parameters, whose execution is
invoked by means of a procedure call. A set of related
control statements. For example, a VM exec, or an MVS
CLIST.

process . The highest level of the Language
Environment program management model. It is a
collection of resources, both program code and data,
and consists of at least one enclave.

profile . A group of customizable settings that govern
how the user’s session appears and operates.

Profile . A choice that allows the user to change some
characteristics of the working environment, such as the
pace of statement execution in the Debug Tool.

program . A sequence of instructions suitable for
processing by a computer. Processing can include the
use of an assembler, a compiler, an interpreter, or a
translator to prepare the program for execution, as well
as to execute it.

program unit . See compile unit.

program variable . A predefined variable that exists
when Debug Tool was invoked.

pseudo-conversational transaction . The result of a
technique in CICS called pseudo-conversational
processing in which a series of nonconversational
transactions gives the appearance (to the user) of a
single conversational transaction. See conversational and
nonconversational.

Q
qualification . A method used to specify to what
procedure or load module a particular variable name,
function name, label, or statement id belongs. The SET
QUALIFY command changes the current implicit
qualification.

R
record . A group of related data, words, or fields
treated as a unit, such as one name, address, and
telephone number.

record format . The definition of how data is
structured in the records contained in a file. The
definition includes record name, field names, and field
descriptions, such as length and data type. The record
formats used in a file are contained in the file
description.

reference . In programming languages, a language
construct designating a declared language object. A
subset of an expression that resolves to an area of
storage; that is, a possible target of an assignment
statement. It can be any of the following: a variable, an
array or array element, or a structure or structure
element. Any of the above can be pointer-qualified
where applicable.

run . To cause a program, utility, or other machine
function to execute. An action that causes a program to
begin execution and continue until a run-time
exception occurs. If a run-time exception occurs, the
user can use Debug Tool to analyze the problem. A
choice the user can make to start or resume regular
execution of a program.

run time . Any instant when a program is being
executed.

run-time environment . A set of resources that are
used to support the execution of a program.

run unit . A group of one or more object programs
that are run together.

S
SBCS. See single-byte character set.

secondary logical unit . (1) In SNA, the logical unit
(LU) that contains the secondary half-session for a
particular LU-LU session. An LU may contain
secondary and primary half-sessions for different active
LU-LU sessions. (2) A VTAM Secondary Logical Unit
(i.e., terminal).

semantic error . An error in the implementation of a
program’s specifications. The semantics of a program
refer to the meaning of a program. Unlike syntax
errors, semantic errors (since they are deviations from a
program’s specifications) can be detected only at run
time. Contrast with syntax error.

sequence number . A number that identifies the
records within a VM file, or an MVS member or
partitioned data set.

452 Debug Tool User’s Guide and Reference

|
|
|
|
|
|

session . The events that take place between the time
the user starts an application and the time the user
exits the application.

session variable . A variable the user declares during
the Debug Tool session by using Declarations.

single-byte character set (SBCS) . A character set in
which each character is represented by a one-byte code.

SLU. See 452.

source . The HLL statements in a file that make up a
program.

Source window . A Debug Tool window that contains
a display of either the source code or the listing of the
program being debugged.

static . In programming languages, pertaining to
properties that can be established before execution of a
program; for example, the length of a fixed-length
variable is static. Contrast with dynamic.

step . One statement in a computer routine. To cause a
computer to execute one or more statements. A choice
the user can make to execute one or more statements in
the application being debugged.

storage . A unit into which recorded text can be
entered, in which it can be retained, and from which it
can be retrieved. The action of placing data into a
storage device. A storage device.

subroutine . A sequenced set of instructions or
statements that can be used in one or more computer
programs at one or more points in a computer
program.

suffix area . A variable-sized column to the right of
the program source or listing statements, containing
frequency counts for the first statement or verb on each
line. Debug Tool optionally displays the suffix area in
the Source window. See also prefix area.

syntactic analysis . An analysis of a program done by
a compiler to determine the structure of the program
and the construction of its source statements to
determine whether it is valid for a given programming
language. See also syntax checker, syntax error.

syntax . The rules governing the structure of a
programming language and the construction of a
statement in a programming language.

syntax error . Any deviation from the grammar (rules)
of a given programming language appearing when a
compiler performs a syntactic analysis of a source
program. See also syntactic analysis.

T
session variable . See session variable.

thread . The basic line of execution within the
Language Environment program model. It is
dispatched with its own instruction counter and
registers by the system. Threads can execute,
concurrently with other threads. The thread is where
actual code resides. It is synonymous with a CICS
transaction or task. See also enclave.

thread id . A small positive number assigned by
Debug Tool to a Language Environment task.

token . A character string in a specific format that has
some defined significance in a programming language.

trigraph . A group of three characters which, taken
together, are equivalent to a single special character.

U
utility . A computer program in general support of
computer processes; for example, a diagnostic program,
a trace program, or a sort program.

V
variable . A name used to represent a data item
whose value can be changed while the program is
running.

VTAM . See 453.

Virtual Telecommunications Access Method (VTAM)
. (1) IBM software that controls communication and
the flow of data in an SNA network by providing the
SNA application programming interfaces and SNA
networking functions. An SNA network includes
subarea networking, Advanced Peer-to-Peer
Networking (APPN), and High-Performance Routing
(HPR). Beginning with Release 5 of the OS/390
operating system, the VTAM for MVS/ESA function
was included in Communications Server for OS/390;
this function is called Communications Server for
OS/390 - SNA Services. (2) An access method
commonly used by MVS to communicate with
terminals and other communications devices.

W
windowed date field . A COBOL date field containing
a windowed (two-digit) year. See also date field and
windowed year.

windowed year. In COBOL, two digits representing a
year within a century window (for example, 98).
Appears in windowed date fields. See also century
window (COBOL).

Compare with expanded year.

word wrap . See line wrap.

Glossary 453

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

454 Debug Tool User’s Guide and Reference

Index

Special Characters
%ADDRESS variable 364
%AMODE variable 365

description 365
%BLOCK variable 365
%CAAADDRESS variable 365
%CONDITION variable 365

description 365
for PL/I 197

%COUNTRY variable 366
__ctest() function 45
%CU variable 366
%DUMP, CALL command 246
%DUMP command, CALL 246
%EPA variable 366
%EPRn variable 366
%FPRn variable 367
%GENERATION built-in function 359
%GPRn variable 367
%HARDWARE variable 368
%HEX built-in function 359
%INSTANCES built-in function 360
%LINE variable 368
%LOAD variable 369
%LPRn variable 369
%NLANGUAGE variable 370
%PATHCODE variable

description 370
for C/C++ 160
for PL/I 196
values for COBOL 187

%PLANGUAGE variable 370
%port_id suboption of TEST run-time

option 31
%PROGRAM variable 366, 370
%RC variable 370
%RECURSION built-in function 361
%RUNMODE variable 371
%session_id of TEST run-time option 31
%STATEMENT variable 368
%STORAGE built-in function 227
%SUBSYSTEM variable 371
%SYSTEM variable 371
#pragma 11

specifying TEST compiler option 11
specifying TEST run-time option

with 37

A
abnormal end of application, setting

breakpoint at 149
accessing PL/I program variables 198
active block, definition 449
active server, definition 449
alias, definition 449
ALL suboption of TEST run-time

option 28
ALLOCATE, AT command (PL/I) 222

allowable comparisons for Debug Tool IF
command (COBOL) 280

allowable moves
for Debug Tool MOVE command 299
for Debug Tool SET command 344

alternative methods of input under
IMS 134

ANALYZE command (PL/I) 218
animation, definition 449
appc_workstation_id suboption 31
APPEARANCE, AT command 223
applications 127
assigning values to variables 159, 185
assignment command (PL/I) 219
AT commands

AT ALLOCATE (PL/I) 222
AT APPEARANCE 223
AT CALL

breakpoints, for C++ 178
description 225

AT CHANGE 226
AT CURSOR 229
AT DATE 230
AT DELETE 231
AT ENTRY

breakpoints, for C++ 178
AT ENTRY/EXIT 231
AT EXIT

breakpoints, for C++ 178
AT GLOBAL 232
AT LABEL command 234
AT LINE 236, 241
AT LOAD 236
AT OCCURRENCE 237
AT PATH 240
AT prefix (full-screen mode) 241
AT STATEMENT 241
AT TERMINATION 242
summary 220

attention interrupt
definition 449
effect of during Dynamic Debug 71
effect of during interactive

sessions 71
how to initiate 71
required Language Environment

run-time options 71
attention key, definition 449
attribute, definition 449
attributes of variables 153
Autosave, definition 449

B
batch, definition 449
batch job, definition 449
batch mode 33

commands_file_designator for 29
debugging CICS programs in 135
debugging DB2 programs in 131
debugging IMS programs in 134

batch mode (continued)
definition 449
interface description 3
invoking Debug Tool in 50
restrictions 309, 332, 337
using Debug Tool in 126

Batch Terminal Simulator (BTS)
Full-Screen Image Support (FSS) 132

BEGIN command (PL/I) 243
blanks, significance of 206
block

definition 449
block command (C/C++) 244
block_name, description 208
block_spec, description 209
blocks and block identifiers

using, for C 170
break command (C/C++) 245
breakpoint

AT command, setting with 220
before calling a NULL function

in C 80
in C++ 92

before calling an invalid program, in
COBOL 103

before calling an undefined program,
in PL/I 111

definition 449
halting if a condition is true

in C 76
in C++ 86
in COBOL 97
in PL/I 108

halting when certain COBOL routines
are called 95

halting when certain functions are
called

in C 75
in C++ 84
in PL/I 106

implicit 33
in unknown compile unit 224
removing 251
setting, in C++ 178
setting a line 68
using within multiple enclaves 122

BTS full-screen image support (FSS) 132

C
C

debugging a program in full-screen
mode

calling a C function from Debug
Tool 77

capturing output to stdout 77
debugging a DLL 77
displaying raw storage 77
displaying strings 77
finding storage overwrite

errors 79

© Copyright IBM Corp. 1995, 2001 455

C (continued)
debugging a program in full-screen

mode (continued)
finding uninitialized storage

errors 80
getting a function traceback 78
halting on line if condition

true 76
halting when certain functions are

called 75
modifying value of variable 75
setting breakpoint to halt 80
tracing run-time path for code

compiled with TEST 78
when not all parts compiled with

TEST 76
sample program for debugging 72

C++
AT CALL breakpoints 178
debugging a program in full-screen

mode
calling a C++ function from Debug

Tool 88
capturing output to stdout 88
debugging a DLL 89
displaying raw storage 89
displaying strings 89
finding storage overwrite

errors 90
finding uninitialized storage

errors 91
getting a function traceback 89
halting on a line if condition

true 86
modifying value of variable 85
setting a breakpoint to halt 84, 92
tracing the run-time path 90
viewing and modifying data

members 87
when not all parts compiled with

TEST 87
examining objects 179
overloaded operator 178
sample program for debugging 81,

92
setting breakpoints 178
stepping through C++ programs 177
template in C++ 178

C/C++
%HEX built-in function 359
%INSTANCES built-in function 360
%RECURSION built-in function 361
%STORAGE built-in function 227
AT ENTRY/EXIT breakpoints 178
blocks and block identifiers 171
commands

block 244
break 245
do/while 267
for 275
if 279
INPUT 283
SET INTERCEPT 327
SET WARNING 342
summary 157
switch 347
while 354

C/C++ (continued)
declarations 257
equivalents for Language

Environment conditions 164
expression 272
function calls for 162
notes on using 204
reserved keywords 163

CAF (call access facility), using to invoke
DB2 program 132

call access facility (CAF), using to invoke
DB2 program 132

CALL commands
CALL %DUMP 246
CALL entry_name 250
CALL procedure 251
summary 245

CALLS, LIST command 287
capturing output to stdout

in C 77
in C++ 88

CEETEST
description 38
examples, for C 40
examples, for COBOL 42
examples, for PL/I 43
invoking Debug Tool with 38
using 134

CEEUOPT run-time options module 130
CEEUOPT to invoke Debug Tool under

CICS, using 141
CHANGE, AT command 226
CHANGE, Debug Tool setting,

definition 449
CHANGE, QUERY commnd 308
CHANGE, SET command 318
changing window layout in the session

panel 114
character set 203
characters, searching 65
CICS

debug modes under 135
invoking Debug Tool under 136
requirements for using Debug Tool

in 134
restrictions for debugging 143

CICS, invoking Debug Tool under 47
CLEAR command 251
CLEAR prefix (full-screen mode) 254
CLOSE, WINDOW command 355
closing Debug Tool session panel

windows 115
CMS, invoking Debug Tool under 49
CMS command (VM) 255
COBOL

%HEX built-in function 359
%STORAGE built-in function 227
AT DATE command 230
command format 184
commands

CALL entry_name 250
COMPUTE 256
EVALUATE 271
IF 279
INPUT 283
MOVE 298
PERFORM 304

COBOL (continued)
commands (continued)

SET 343
SET, allowable moves 344
SET INTERCEPT 327

debugging a program in full-screen
mode

capturing I/O to system
console 99

displaying raw storage 99
finding storage overwrite

errors 102
generating a run-time paragraph

trace 101
modifying the value of a

variable 96
setting a breakpoint to halt 95
setting breakpoint to halt 103
stopping on line if condition

true 97
tracing the run-time path 100
when not all parts compiled with

TEST 98
declarations 260
listing files 183
notes on using 204
paragraph trace, generating a COBOL

run-time 101
reserved keywords 185
run-time options

for VS COBOL II 36
variables, using with Debug Tool 185

CODE/370
definition 449

coexistence of Debug Tool with other
debuggers 154

coexistence with unsupported HLL
modules 155

COLOR, SET command 318
colors

changing in session panel 116
COLORS, QUERY commnd 308
command format

for COBOL 184
command line, Debug Tool 59
command list, definition 449
command sequencing, full-screen

mode 60
command suboption of TEST run-time

option 29
commands

abbreviating 204
alternative methods of input under

IMS 134
delimiting 243
for C/C++, Debug Tool subset 157
for PL/I, Debug Tool subset 195
getting online help for 207
interpretive subset

description 146
line mode 125
multiline 205
prefix, using in Debug Tool 61
truncating 204
TSO, using to debug DB2

program 131

456 Debug Tool User’s Guide and Reference

commands, Debug Tool
COBOL compiler options in

effect 184
entering on the session panel 59
entering using program function

keys 62
order of processing 60
retrieving with RETRIEVE

command 63
that resemble COBOL

commands 183
commands (system), entering in Debug

Tool 60
commands file 25, 33

using log file as 67
commands_file_designator suboption of

TEST run-time option 29
commands_file of TEST run-time

option 28
COMMENT command 255
comments, inserting into command

stream 206
common syntax elements 208
comparisons, allowable (IF command for

COBOL) 280
compile, definition 449
compile unit 59

general description 147
name area, Debug Tool 59
qualification of, for C/C++ 173
record of associations, Debug

Tool 302
compile unit, definition 449
compile_unit_name, description 209
compiler, definition 449
COMPUTE command 256
condition

constants, for C 351
definition 449
for C 237
handling of 150, 197
Language Environment, C/C++

equivalents 164
constants

Debug Tool interpretation of
HLL 146

entering 207
HLL 146
PL/I 200
using in expressions, for COBOL 190

constructor, stepping through 177
container, definition 449
continuation character 60

for COBOL 184
using in full-screen or line mode 205

continuing lines 205
conversational, definition 449
COUNTRY, QUERY commnd 308
COUNTRY, SET command 320
cu_spec, description 210
CURSOR command 257

using 63, 64
cursor commands

CLOSE 115
CURSOR 64
CURSOR, AT 229

cursor commands (continued)
CURSOR, LIST (full-screen

mode) 288
FIND 65
OPEN 115
SCROLL 56, 64
SIZE 115
using in Debug Tool 61
WINDOW ZOOM 116

customizing
PF keys 113
Profile panel 26
profile settings 117
session settings 113

D
data sets

definition 450
specifying 67
used by Debug Tool 24

data type, definition 450
DATE, AT command 230
date field, definition 450
DB2

using Debug Tool with 128
DBCS

definition 450
SET DBCS command 321
using with C 204
using with COBOL 187
using with Debug Tool

commands 203
variable, assigning new value to 298

DBCS, QUERY commnd 308
DBCS, SET command 321
ddname

creating a log file in Debug Tool 67
debug, definition 450
debug session

ending 54
invoking your program 53
recording 58
starting 53

Debug Tool
C/C++ commands, interpretive

subset 157
COBOL commands, interpretive

subset 183
commands, subset 146
condition handling 150
data sets 24
evaluation of HLL expressions 145
exception handling, for C/C++ and

PL/I 151
interfaces 2
interpretation of HLL variables 146
invoking under CICS 136
invoking under IMS 134
invoking your program with 53
multilanguage programs, using 151
optimized programs, using with 374
PL/I commands, interpretive

subset 195
procedure, definition 450
terminology 3
using in batch mode 126

Debug Tool (continued)
using in line mode 125
using in remote debug mode 126
variable, definition 450

debuggers, coexistence with other 154
debugging

CICS programs 134
DB2 programs 128
DLL

in C 77
in C++ 89

IMS programs 132
in full-screen mode 53
ISPF applications 127
multitasking programs 127
preparing for 5
USS programs 128

declarations
for C/C++ 257
for COBOL 260

DECLARE command (PL/I) 261
declaring session variables

for C 160
for COBOL 188

default, definition 450
DEFAULT LISTINGS, QUERY

commnd 308
DEFAULT LISTINGS, SET

command 321
DEFAULT SCROLL, QUERY

commnd 308
DEFAULT SCROLL, SET command 322
DEFAULT WINDOW, QUERY

commnd 308, 309
DEFAULT WINDOW, SET

command 323
DELETE, AT command 231
DESCRIBE command

description 263
using 172

destructor, stepping through 177
diagnostics, expression, for C/C++ 165
DISABLE command 265, 266
display point of execution 336
displaying

environment information 172
halted location 66
lines at top of window, Debug

Tool 65
raw storage

in C 77
in C++ 89
in COBOL 99
in PL/I 108

strings
in C 77
in C++ 89

values of COBOL variables 186
variable value 69

DLL debugging
in C 77
in C++ 89

DO command (PL/I) 267
do/while command (C/C++) 267
double-byte character set (DBCS),

definition 450
DOWN, SCROLL command 64

Index 457

DTCN
creating a profile 137
data entry verification 141
description 136
main screen definitions 138
modifying Language Environment

options 140
overview 136
preparing to invoke Debug Tool 137
using repository profile items 141

dual terminal mode (CICS) 135
dynamic, definition 450
dynamic link library, definition 450
DYNDEBUG, QUERY commnd 309
DYNDEBUG, SET command 323

E
ECHO, QUERY commnd 309
ECHO, SET command 324
elements, unsupported, for PL/I 201
ENABLE command 270
enclave

definition 450
invoking 121
multiple, debugging interlanguage

communication application in 154
ending

debug session 54
Debug Tool within multiple

enclaves 122
enhancements to Debug Tool xv
entering commands

under IMS, alternative methods 134
entering multiline commands without

continuation 206
entering PL/I statements, freeform 198
ENTRY, AT command 231
entry_name, CALL command

(COBOL) 250
entry point, definition 450
EQADCCXT user exit 34, 141
EQUATE, SET command

description 113, 325
EQUATES, QUERY commnd 309
error numbers in Log window 70
ERROR suboption of TEST run-time

option 28
EVALUATE command

description 271
evaluating expressions

COBOL 189
HLL 145

evaluation of expressions
C/C++ 165

every_clause, description 221
examining C++ objects 179
examples

C
sample program for

debugging 72
C++

displaying attributes 179
sample program for

debugging 81, 92
setting breakpoints 179

examples (continued)
C/C++

assigning values to variables 159
blocks and block identifiers 172
expression evaluation 162
monitoring and modifying

registers and storage 180
referencing variables and setting

breakpoints 171
scope and visibility of objects 172
using qualification 177

CEDF procedure 142
CEETEST calls, for PL/I 43
CEETEST function calls, for C 40
CEETEST function calls, for

COBOL 42
changing point of view, general 149
COBOL

%HEX function 190
%STORAGE function 191
assigning values to COBOL

variables 186
changing point of view 193
displaying results of expression

evaluation 189
displaying values of COBOL

variables 186
qualifying variables 192
using constants in

expressions 190
compile_unit_name 209
declaring variables, for COBOL 188
displaying program variables 159
PL/I

in PL/I 106
sample program for

debugging 103
PLITEST calls for PL/I 44
specifying TEST run-time option with

#pragma 37
TEST run-time option 35
using #pragma for TEST compiler

option 11
using constants 207
using continuation characters 205
using Debug Tool with 375
using qualification 173

exception, definition 450
exception handling for C/C++ and

PL/I 151
execute, definition 450
EXECUTE, QUERY commnd 309
EXECUTE, SET command 326
execution time, definition 450
execution-time environment,

definition 450
EXIT, AT command 231
expanded date field, definition 450
expression, LIST command 288
expression command (C/C++) 272
expressions

definition 450
description 210
diagnostics, for C/C++ 165
displaying values, for C/C++ 158
displaying values, for COBOL 189

expressions (continued)
evaluation, operators and operands

for C 164
evaluation for C/C++ 161, 165
evaluation for COBOL 189
evaluation of HLL 145
for PL/I 200
subset, description 212
using constants in, for COBOL 190

F
file, definition 450
FIND command

description 273
using with windows 65

finding
characters or strings 65
renamed source, listing or separate

debug file 70
storage overwrite errors

in C 79
in C++ 90
in COBOL 102
in PL/I 110

uninitialized storage errors
in C 80
in C++ 91

for command (C/C++) 275
freeform input, PL/I statements 198
FREQUENCY, LIST command 289
FREQUENCY, QUERY commnd 309
FREQUENCY, SET command 326
frequency count, definition 451
full-screen image support (FSS), BTS 132
full-screen mode

AT CURSOR command 229
AT prefix 241
CLEAR prefix 254
continuation character, using in 205
CURSOR 61
CURSOR command 64, 257
debugging in 53
definition 451
DESCRIBE CURSOR 264
DISABLE prefix 266
ENABLE prefix 270
FIND 273
IMMEDIATE 283
interface description 2
LIST CURSOR 288
PANEL 302
PANEL COLORS 116
PANEL LAYOUT 114
PANEL LISTINGS 302
PANEL PROFILE 117
PANEL SOURCE 302
prefix commands 306
QUERY prefix 310
RETRIEVE 312
SCROLL 64
SET COLOR 318
SET DEFAULT SCROLL 322
SET DEFAULT WINDOW 323
SET KEYS 328
SET LOG NUMBERS 330
SET MONITOR NUMBERS 330

458 Debug Tool User’s Guide and Reference

full-screen mode (continued)
SET PROMPT 335
SET SCREEN 337
SET SCROLL DISPLAY 338
SET SUFFIX 340
SHOW prefix 344
WINDOW CLOSE 115, 355
WINDOW OPEN 115, 356
WINDOW SIZE 115, 356
WINDOW ZOOM 116, 357

function, calling C/C++ from Debug Tool
C 77
C++ 88

function, unsupported for PL/I 201
function calls, for C/C++ 162
functions

PL/I 200
functions, Debug Tool

%GENERATION 359
%HEX 359

using with COBOL 190
%INSTANCES 360
%RECURSION 361
%STORAGE 227

using with COBOL 190
summary 359
using with COBOL 190

G
GLOBAL, AT command 232
global data 180
global scope operator 180
GO command 276
GOTO command 276
GOTO LABEL command 277

H
H constant (COBOL) 207
halted location, displaying 66
header fields, Debug Tool session

panel 55
help, online

during line-mode session 126
for command syntax 207

High Level Language (HLL),
definition 451

highlighting, changing in Debug Tool
session panel 116

history, Debug Tool command 63
retrieving previous commands 63

HISTORY, QUERY commnd 309
HISTORY, SET command 327
HLL, definition 451
hook

compiling with, C 8
compiling with, COBOL 14
compiling with, PL/I 18
definition 451
general description 6
removing from application 373, 374
rules for placing 11, 13

I
I/O, COBOL

capturing to system console 99
I/O, definition 451
IF command

allowable comparisons (for
COBOL) 280

for C/C++ 279
for COBOL 279
for PL/I 282

IMMEDIATE command 283
improving Debug Tool performance 373
IMS

programs, debugging in batch or line
mode 133

using Debug Tool with 132
inactive block, definition 451
information, displaying

environmental 172
initial setting, definition 451
input areas, order of processing, Debug

Tool 60
INPUT command 283
INSPLOG

creating the log file 67
default DD name to store log file 25
example of using 48
using with SET LOG command 329

INSPPREF suboption of TEST run-time
option 30

INSPSAFE
default DD name to store preference

settings 25
example of using 48
using to save profile settings 119
using to save session panel

colors 117
interactive, definition 451
INTERCEPT, QUERY commnd 309
interLanguage communication (ILC)

application, debugging 154
interlanguage programs, using with

Debug Tool 151
interpretive subset

general description 146
of C/C++ commands 157
of COBOL commands 183
of PL/I commands 195

INTERRUPT, Language Environment
run-time option 71

invoking Debug Tool
__ctest(), using 45
at different points 33
batch mode 50
DB2 program with TSO 132
from a program 37
invoking your program for a debug

session 46
TEST run-time option 26
under CICS 47, 136, 142
under CICS, using CEEUOPT 141
under CMS 49
under IMS 134
under MVS in TSO 47
with PLITEST 44
with the CEETEST function call 38
within an enclave 121

invoking interactive function calls
in C 77

invoking your program 53
ISPF

invoking 61
SET REFRESH command 337

K
KEYS, SET command 328
keywords, abbreviating 204

L
LABEL, AT command 234
LANGUAGE, SET NATIONAL

command 331
LANGUAGE, SET PROGRAMMING

command 333
Language Environment

conditions, C/C++ equivalents 164
definition 451
EQADCCXT user exit 34, 141
run-time options, precedence 34

LAST, LIST command 290
LEFT, SCROLL command 64
library routine, definition 451
LINE, AT command 236, 241
line breakpoint, setting 68
line continuation

for C 205
for COBOL 206

line mode
commands 125
debugging CICS programs 143
debugging DB2 programs in 131
debugging IMS programs in 133
interface description 3
using Debug Tool in 125

LINE NUMBERS, LIST command 294
line wrap, definition 451
LINES, LIST command 295
link-edit, definition 451
linkage editor, definition 451
LIST commands

LIST (blank) 285
LIST AT 285
LIST CALLS 287
LIST CURSOR (full-screen

mode) 288
LIST expression 288
LIST FREQUENCY 289
LIST LAST 290
LIST MONITOR 291
LIST NAMES 291
LIST ON (PL/I) 293
LIST PROCEDURES 293
LIST REGISTERS

description 293
LIST STATEMENT NUMBERS 294
LIST STATEMENTS 295
LIST STORAGE

description 295
using with PL/I 198

summary 284

Index 459

listing
definition 451
file, finding renamed 70
files, for COBOL 183
SET DEFAULT LISTINGS

command 321
literal constants, entering 207
LOAD, AT command 236
load module, definition 451
load_module_name, description 211
load_spec, description 211
LOCATION, QUERY commnd 309
LOG, QUERY commnd 309
log, session 34

clearing 251
LOG, SET command 329
log file 25, 66

creating 67
default names 67
using 66
using as a commands file 67

LOG NUMBERS, QUERY commnd 309
LOG NUMBERS, SET command 330
Log window

description 58
error numbers in 70
retrieving lines from 63

logical unit, definition 451
loops

for command (C/C++) 275
low-level debugging 180
LU, definition 451

M
MFI suboption of TEST run-time

option 30
modifying value of a C variable 75
MONITOR, LIST command 291
MONITOR command

description 296
viewing output from, Debug Tool 57

MONITOR NUMBERS, QUERY
commnd 309

MONITOR NUMBERS, SET
command 330

Monitor window
description 57
opening and closing 115

monitoring storage in C++ 180
monitors

clearing 251
more than one language, debugging

programs with 151
MOVE command (COBOL)

allowable moves 299
description 298

moving around windows in Debug
Tool 63

moving the cursor, Debug Tool 64
MSGID, QUERY commnd 309
MSGID, SET command 330
multilanguage programs, using with

Debug Tool 151
multiline commands

continuation character, using in 205
without continuation character 206

multiple enclaves
ending Debug Tool 122
interlanguage communication

application, debugging 154
invoking 121
using breakpoints 122

multitasking 127
definition 451
restrictions 127

MVS
TSO command 352

MVS, invoking Debug Tool under 47

N
NAMES, LIST command 291
NATIONAL LANGUAGE, QUERY

commnd 309
NATIONAL LANGUAGE, SET

command 331
navigating session panel windows 63
nonconversational, definition 451
nondate, definition 451
NONE suboption of TEST run-time

option 28
NOPROMPT suboption of TEST run-time

option 29
NOTEST suboption of TEST run-time

option 27, 33
null command 300
NUMBERS, LIST STATEMENT

command 294
NUMBERS, SET LOG command 330
NUMBERS, SET MONITOR

command 330

O
objects

C/C++, scope of 168
OCCURRENCE, AT command 237
ON, LIST command (PL/I) 293
ON command (PL/I) 300
OPEN, WINDOW command 356
OpenEdition 127
opening Debug Tool session panel

windows 115
operators and operands for C 164
OPTIMIZE compiler option 374
Options, definition 451
options module, CEEUOPT

run-time 130
output

C++, capturing to stdout 88
C, capturing to stdout 77

overloaded operator 178
overwrite errors, finding storage

in C 79
in C++ 90
in COBOL 102
in PL/I 110

P
PACE, QUERY commnd 309
PACE, SET command 332

panel
header fields, session 55
Profile 117
Source Identification 302

PANEL command
definition 451

PANEL command (full-screen mode)
changing session panel colors and

highlighting 116
description 302

paragraph trace, generating a COBOL
run-time 101

parameter, definition 451
partitioned data set (PDS),

definition 452
PATH, AT command 240
path point

definition 452
differences between languages 240

PDS (partitioned data set),
definition 452

PERFORM command (COBOL)
description 304

performance, improving Debug Tool 373
PF keys

defining 113
using 62

PFKEY, SET command 332
PFKEYS, QUERY commnd 309
PL/I

%GENERATION built-in
function 359

%HEX built-in function 359
%INSTANCES built-in function 360
%RECURSION built-in function 361
%STORAGE built-in function 227
built-in functions 200
commands

ANALYZE 218
assignment 219
AT ALLOCATE 222
BEGIN 243
DECLARE 261
DO 267
IF 282
LIST ON 293
ON 300
SELECT 315

condition handling 197
constants 200
debugging a program in full-screen

mode
displaying raw storage 108
finding storage overwrite

errors 110
getting a function traceback 109
halting on line if condition is

true 108
modifying value of variable 107
setting a breakpoint to halt 106
setting breakpoint to halt 111
tracing run-time path for code

compiled with TEST 109
when not all parts compiled with

TEST 108
expressions 200
notes on using 204

460 Debug Tool User’s Guide and Reference

PL/I (continued)
run-time options

for OS PL/I 36
sample program for debugging 103
session variables 198
SET WARNING 342
statements 195
structures, accessing 199

PLITEST 44
point of view, changing

description 149
for C/C++ 174
with COBOL 193

positioning lines at top of windows 65
preference file 26, 140
preferences file 25

customizing with 120
preferences_file_designator suboption of

TEST run-time option 30
prefix area

Debug Tool 59
Prefix area

definition 452
prefix commands

AT 241
CLEAR 254
description 306
DISABLE 266
ENABLE 270
prefix area on session panel 59
QUERY 310
SHOW 344
using in Debug Tool 61

preparing for debugging 5
previous commands, retrieving 63
primary entry point, definition 450
procedure, CALL 251
procedure, definition 452
PROCEDURE command 306
PROCEDURES, LIST command 293
process, definition 452
PROFILE, PANEL command 452
profile settings, changing in Debug

Tool 117
profilea, def 452
program

CICS, debugging 134
DB2, debugging 128
definition 452
hook

compiling with, C 8
compiling with, COBOL 14
compiling with, PL/I 18
description 6
removing 373, 374
rules for placing 11, 13

IMS, debugging 132
invoking for a debug session 46
multitasking, debugging 127
preparation

considerations, size and
performance 373, 374

TEST compiler option, for C 8
TEST compiler option, for C++ 12
TEST compiler option, for

COBOL 14

program (continued)
preparation (continued)

TEST compiler option, for
PL/I 18

reducing size 373
source, displaying with Debug

Tool 56
stepping through 69
unit, definition 452
USS, debugging 128
variables

accessing for C/C++ 158
variables, accessing for COBOL 185

program variable, definition 452
PROGRAMMING LANGUAGE, QUERY

commnd 309
PROGRAMMING LANGUAGE, SET

command 333
PROMPT, QUERY commnd 309
PROMPT, SET command 335
PROMPT suboption of TEST run-time

option 29
pseudo-conversational transaction,

definition 452
PX constant (PL/I) 207

Q
QQUIT command 311
qualification

definition 452
description, for C/C++ 173
general description 147

QUALIFY, QUERY commnd 309
qualifying variables

with COBOL 191
QUERY command 307
QUERY prefix 310
QUIT command 311

R
range of statements, specifying 213
record, definition 452
record format, definition 452
recording

number of times each source line
runs 68

session with the log file 66
recording a debug session 58
reference

definition 452
description 212

REFRESH, QUERY commnd 309
REGISTERS, LIST command 293
remote debug mode 3

using Debug Tool in 126
removing statement and symbol

tables 373, 374
repeating breakpoints 221
requirements

for debugging CICS programs 134
reserved keywords

for C 163
for COBOL 185

restrictions
arithmetic expressions, for

COBOL 189
expression evaluation, for

COBOL 189
string constants in COBOL 190
when debugging multilanguage

applications 127
when debugging under CICS 143
when using a continuation

character 184
when using TEST 9, 13

RETRIEVE command
description 312
using 63

retrieving commands
with RETRIEVE command 63

retrieving lines from Log or Source
windows 63

return to point of execution 336
REWRITE, QUERY commnd 310
REWRITE, SET command 337
RIGHT, SCROLL command 64
run, definition 452
RUN subcommand 131
run time

definition 452
environment, displaying attributes

of 172
option, TEST(ERROR, ...), for

PL/I 198
options module, CEEUOPT 130

run-time environment, definition 452
run unit, definition 452
running a program 69
RUNTO command 312

S
save file 25
SBCS (single-byte character set),

definition 453
scope of objects in C/C++ 168
SCREEN, QUERY commnd 310
SCREEN, SET command 337
SCROLL, SET DEFAULT command 322
scroll area, Debug Tool 59
SCROLL command

description 314
using 63

SCROLL DISPLAY, QUERY
commnd 310

searching for characters or strings 65
secondary logical unit, definition 452
SELECT command (PL/I) 315
semantic error, definition 452
separate debug file, finding renamed 70
sequence number, definition 452
session

variables, for PL/I 198
session panel

changing colors and highlighting
in 116

changing window layout 114
command line 59
description 54
header fields 55

Index 461

session panel (continued)
navigating 63
opening and closing windows 115
order in which Debug Tool accepts

commands from 60
PF keys

initial settings 62
using 62

windows
scrolling 64

session settings
changing in Debug Tool 113

session variable
definition 453

session variable, definition 453
session variables

declaring, for COBOL 188
SET commands

SET CHANGE 318
SET COLOR 318
SET command (COBOL)

description 343
SET COUNTRY 320
SET DBCS 321
SET DEFAULT LISTINGS 321
SET DEFAULT SCROLL

description 322
using 56

SET DEFAULT WINDOW 323
SET DYNDEBUG 323
SET ECHO 324
SET EQUATE

description 325
using 113

SET EXECUTE 326
SET FREQUENCY 326
SET HISTORY 327
SET INTERCEPT

description 327
using with C/C++ programs 166

SET KEYS 328
SET LOG 329
SET LOG NUMBERS 330
SET MONITOR NUMBERS 330
SET MSGID 330
SET NATIONAL LANGUAGE 331
SET PACE 332
SET PFKEY

description 332
using in Debug Tool 62

SET PROGRAMMING
LANGUAGE 333

SET PROMPT 335
SET QUALIFY

description 335
using, for C/C++ 174
using with COBOL 193

SET REFRESH
description 336
using 127

SET REWRITE 337
SET SCREEN 337
SET SCROLL DISPLAY

description 338
using 56

SET SOURCE 338
SET SUFFIX 340

SET commands (continued)
SET TEST 340
SET WARNING

description 342
using with PL/I 201

summary 316
SETS, QUERY commnd 310
setting

line breakpoint 68
setting breakpoints, in C++ 178
settings

changing Debug Tool profile 117
changing Debug Tool session 113

SHOW prefix command 344
single-byte character set (SBCS),

definition 453
single terminal mode (CICS) 135
size, reducing program 373
SIZE, WINDOW command 356
sizing session panel windows 115
SLU, definition 453
source

definition 453
source, program

displaying with Debug Tool 56
SOURCE, QUERY commnd 310
SOURCE, SET command 338
source file, finding renamed 70
source file in window, changing 65
Source Identification panel, Debug

Tool 302
source window

definition 453
Source window

changing source files 65
description 56
displaying halted location 66
retrieving lines from 63

starting a full-screen debug session 53
STATEMENT, AT command 241
statement_id, description 212
statement_id_range, description 212
statement_label, description 213
STATEMENT NUMBERS, LIST

command 294
statement tables, removing 373, 374
statements

PL/I 195, 198
specifying a range 213

STATEMENTS, LIST command 295
static

definition 453
stdout, capturing output to

in C 77
in C++ 88

step, definition 453
STEP command

description 345
stepping

through a program 69
through C++ programs 177

stmt_id_spec, description 212
storage

classes, for C 169
definition 453

storage, raw
C++, displaying 89

storage, raw (continued)
C, displaying 77
COBOL, displaying 99
PL/I, displaying 108

storage errors, finding
overwrite

in C 79
in C++ 90
in COBOL 102
in PL/I 110

uninitialized
in C 80
in C++ 91

string
searching for 274

string substitution, using 113
strings

C++, displaying 89
C, displaying 77
searching for in a window 65

subroutine, definition 453
subset mode, CMS 255
substitution, using string 113
SUFFIX, QUERY commnd 310
SUFFIX, SET command 340
suffix area, definition 453
switch command (C/C++) 347
symbol tables, removing 373, 374
syntactic analysis, definition 453
syntax

definition 453
error, definition 453

syntax, common elements 208
SYSTCPD 32
SYSTEM command 349
system commands, issuing, Debug

Tool 60

T
tcpip_workstation_id suboption of TEST

run-time option 31
template in C++ 178
terminal_id suboption of TEST run-time

option 30
TERMINATION, AT command 242
terminology, Debug Tool 3
TEST, QUERY commnd 310
TEST, SET command 340
TEST compiler option

debugging C++ when only a few
parts are compiled with 87

debugging C when only a few parts
are compiled with 76

debugging COBOL when only a few
parts are compiled with 98

debugging PL/I when only a few
parts are compiled with 108

for C 8
for C++ 12
for COBOL 14
for DB2 129
for PL/I 18
preparing for debugging 5
restrictions 9
using #pragma statement to

specify 11

462 Debug Tool User’s Guide and Reference

TEST compiler option (continued)
using for IMS 133

TEST run-time option
as parameter on RUN

subcommand 131
for PL/I 198
specifying with #pragma 37
suboption processing order 33

TEST suboption of TEST run-time
option 28

this pointer, in C++ 87
thread, definition 453
thread id, definition 453
token, definition 453
trace, generating a COBOL run-time

paragraph 101
traceback, COBOL routine 99
traceback, function

in C 78
in C++ 89
in PL/I 109

tracing run-time path
in C 78
in C++ 90
in COBOL 100
in PL/I 109

TRAP, Language Environment run-time
option 71, 149

TRIGGER command 350
trigraphs

definition 453
using with C 204

TSO, invoking Debug Tool under 47
TSO command

using to debug DB2 program 131
TSO command (MVS)

description 352

U
uninitialized storage errors, finding

in C 80
in C++ 91

unsupported
HLL modules, coexistence with 155
PL/I language elements 201

UP, SCROLL command 64
USE command 353
USE file 33
using Debug Tool

finding renamed source, listing, or
separate debug file 70

USS
using Debug Tool with 128

utility, definition 453

V
VADAPPC& suboption of TEST run-time

option 31
VADTCPIP& suboption of TEST run-time

option 31
values

assigning to C/C++ variables 159
assigning to COBOL variables 185

variable
modifying value

in C 75
in C++ 85
in COBOL 96
in PL/I 107

value, displaying 69
variables

accessing program, for C/C++ 158
accessing program, for COBOL 185
assigning values to, for C/C++ 159
assigning values to, for COBOL 185
compatible attributes in multiple

languages 153
DBCS, assigning new value to 298
definition 453
displaying, for C/C++ 158
displaying, for COBOL 186
HLL 146
modifiable Debug Tool

%EPRn 366
%FPRn 367
%GPRn 367
%LPRn 369

nonmodifiable Debug Tool
%ADDRESS 364
%AMODE 365
%BLOCK 365
%CAADDRESS 365
%CONDITION 365
%COUNTRY 366
%CU 366
%EPA 366
%HARDWARE 368
%LINE 368
%LOAD 369
%NLANGUAGE 370
%PATHCODE 370
%PLANGUAGE 370
%PROGRAM 366, 370
%RC 370
%RUNMODE 371
%STATEMENT 368
%SUBSYSTEM 371
%SYSTEM 371

qualifying 147
removing 251
session

declaring, for C/C++ 160
session, for PL/I 198

viewing and modifying data members in
C++ 87

Virtual Telecommunications Access
Method (VTAM), definition 453

VTAM, definition 453
VTAM_LU_id suboption of TEST

run-time option 30

W
warning, for PL/I 201
WARNING, QUERY commnd 310
what’s new in this edition xv
while command (C/C++) 354
window, error numbers in 70
WINDOW, SET DEFAULT

command 323

WINDOW command
CLOSE 355
description 355
OPEN 356
SIZE 356
ZOOM 357

window id area, Debug Tool 60
windowed date field, definition 453
windows, Debug Tool session panel

changing configuration 114
opening and closing 115
resizing 115
zooming 116

word wrap, definition 453
workstation debugging

%port_id suboption 31
%session_id suboption 31
appc_workstation_id suboption 31
tcpip_workstation_id suboption 31
VADAPPC& suboption 31
VADTCPIP& suboption 31

Z
ZOOM, WINDOW command 357
zooming a window, Debug Tool 116

Index 463

464 Debug Tool User’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

Debug Tool
User’s Guide and Reference
Release 2

Publication No. SC09-2137-09

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC09-2137-09

SC09-2137-09

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Departmnet HHX/H3
International Business Machines Corporation
P.O. Box 49023
San Jose, CA 95161-9023

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2137-09

	Contents
	About this book
	Who might use this book
	Accessing licensed books on the Web
	How this book is organized
	Using LookAt to look up message explanations
	How to read the syntax diagrams
	Arrow symbols
	Conventions
	Required items
	Optional items
	Multiple required or optional items
	Repeatable items
	Default keywords

	Summary of changes
	Chapter 1. Debug Tool - overview
	Debug Tool interfaces
	Differences between Debug Tool environments
	Terms used in Debug Tool

	Chapter 2. Preparing your program for debugging
	Considerations before compiling and debugging
	Authorized Debug Facility
	How to use the Authorized Debug Facility

	Compiling a C program with the TEST compiler option
	C TEST compiler option
	Placing compiled-in hooks for functions and nested blocks
	Placing compiled-in hooks for statements and path points

	Using C/C++ #pragma to specify the TEST compiler option

	Compiling a C++ program with the TEST compiler option
	Placing compiled-in hooks for functions and nested blocks
	Placing compiled-in hooks for statements and path points

	Compiling a COBOL program with the TEST compiler option
	Compiling a PL/I program with the TEST compiler option

	Chapter 3. Beginning a debug session
	Data sets used by Debug Tool
	Invoking Debug Tool using the TEST run-time option
	TEST run-time option
	TEST run-time option usage notes
	Defining TEST suboptions in your program
	Suboptions and NOTEST
	Implicit breakpoints
	Primary commands file and USE file
	Running in batch mode
	Invoking Debug Tool at different points
	Session log

	Precedence of Language Environment run-time options
	Example: TEST run-time options
	Specifying additional run-time options with VS COBOL II and OS PL/I applications
	Specifying the STORAGE run-time option
	Specifying the TRAP(ON) run-time option

	Specifying TEST run-time option with #pragma runopts in C/C++

	Invoking Debug Tool from a program
	Invoking Debug Tool with CEETEST
	Usage notes

	Example: using CEETEST to invoke Debug Tool from C/C++
	Example: using CEETEST to invoke Debug Tool from COBOL
	Example: using CEETEST to invoke Debug Tool from PL/I
	Invoking Debug Tool with PLITEST
	Invoking Debug Tool with the __ctest() function

	Invoking your program when starting a debug session
	Invoking Debug Tool under CICS
	Invoking Debug Tool under MVS in TSO
	Invoking Debug Tool under CMS
	Invoking Debug Tool in batch

	Chapter 4. Debugging your programs in full-screen mode
	Starting a full-screen debug session
	Ending a full-screen debug session
	Debug Tool session panel
	Session panel header
	Source window
	Monitor window
	Log window

	Entering commands on the session panel
	Order in which Debug Tool accepts commands from the session panel
	Using the session panel command line
	Issuing system commands
	Using prefix commands on specific lines or statements
	Using commands that are sensitive to the cursor position
	Using Program Function (PF) keys to enter commands
	Initial PF key settings
	Retrieving previous commands
	Retrieving commands from the Log and Source windows

	Navigating through Debug Tool session panel windows
	Moving the cursor between windows
	Scrolling the windows
	Scrolling to a particular line number
	Finding a string in a window
	Changing which source file appears in the Source window
	For C/C++ only
	For COBOL and PL/I only

	Displaying the line at which execution halted

	Recording your debug session in a log file
	Creating the log file
	Recording how many times each source line runs

	Setting breakpoints to halt your program at a line
	Stepping through or running your program
	Displaying and monitoring a variable's value
	Displaying error numbers for messages in the Log window
	Finding a renamed source, listing or separate debug file
	Requesting an attention interrupt during interactive sessions
	Debugging a C program in full-screen mode
	Example: sample C program for debugging
	Halting when certain functions are called in C
	Modifying the value of a C variable
	Halting on a line in C only if a condition is true
	Debugging C when only a few parts are compiled with TEST
	Capturing C output to stdout
	Calling a C function from Debug Tool
	Displaying raw storage in C
	Debugging a C DLL
	Getting a function traceback in C
	Tracing the run-time path for C code compiled with TEST
	Finding unexpected storage overwrite errors in C
	Finding uninitialized storage errors in C
	Halting before calling a NULL C function

	Debugging a C++ program in full-screen mode
	Example: sample C++ program for debugging
	Halting when certain functions are called in C++
	Modifying the value of a C++ variable
	Halting on a line in C++ only if a condition is true
	Viewing and modifying data members of the this pointer in C++
	Debugging C++ when only a few parts are compiled with TEST
	Capturing C++ output to stdout
	Calling a C++ function from Debug Tool
	Displaying raw storage in C++
	Debugging a C++ DLL
	Getting a function traceback in C++
	Tracing the run-time path for C++ code compiled with TEST
	Finding unexpected storage overwrite errors in C++
	Finding uninitialized storage errors in C++
	Halting before calling a NULL C++ function

	Debugging a COBOL program in full-screen mode
	Example: sample COBOL program for debugging
	Halting when certain routines are called in COBOL
	Modifying the value of a COBOL variable
	Halting on a COBOL line only if a condition is true
	Debugging COBOL when only a few parts are compiled with TEST
	Capturing COBOL I/O to the system console
	Displaying raw storage in COBOL
	Getting a COBOL routine traceback
	Tracing the run-time path for COBOL code compiled with TEST
	Generating a COBOL run-time paragraph trace
	Finding unexpected storage overwrite errors in COBOL
	Halting before calling an invalid program in COBOL

	Debugging a PL/I program in full-screen mode
	Example: sample PL/I program for debugging
	Halting when certain PL/I functions are called
	Modifying the value of a PL/I variable
	Halting on a PL/I line only if a condition is true
	Debugging PL/I when only a few parts are compiled with TEST
	Displaying raw storage in PL/I
	Getting a PL/I function traceback
	Tracing the run-time path for PL/I code compiled with TEST
	Finding unexpected storage overwrite errors in PL/I
	Halting before calling an undefined program in PL/I

	Chapter 5. Customizing your full-screen session
	Defining PF keys
	Defining a symbol for commands or other strings
	Customizing the layout of windows on the session panel
	Opening and closing session panel windows
	Resizing session panel windows
	Zooming a window to occupy the whole screen

	Customizing session panel colors
	Customizing profile settings
	Saving customized settings in a preferences files

	Chapter 6. Debugging across multiple processes and enclaves
	Invoking Debug Tool within an enclave
	Viewing Debug Tool windows across multiple enclaves
	Using breakpoints within multiple enclaves
	Ending a Debug Tool session within multiple enclaves
	Using Debug Tool commands within multiple enclaves

	Chapter 7. Using Debug Tool in different modes and environments
	Using Debug Tool in line mode
	Commands you can use in line mode
	Getting help during a line-mode session

	Using Debug Tool in batch mode
	Using Debug Tool in remote debug mode
	Debugging multitasking programs
	Multitasking applications require UNIX System Services R2
	Restrictions when debugging multitasking applications

	Debugging ISPF applications
	Debugging UNIX System Services (USS) programs
	Debugging MVS POSIX programs

	Debugging DB2 programs
	Considerations for debugging DB2 programs
	Preparing DB2 programs for debugging
	Precompiling DB2 programs for debugging
	Compiling DB2 programs for debugging
	Linking DB2 programs for debugging
	Binding DB2 programs for debugging
	Debugging DB2 programs in batch mode
	Debugging DB2 programs in interactive mode

	Debugging IMS programs
	Compiling IMS programs for debugging
	Linking IMS programs for debugging
	Debugging IMS programs in interactive mode
	Debugging IMS programs in batch mode
	Using alternative methods of command input under IMS

	Debugging CICS programs
	Debug modes under CICS
	Invoking Debug Tool under CICS
	Using DTCN to invoke Debug Tool for CICS programs
	Preparing your application to invoke Debug Tool using DTCN
	Creating and storing a DTCN profile
	DTCN data entry verification

	Using DTCN repository profile items at runtime
	Sharing DTCN repository profile items among CICS systems
	Using CEEUOPT to invoke Debug Tool under CICS
	Using compiler directives to invoke Debug Tool under CICS
	Using CEDF to invoke Debug Tool under CICS
	Restrictions when debugging under CICS

	Chapter 8. Debug Tool support of programming languages
	Debug Tool evaluation of HLL expressions
	Debug Tool interpretation of HLL variables and constants
	HLL variables
	HLL constants

	Debug Tool commands that resemble HLL commands
	Qualifying variables and changing the point of view
	Qualifying variables
	Changing the point of view

	Handling conditions and exceptions in Debug Tool
	Handling conditions in Debug Tool
	When a condition can occur
	When a condition occurs

	Handling exceptions within expressions (C/C++ and PL/I only)

	Debugging multilanguage applications
	Debugging an application fully supported by Language Environment
	Debugging an application partially supported by Language Environment
	Using session variables across different languages

	Debugging a multiple-enclave interlanguage communication (ILC) application
	Coexistence with other debuggers
	Coexistence with unsupported HLL modules

	Chapter 9. Debugging C/C++ programs
	Debug Tool commands that resemble C/C++ commands
	Using C/C++ variables with Debug Tool
	Accessing C/C++ program variables
	Displaying values of C/C++ variables or expressions
	Assigning values to C/C++ variables

	%PATHCODE values for C/C++
	Declaring session variables with C/C++
	C/C++ expressions
	Calling C/C++ functions from Debug Tool
	C reserved keywords
	C operators and operands
	Language Environment conditions and their C/C++ equivalents
	Debug Tool evaluation of C/C++ expressions
	Intercepting files when debugging C/C++ programs
	Scope of objects in C/C++
	Storage classes in C/C++

	Blocks and block identifiers for C
	Blocks and block identifiers for C++
	Example: referencing variables and setting breakpoints in C/C++ blocks
	Scope and visibility of objects
	Blocks and block identifiers

	Displaying environmental information
	Qualifying variables and changing the point of view in C/C++
	Qualifying variables in C/C++
	Changing the point of view in C/C++
	Example: using qualification in C under MVS
	Qualifying variables
	Changing the point of view

	Example: using qualification in C under VM
	Qualifying variables
	Changing the point of view

	Stepping through C++ programs
	Setting breakpoints in C++
	Setting breakpoints in C++ using AT ENTRY/EXIT
	Setting breakpoints in C++ using AT CALL

	Examining C++ objects
	Example: displaying attributes of C++ objects
	Displaying object attributes
	Displaying class attributes
	Displaying static data
	Displaying global data

	Monitoring storage in C++
	Example: monitoring and modifying registers and storage in C

	Chapter 10. Debugging COBOL programs
	COBOL source listing must be fixed block format
	Debug Tool commands that resemble COBOL commands
	COBOL command format
	COBOL compiler options in effect for Debug Tool commands
	COBOL reserved keywords

	Using COBOL variables with Debug Tool
	Accessing COBOL variables
	Assigning values to COBOL variables
	Example: assigning values to COBOL variables
	Displaying values of COBOL variables

	Using DBCS characters in COBOL
	%PATHCODE values for COBOL
	Declaring session variables in COBOL
	Debug Tool evaluation of COBOL expressions
	Displaying the results of COBOL expression evaluation
	Using constants in COBOL expressions

	Using Debug Tool functions with COBOL
	Using %HEX with COBOL
	Using the %STORAGE function with COBOL

	Qualifying variables and changing the point of view in COBOL
	Qualifying variables in COBOL
	Changing the point of view in COBOL

	Chapter 11. Debugging PL/I programs
	Debug Tool subset of PL/I commands
	PL/I language statements
	%PATHCODE values for PL/I
	PL/I conditions and condition handling
	Entering commands in PL/I DBCS freeform format
	Initializing Debug Tool when TEST(ERROR, ...) run-time option is in effect
	Debug Tool enhancements to LIST STORAGE PL/I command
	PL/I support for Debug Tool session variables
	Accessing PL/I program variables
	Accessing PL/I structures
	Debug Tool evaluation of PL/I expressions
	Supported PL/I built-in functions
	Using SET WARNING PL/I command with built-in functions

	Unsupported PL/I language elements

	Chapter 12. Entering Debug Tool commands
	Using uppercase, lowercase, and DBCS in Debug Tool commands
	DBCS
	Character case and DBCS in C/C++
	Character case in COBOL and PL/I

	Abbreviating Debug Tool keywords
	Entering multiline commands in full-screen and line mode
	Entering multiline commands in a command file
	Entering multiline commands without continuation
	Using blanks in Debug Tool commands
	Entering comments in Debug Tool commands
	Using constants in Debug Tool commands
	Getting online help for Debug Tool command syntax
	Common syntax elements in Debug Tool commands
	block_name syntax
	block_spec syntax
	compile_unit_name syntax
	cu_spec syntax
	expression syntax
	load_module_name syntax
	load_spec syntax
	references syntax
	statement_id syntax
	statement_id_range and stmt_id_spec syntax
	Specifying a range of statements

	statement_label syntax

	Chapter 13. Debug Tool commands
	ANALYZE command (PL/I)
	Assignment command (PL/I)
	AT command
	every_clause syntax
	AT ALLOCATE (PL/I)
	AT APPEARANCE
	AT CALL
	AT CHANGE
	AT CURSOR (full-screen mode)
	AT DATE (COBOL)
	AT DELETE
	AT ENTRY/EXIT
	AT GLOBAL
	AT LABEL
	AT LINE
	AT LOAD
	AT OCCURRENCE
	AT PATH
	AT Prefix (full-screen mode)
	AT STATEMENT
	AT TERMINATION

	BEGIN command (PL/I)
	block command (C/C++)
	break command (C/C++)
	CALL command
	CALL %DUMP
	CALL entry_name (COBOL)
	CALL procedure

	CLEAR command
	CLEAR prefix (full-screen mode)

	CMS command (VM)
	COMMENT command
	COMPUTE command (COBOL)
	CURSOR command (full-screen mode)
	Declarations (C/C++)
	Declarations (COBOL)
	DECLARE command (PL/I)
	DESCRIBE command
	DISABLE command
	DISABLE prefix (full-screen mode)

	do/while command (C/C++)
	DO command (PL/I)
	ENABLE command
	ENABLE prefix (full-screen mode)

	EVALUATE command (COBOL)
	Expression command (C/C++)
	FIND command
	for command (C/C++)
	GO command
	GOTO command
	GOTO LABEL command
	if command (C/C++)
	IF command (COBOL)
	Allowable comparisons for the IF command (COBOL)

	IF command (PL/I)
	IMMEDIATE command (full-screen mode)
	INPUT command (C/C++ and COBOL)
	LIST command
	LIST (blank)
	LIST AT
	LIST CALLS
	LIST CURSOR (full-screen mode)
	LIST expression
	LIST FREQUENCY
	LIST LAST
	LIST LINE NUMBERS
	LIST LINES
	LIST MONITOR
	LIST NAMES
	LIST ON (PL/I)
	LIST PROCEDURES
	LIST REGISTERS
	LIST STATEMENT NUMBERS
	LIST STATEMENTS
	LIST STORAGE

	MONITOR command
	MOVE command (COBOL)
	Allowable moves for the MOVE command (COBOL)

	Null command
	ON command (PL/I)
	PANEL command (full-screen mode)
	PERFORM command (COBOL)
	Prefix commands (full-screen mode)
	PROCEDURE command
	QUERY command
	QUERY prefix (full-screen mode)

	QUIT command
	QQUIT command
	RETRIEVE command (full-screen mode)
	RUN command
	RUNTO command
	RUNTO prefix command (full-screen mode)

	SCROLL command (full-screen mode)
	SELECT command (PL/I)
	SET command
	SET CHANGE
	SET COLOR (full-screen and line mode)
	SET COUNTRY
	SET DBCS
	SET DEFAULT LISTINGS (MVS)
	SET DEFAULT SCROLL (full-screen mode)
	SET DEFAULT WINDOW (full-screen mode)
	SET DYNDEBUG (COBOL for OS/390)
	SET ECHO
	SET EQUATE
	SET EXECUTE
	SET FREQUENCY
	SET HISTORY
	SET INTERCEPT (C/C++ and COBOL)
	SET KEYS (full-screen and line mode)
	SET LOG
	SET LOG NUMBERS (full-screen and line mode)
	SET MONITOR NUMBERS (full-screen and line mode)
	SET MSGID
	SET NATIONAL LANGUAGE
	SET PACE
	SET PFKEY
	SET PROGRAMMING LANGUAGE
	SET PROMPT (full-screen and line mode)
	SET QUALIFY
	SET REFRESH (full-screen mode)
	SET REWRITE
	SET SCREEN (full-screen and line mode)
	SET SCROLL DISPLAY (full-screen mode)
	SET SOURCE
	SET SUFFIX (full-screen mode)
	SET TEST
	SET WARNING (C/C++ and PL/I)

	SET command (COBOL)
	Allowable moves for the Debug Tool SET command

	SHOW prefix command (full-screen mode)
	STEP command
	switch command (C/C++)
	SYSTEM command
	TRIGGER command
	TSO command (MVS)
	USE command
	while command (C/C++)
	WINDOW command (full-screen mode)
	WINDOW CLOSE
	WINDOW OPEN
	WINDOW SIZE
	WINDOW ZOOM

	Chapter 14. Debug Tool built-in functions
	%GENERATION (PL/I)
	%HEX
	%INSTANCES (C/C++ and PL/I)
	%RECURSION (C/C++ and PL/I)

	Chapter 15. Debug Tool variables
	%ADDRESS
	%AMODE
	%BLOCK
	%CAAADDRESS
	%CONDITION
	%COUNTRY
	%CU or %PROGRAM
	%EPA
	%EPRn
	%FPRn
	%GPRn
	%HARDWARE
	%LINE or %STATEMENT
	%LOAD
	%LPRn
	%NLANGUAGE
	%PATHCODE
	%PLANGUAGE
	%PROGRAM
	%RC
	%RUNMODE
	%SUBSYSTEM
	%SYSTEM
	Attributes of Debug Tool variables in different languages

	Chapter 16. Using Debug Tool in a production mode
	Fine-tuning your programs with Debug Tool
	Removing hooks, statement tables, and symbol tables
	Using Debug Tool on optimized programs

	Chapter 17. Debug Tool messages
	Chapter 18. Notices
	Copyright license
	Programming interface information
	Trademarks and service marks

	Bibliography
	High level language publications
	Related publications
	Softcopy publications

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

