<|lI!

Debug "lool

User’s Guide and Reference

Release 2

SC09-2137-09

<|lI!

Debug "lool

User’s Guide and Reference

Release 2

SC09-2137-09

Note!
Before using this information and the product it supports, be sure to read the general

information under !Chapter 18 Notices” on page 445,

Ninth Edition (March 2001)

This edition applies to the Debug Tool feature of the following compilers:

* Version 1, Release 1, of z/OS C/C++ and z/0S Language Environment (Program Number 5694-A01)

¢ Release 4 of OS/390® C/C++ and 0OS/390 Language Environment® (Program Number 5645-001)

+ Version 1, Release 2, of IBM® COBOL for MVS & VM (Program Number 5688-197), with Version 1, Release 5 of
the IBM Language Environment for MVS & VM (Program Number 5688-198),

* Version 2, Release 1 of IBM COBOL for OS/390 & VM (Program Number 5648-A25) with Release 3 of OS/390
Language Environment (Program Number 5645-001)

* Version 1, Release 1, Modification Level 1, of the IBM PL/I for MVS & VM (Program Number 5688-235) with
Version 1, Release 4, Modification Level 0, of the IBM Language Environment for MVS & VM (Program Number
5688-198),

* Version 2, Release 2, of IBM VisualAge® PL/I for OS/390 (Program Number 5655-B22) with Version 2, Release 8,
of OS/390 (Program Number 5647-A01), including the Language Environment element

+ IBM VisualAge for Java ", Enterprise Edition for OS/390

and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.
This edition replaces SC09-2137-08.

Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, Department HHX/H3

P. O. Box 49023

San Jose, CA 95161-9023

United States of America

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments
electronically to IBM. To find out how, see “We’d Like to Hear from You” at the back of this publication.

You can find out more about Debug Tool by visiting the IBM web site for Debug Tool at:
www.ibm.com/servers/eservers/zseries/dt

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book .
Who might use this book .
Accessing licensed books on the Web
How this book is organized .
Using LookAt to look up message explanat1ons
How to read the syntax diagrams .
Arrow symbols
Conventions .
Required items .
Optional items .
Multiple required or optlonal 1tems
Repeatable items
Default keywords .

Summary of changes

Chapter 1. Debug Tool - overview.
Debug Tool interfaces .
Differences between Debug Tool env1ronments .
Terms used in Debug Tool .

Chapter 2. Preparing your program for

debugging.
Considerations before complhng and debugglng
Authorized Debug Facility. .
Compiling a C program with the TEST compller
option S e .
C TEST compller optlon
Using C/C++ #pragma to spec1fy the TEST
compiler option .

Compiling a C++ program w1th the TEST compller

option .
Placing cornplled in hooks for functlons and
nested blocks .
Placing comprled—rn hooks for statements and
path points
Compiling a COBOL program w1th the TEST
compiler option .

Compiling a PL/1 program w1th the TEST compller

option .

Chapter 3. Beginning a debug session

Data sets used by Debug Tool .
Invoking Debug Tool using the TEST run—t1me
option . . e
TEST run- tlme optlon . .
TEST run-time option usage notes

Precedence of Language Environment run—tlme

options . .
Example: TEST run- tlme optlons

Specifying additional run-time options w1th VS

COBOL II and OS PL/T applications .

Specifying TEST run-time optlon with #pragma

runopts in C/C++ .

© Copyright IBM Corp. 1995, 2001

. Xl
. xi
. xi
. xii
. Xii
. Xii
. Xxii
. xiii
. Xxiii

. XV

W W N =,

NGNS |

o)

11

.12

.13

.13

. 14

.18

23

. 24
. 26
. 26
. 33

. 34
. 35

. 36

. 37

Invoking Debug Tool from a program

Invoking Debug Tool with CEETEST . .

Example: using CEETEST to invoke Debug Tool

from C/C++ .

Example: using CEETEST to 1nvoke Debug Tool

from COBOL . .

Example: using CEETEST to 1nvoke Debug Tool

from PL/I . e

Invoking Debug Tool w1th PLITEST .

Invoking Debug Tool with the __ ctest() function
Invoking your program when starting a debug
session . .

Invoking Debug Tool under CICS

Invoking Debug Tool under MVS in TSO

Invoking Debug Tool under CMS .

Invoking Debug Tool in batch .

Chapter 4. Debugging your programs
in full-screen mode
Starting a full-screen debug session
Ending a full-screen debug session
Debug Tool session panel.
Session panel header
Source window .
Monitor window
Log window .
Entering commands on the session panel
Order in which Debug Tool accepts commands
from the session panel. .
Using the session panel command hne
Issuing system commands .
Using prefix commands on specific lines or
statements . .
Using commands that are sen51t1ve to the cursor
position .
Using Program Functlon (PF) keys to enter
commands. e
Initial PF key settmgs . .
Retrieving previous commands . .
Retrieving commands from the Log and Source
windows
Navigating through Debug Tool session panel
windows .
Moving the cursor between Wmdows
Scrolling the windows. .
Scrolling to a particular line number .
Finding a string in a window
Changing which source file appears in the Source
window
Displaying the hne at Wthh executlon halted
Recording your debug session in a log file .
Creating the log file .
Recording how many times each source hne runs
Setting breakpoints to halt your program at a line
Stepping through or running your program

. 37
. 38

. 40

.42

.43
. 44

45

. 46
. 47
. 47
.49
. 50

. 53
. 53
. 54
. 54
. 55
. 56
. 57
. 58
. 59

. 60
. 60
. 60

. 61
. 61

. 62
. 62
. 63

. 63

. 63
. 64
. 64
. 65
. 65

iii

Displaying and monitoring a variable’s value .
Displaying error numbers for messages in the Log
window .
Finding a renamed source, hstlng or separate debug
file .
Requesting an attentlon mterrupt durmg 1nteract1ve
sessions
Debugging a C program in full -screen mode
Example: sample C program for debugging
Halting when certain functions are called in C.
Modifying the value of a C variable .
Halting on a line in C only if a condition is true
Debugging C when only a few parts are
compiled with TEST .
Capturing C output to stdout .
Calling a C function from Debug Tool
Displaying raw storage in C.
Debugging a C DLL .
Getting a function traceback in C . .
Tracing the run-time path for C code complled
with TEST. .
Finding unexpected storage overwrlte errors in C
Finding uninitialized storage errors in C.
Halting before calling a NULL C function .
Debugging a C++ program in full-screen mode
Example: sample C++ program for debugging.
Halting when certain functions are called in C++
Modifying the value of a C++ variable
Halting on a line in C++ only if a condition is
true .
Viewing and modlfylng data members of the thls
pointer in C++
Debugging C++ when only a few parts are
compiled with TEST
Capturing C++ output to stdout
Calling a C++ function from Debug Tool
Displaying raw storage in C++ .
Debugging a C++ DLL .o
Getting a function traceback in C++ .
Tracing the run-time path for C++ code complled
with TEST. o
Finding unexpected storage overwrlte errors in
Ct++. . .o .
Finding un1n1t1ahzed storage errors in C++
Halting before calling a NULL C++ function
Debugging a COBOL program in full-screen mode
Example: sample COBOL program for debugging
Halting when certain routines are called in
COBOL. . .
Modifying the Value of a COBOL Varlable .
Halting on a COBOL line only if a condition is
true .
Debugging COBOL when only a few parts are
compiled with TEST .
Capturing COBOL 1/0 to the system console .
Displaying raw storage in COBOL.
Getting a COBOL routine traceback
Tracing the run-time path for COBOL code
compiled with TEST .
Generating a COBOL run-time paragraph trace

iV Debug Tool User’s Guide and Reference

. 69

. 70

. 70

.71
.71

.75
.75

76

. 76
.77
.77
.77
.77
.78

. 78

. 80
. 80
. 81
. 81

84

. 85

. 86

. 87

. 87
. 88
. 88
. 89
. 89
. 89

.90
. 90

.91
.92

92

. 95
. 96

. 97

. 98
.99
.99
.99

. 100
101

Finding unexpected storage overwrite errors in

COBOL 102
Halting before calhng an 1nva11d program in
cosoL 103

Debugging a PL/I program in full -screen mode 103
Example: sample PL/I program for debugging 103
Halting when certain PL/I functions are called 106
Modifying the value of a PL/I variable. . 107
Halting on a PL/I line only if a condition is true 108
Debugging PL/I when only a few parts are

compiled with TEST 108
Displaying raw storage in PL/ I B ()]
Getting a PL/I function traceback 109
Tracing the run-time path for PL/I code

compiled with TEST 109
Finding unexpected storage overwrlte errors in

PL/T 110
Halting before calhng an undefmed program in

o0 I 0 X

Chapter 5. Customizing your

full-screen session . . . 113
Defining PF keys 113
Defining a symbol for commands or other strmgs 113
Customizing the layout of windows on the session

panel 114
Opening and closmg session panel wmdows . 115
Resizing session panel windows 115
Zooming a window to occupy the whole screen 116

Customizing session panel colors. 116

Customizing profile settings . . . 117

Saving customized settings in a preferences fﬂes 120

Chapter 6. Debugging across multiple

processes and enclaves. 121

Invoking Debug Tool within an enclave 121

Viewing Debug Tool windows across multiple

enclaves . . . R A |

Using breakpoints w1th1n multlple enclaves .. o122

Ending a Debug Tool session within multiple

enclaveso 122

Using Debug Tool commands w1thm multrple

enclaves 122

Chapter 7. Using Debug Tool in

different modes and environments . . 125

Using Debug Tool in line mode125
Commands you can use in line mode 125
Getting help during a line-mode session . . . 126

Using Debug Tool in batch mode. 126

Using Debug Tool in remote debug mode 126

Debugging multitasking programs . 127

Multitasking applications require UNIX System

Services R2 . . 127

Restrictions when debugglng multltasklng

applications . . . 127
Debugging ISPF apphcatrons . . 127

Debugging UNIX System Services (USS) programs 128
Debugging MVS POSIX programs 128
Debugging DB2 programs 128

Considerations for debugging DB2 programs 128
Preparing DB2 programs for debugging . 129
Precompiling DB2 programs for debugging . 129
Compiling DB2 programs for debugging . . 129
Linking DB2 programs for debugging . . 130
Binding DB2 programs for debugging . . 131
Debugging DB2 programs in batch mode . . 131
Debugging DB2 programs in interactive mode 131
Debugging IMS programs . . 132
Compiling IMS programs for debugglng . 133
Linking IMS programs for debugging . . 133
Debugging IMS programs in interactive mode 133
Debugging IMS programs in batch mode . . 134
Using alternative methods of command input
under IMS . . 134
Debugging CICS programs . 134
Debug modes under CICS . . 135
Invoking Debug Tool under CICS . . 136
Using DTCN to invoke Debug Tool for CICS
programs. . . 136
Preparing your apphcatlon to 1nvoke Debug
Tool using DTCN . . . 137
Creating and storing a DTCN proflle . 137
Using DTCN repository profile items at runtime 141
Sharing DTCN repository profile items among
CICS systems . 141
Using CEEUOPT to 1nvoke Debug Tool under
CICS . . 141
Using compiler dlrectrves to 1nvoke Debug Tool
under CICS . . . 142
Using CEDF to invoke Debug Tool under CICS 142
Restrictions when debugging under CICS . . 143
Chapter 8. Debug Tool support of
programming languages . 145
Debug Tool evaluation of HLL expressions . 145
Debug Tool interpretation of HLL variables and
constants . . . 146
HLL variables . . 146
HLL constants . . . 146
Debug Tool commands that resemble HLL
commands . . 146
Qualifying variables and changlng the pomt of
view 147
Quahfylng Varlables . . 147
Changing the point of view . 149
Handling conditions and exceptions in Debug Tool 149
Handling conditions in Debug Tool . . 150
Handling exceptions within expressions (C/ C++
and PL/I only) . . 151
Debugging multilanguage apphcatlons . 151
Debugging an application fully supported by
Language Environment . . . 152
Debugging an application partlally supported
by Language Environment . . 152
Using session variables across drfferent
languages . . 153
Debugging a multlple enclave 1nter1anguage
communication (ILC) application . . 154
Coexistence with other debuggers . 154
Coexistence with unsupported HLL modules . 155

Chapter 9. Debugging C/C++
programs . . .
Debug Tool commands that resemble C / C++
commands . .
Using C/C++ varlables w1th Debug Tool .
Accessing C/C++ program variables
Displaying values of C/C++ variables or
expressions . .
Assigning values to C / C++ varlables
%PATHCODE values for C/C++ .
Declaring session variables with C/C++
C/C++ expressions
Calling C/C++ functions from Debug Tool
C reserved keywords. e
C operators and operands . . .
Language Environment conditions and thelr
C/C++ equivalents .
Debug Tool evaluation of C/ C++ expressmns
Intercepting files when debugglng C/C++
programs. . .
Scope of objects in C/ C++ .
Storage classes in C/C++
Blocks and block identifiers for C
Blocks and block identifiers for C++.
Example: referencing variables and setting
breakpoints in C/C++ blocks .
Scope and visibility of objects .
Blocks and block identifiers
Displaying environmental information .
Qualifying variables and changlng the p01nt of
view in C/C++. . .
Qualifying variables in C / C++
Changing the point of view in C/C++ .

Example: using qualification in C under MVS
Example: using qualification in C under VM

Stepping through C++ programs .
Setting breakpoints in C++ .
Setting breakpoints in C++ using AT
ENTRY/EXIT
Setting breakpoints in C++ usmg AT CALL
Examining C++ objects .

Example: displaying attrlbutes of C++ ob]ects

Monitoring storage in C++ .

Example: monitoring and modlfymg reglsters

and storage in C

Chapter 10. Debugging COBOL
programs .

COBOL source listing must be f1xed block format

Debug Tool commands that resemble COBOL
commands . P
COBOL command format

COBOL compiler options in effect for Debug

Tool commands

COBOL reserved keywords .
Using COBOL variables with Debug Tool

Accessing COBOL variables .o

Assigning values to COBOL variables .

Example: assigning values to COBOL variables

Displaying values of COBOL variables .

Contents

. 157

. 157
. 158
. 158

. 158
. 159
. 160
. 160
. 161
. 162
. 163
. 164

. 164
. 165

. 166
. 168
. 169
. 170
. 171

. 171
. 172
. 172
. 172

. 173
. 173
. 174

174
176

. 177
. 178

. 178
. 178
. 179

179

. 180

. 180

. 183

183

. 183
. 184

. 184
. 185
. 185
. 185
. 185

186

. 186

\'%

Using DBCS characters in COBOL
%PATHCODE values for COBOL.

Declaring session variables in COBOL .
Debug Tool evaluation of COBOL expressions

Displaying the results of COBOL expression

evaluation . .

Using constants in COBOL expresswns
Using Debug Tool functions with COBOL .

Using %HEX with COBOL . .

Using the %STORAGE function with COBOL
Qualifying variables and changing the point of
view in COBOL o

Qualifying variables in COBOL

Changing the point of view in COBOL .

Chapter 11. Debugging PL/I programs
Debug Tool subset of PL/I commands .

PL/I language statements . .
%PATHCODE values for PL/I.

PL/I conditions and condition handling

Entering commands in PL/I DBCS freeform format

Initializing Debug Tool when TEST(ERROR, ...)
run-time option is in effect .

Debug Tool enhancements to LIST STORAGE PL /1

command . .
PL/I support for Debug Tool session Varlables .
Accessing PL/I program variables
Accessing PL/I structures . .
Debug Tool evaluation of PL/I expresswns
Supported PL/I built-in functions
Using SET WARNING PL/I command w1th
built-in functions . . .
Unsupported PL/I language elements .

Chapter 12. Entering Debug Tool
commands
Using uppercase, lowercase, and DBCS in Debug
Tool commands L
DBCS . .
Character case and DBCS in C / C++
Character case in COBOL and PL/I .
Abbreviating Debug Tool keywords . .
Entering multiline commands in full-screen and
line mode -
Entering multiline commands in a command flle

Entering multiline commands without continuation
. 206
. 206
. 207

Using blanks in Debug Tool commands
Entering comments in Debug Tool commands
Using constants in Debug Tool commands.
Getting online help for Debug Tool command
syntax.
Common syntax elements in Debug Tool
commands

block_name syntax

block_spec syntax . .

compile_unit_name syntax .

cu_spec syntax .

expression syntax . .

load_module_name syntax .

load_spec syntax

Vi Debug Tool User’s Guide and Reference

. 187
. 187
. 188
. 189

. 189
. 190
. 190
. 190

190

. 191
. 191
. 193

195

. 195
. 195
. 196

. 197
198

. 198

. 198
. 198
. 198
. 199
. 200
. 200

. 201
. 201

. 203

. 203
. 203
. 204
. 204
. 204

. 205

205
206

. 207

. 208
. 208
. 209
. 209
. 210
. 210
. 211
. 211

references syntax .

statement_id syntax .

statement_id_range and stmt_: 1d spec syntax
statement_label syntax

Chapter 13. Debug Tool commands
ANALYZE command (PL/I)
Assignment command (PL/I) .
AT command

every_clause syntax .

AT ALLOCATE (PL/T)

AT APPEARANCE

AT CALL.

AT CHANGE .

AT CURSOR (full-screen mode)

AT DATE (COBOL)

AT DELETE .

AT ENTRY/EXIT .

AT GLOBAL

AT LABEL

AT LINE .

AT LOAD

AT OCCURRENCE

AT PATH. .

AT Prefix (full-screen mode)

AT STATEMENT .

AT TERMINATION
BEGIN command (PL/T)
block command (C/C++)
break command (C/C++)
CALL command

CALL %DUMP.

CALL entry_name (COBOL)

CALL procedure .
CLEAR command . .

CLEAR prefix (full-screen mode)
CMS command (VM).
COMMENT command .
COMPUTE command (COBOL)
CURSOR command (full-screen mode) .
Declarations (C/C++)
Declarations (COBOL)
DECLARE command (PL/I)
DESCRIBE command .
DISABLE command .

DISABLE prefix (full—screen mode)
do/while command (C/C++) .
DO command (PL/T) .
ENABLE command

ENABLE prefix (full-screen mode)
EVALUATE command (COBOL) .
Expression command (C/C++)
FIND command
for command (C/C++)
GO command .
GOTO command . .
GOTO LABEL command
if command (C/C++).
IF command (COBOL)

Allowable comparisons for the IF command

(COBOL).

. 212
. 212

212

. 213

215

. 218
. 219
. 220
. 221
. 222
. 223
. 225
. 226
. 229
. 230
. 231
. 231
. 232
. 234
. 236
. 236
. 237
. 240
. 241
. 241
. 242
. 243
. 244
. 245
. 245
. 246
. 250
. 251
. 251
. 254
. 255
. 255
. 256
. 257
. 257
. 260
. 261
. 263
. 265
. 266
. 267
. 267
. 270
. 270
. 271
. 272
. 273
. 275
. 276
. 276
. 277
. 279
. 279

. 280

IF command (PL/T) .
IMMEDIATE command (full-screen mode)
INPUT command (C/C++ and COBOL)
LIST command . .o .

LIST (blank).

LIST AT .

LIST CALLS.

LIST CURSOR (full-screen mode)

LIST expression .

LIST FREQUENCY

LIST LAST . .

LIST LINE NUMBERS

LIST LINES .

LIST MONITOR

LIST NAMES

LIST ON (PL/T)

LIST PROCEDURES .

LIST REGISTERS . .

LIST STATEMENT NUMBERS

LIST STATEMENTS .

LIST STORAGE
MONITOR command. .

MOVE command (COBOL). .
Allowable moves for the MOVE command
(COBOL) .

Null command . .

ON command (PL/I). .

PANEL command (full-screen mode)

PERFORM command (COBOL)

Prefix commands (full-screen mode).

PROCEDURE command.

QUERY command . .

QUERY prefix (full-screen mode)

QUIT command .

QQUIT command . .

RETRIEVE command (full screen mode)

RUN command. e

RUNTO command .

RUNTO prefix command (full-screen mode)
SCROLL command (full-screen mode) .
SELECT command (PL/I)

SET command . .o
SET CHANGE . .

SET COLOR (full-screen and hne mode)

SET COUNTRY Coe

SET DBCS .

SET DEFAULT LISTINGS (MVS) .

SET DEFAULT SCROLL (full-screen mode)

SET DEFAULT WINDOW (full-screen mode)

SET DYNDEBUG (COBOL for OS/ 390)
SET ECHOo
SET EQUATE

SET EXECUTE .

SET FREQUENCY.

SET HISTORY . .

SET INTERCEPT (C/C++ and COBOL)
SET KEYS (full-screen and line mode)

SET LOG. . .
SET LOG NUMBERS (full screen and 11ne
mode) . e

. 282
. 283
. 283
. 284
. 285
. 285
. 287
. 288
. 288
. 289
. 290
. 290
. 291
. 291
. 291
. 293
. 293
. 293
. 294
. 295
. 295
. 296
. 298

. 299
. 300
. 300
. 302
. 304
. 306
. 306
. 307
. 310
. 311
. 311
. 312
. 312
. 312
. 313
. 314
. 315
. 316
. 318
. 318
. 320
. 321
. 321
. 322

323

. 323
. 324
. 325
. 326
. 326
. 327
. 327
. 328
. 329

. 330

SET MONITOR NUMBERS (full-screen and line

mode) .

SET MSGID .

SET NATIONAL LANGUAGE

SET PACE

SET PFKEY . .

SET PROGRAMMING LANGUAGE

SET PROMPT (full-screen and line mode) .

SET QUALIFY . .

SET REFRESH (full-screen mode)

SET REWRITE . .

SET SCREEN (full-screen and llne mode)

SET SCROLL DISPLAY (full-screen mode).

SET SOURCE .
SET SUFFIX (full-screen mode)
SET TEST
SET WARNING (C/ C++ and PL / I)
SET command (COBOL). .
Allowable moves for the Debug Tool SET
command
SHOW prefix command (full screen mode)
STEP command .o
switch command (C/C++) .
SYSTEM command
TRIGGER command .
TSO command (MVS)
USE command .
while command (C/C++) .
WINDOW command (full-screen mode)
WINDOW CLOSE. .o
WINDOW OPEN .
WINDOW SIZE
WINDOW ZOOM .

Chapter 14. Debug Tool built-in
functions .

%GENERATION (PL /1)

%HEX.

%INSTANCES (C /C+ and PL/I)
%RECURSION (C/C++ and PL/T)

Chapter 15. Debug Tool variables.
%ADDRESS .

%AMODE

%BLOCK .
%CAAADDRESS .
%CONDITION .
%COUNTRY

%CU or %PROGRAM
%EPA .

%EPRn

%FPRn

%GPRn

%HARDWARE . .
%LINE or %STATEMENT .
%LOAD .

%LPRn .
%NLANGUAGE
%PATHCODE .
%PLANGUAGE

Contents

. 330
. 330
. 331
. 332
. 332
. 333
. 335
. 335
. 336
. 337
. 337
. 338
. 338
. 340
. 340
. 342
. 343

. 344
. 344
. 345
. 347
. 349
. 350
. 352
. 353
. 354
. 355
. 355
. 356
. 356
. 357

. 359
. 359
. 359
. 360
. 361

. 363
. 364
. 365
. 365
. 365
. 365
. 366
. 366
. 366
. 366
. 367
. 367
. 368
. 368
. 369
. 369
. 370
. 370
. 370

vii

%PROGRAM

%RC

%RUNMODE

%SUBSYSTEM .

%SYSTEM

Attributes of Debug Tool varlables in dlfferent
languages

Chapter 16. Using Debug Tool in a

production mode. . .
Fine-tuning your programs with Debug Tool
Removing hooks, statement tables, and symbol
tables . .

Using Debug Tool on optlmlzed programs

Chapter 17. Debug Tool messages

viii Debug Tool User’s Guide and Reference

. 370
. 370
. 371
. 371
. 371

. 372

. 373
. 373

. 374
. 374

377

Chapter 18. Notices.
Copyright license .

Programming interface 1nformat10n .

Trademarks and service marks

Bibliography. .
High level language pubhcatlons
Related publications . .
Softcopy publications.

Glossary

Index .

. 445
. 446
. 446
. 446

. 447
. 447

. 447
. 448

. 449

. 455

About this book

Debug Tool combines the richness of the z/OS, System /370", and System /390®
subsystem environments with the power of Language Environment to provide a
debugger for programmers to isolate and fix their program bugs and test their
applications. Debug Tool gives you the capability of testing programs in batch,
using a nonprogrammable terminal in full-screen or line mode, or using a
workstation interface to remotely debug your programs.

This book contains instructions and examples to help you use Debug Tool to debug
C, C++, COBOL, and PL/I applications running with Language Environment.
Topics covered include preparing your application for debugging, accomplishing
basic debugging tasks, and Debug Tool’s interaction with different programming
languages. A complete command reference section is also included.

You can begin testing with Debug Tool after learning just a few concepts:
* How to invoke it

* How to set, display, and remove breakpoints

* How to step through your program

Debug Tool commands are similar to commands from the supported high level
languages (HLLs).

Note: When MVS is used in this book, it refers to both MVS, OS/390, and z/OS
systems.

Who might use this book

This book is intended for application programmers using Debug Tool to debug
HLLs with Language Environment. Throughout this book, these languages are
referred to as C/C++, COBOL, PL/I, and compiled Java.

The following operating systems and subsystems are supported:

* z/0S, 0S/390 and MVS
- CICS®
- DB2®
- IMS
— JES/Batch
- TSO
— USS in remote debug mode or full-screen mode using a VTAM terminal only
— Websphere in remote debug mode or full-screen mode using a VTAM
terminal only

- VM
- SQL/DS

For a list of supported compiler levels and releases, please refer to the list found
on the back side of the title page.

Note: To use this book and debug a program written in one of the supported

languages, you need to know how to write, compile, and run such a
program.

© Copyright IBM Corp. 1995, 2001 ix

Accessing licensed books on the Web

z/0S licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:

hffp-//www ibm.com/servers/resourcelinkd

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:

ETITT: : Tl

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.
Click on User Profiles located on the left-hand navigation bar.

Click on Access Profile.

Click on Request Access to Licensed books.

oo

Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your
request is being processed. After your request is processed you will receive an
e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

Log on to Resource Link using your Resource Link userid and password.
Click on Library.

Click on zSeries.

Click on Software.

Click on z/OS.

Access the licensed book by selecting the appropriate element.

o0k~ wh =

How this book is organized

This book is divided into areas of similar information for easy retrieval of
appropriate information. The following list describes how the information is
grouped:

* Chapters one and two introduce Debug Tool and provide instructions on how to
prepare programs before using Debug Tool.

* Chapter three describes the different methods you can use to invoke Debug Tool.
Examples are provided to illustrate each method and to illustrate how the
method differs with each programming language.

* Chapters four and five describe how to debug programs using full-screen mode.
These chapters describe how to edit the appearance of full-screen mode, how to
navigate through full-screen, and how to debug a program in full-screen mode.
A subsection is dedicated for each high level language.

X Debug Tool User’s Guide and Reference

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

* Chapters six, seven, and eight discuss Debug Tool support for multiple process
and enclaves, debugging modes, subsystems (DB2, IMS, CICS, etc.), and
unsupported high level languages.

* Chapter nine describes how to debug C/C++ programs.
* Chapter ten describes how to debug COBOL programs.
 Chapter eleven describes how to debug PL/I programs.

¢ Chapters twelve, thirteen, fourteen, and fifteen describe the syntax of Debug
Tool commands, built-in functions, variables and how to enter them.

* Chapter sixteen describes additional methods to compile your programs to be
smaller, without losing debugging capabilities.

* The last several chapters list messages, bibliography, and glossary of terms.

Using LookAt to look up message explanations

LookAt is an online facility that allows you to look up explanations for z/OS
messages. You can also use LookAt to look up explanations of system abends. The
IBM LookAt development team is investigating other forms of reference
information, such as commands.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

e : TS 3 3]

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
the News and Help link or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following:

Tookat iecl92i
This results in direct access to the message explanation for message IEC1921I.

To find a message explanation from the LookAt Web site, simply enter the message
ID and select the release you are working with.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in '
. For such messages, LookAt prompts you to choose which
book to open.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book.

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

»—— Indicates the beginning of a statement.

About this book Xi

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xii

— Indicates that the statement syntax is continued on the next line.

»— Indicates that a statement is continued from the previous line.

—>»<« Indicates the end of a statement.

Conventions

Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase. These items must be entered exactly as shown.

Variables appear in lowercase italics (for example, column-name). They represent
user-defined parameters or suboptions.

When entering commands, separate parameters and keywords by at least one
blank if there is no intervening punctuation.

Enter punctuation marks (slashes, commas, periods, parentheses, quotation
marks, equal signs) and numbers exactly as given.

Footnotes are shown by a number in parentheses, for example, (1).

A b symbol indicates one blank position.

Required items

Required items appear on the horizontal line (the main path).

»>—REQUIRED_ITEM ><

Optional items

Optional items appear below the main path.

»>—REQUIRED_ITEM

v
A

I—optional_i 1.‘em—|

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optional_i tem—l

»>—REQUIRED_ITEM <

Multiple required or optional items

If you can choose from two or more items, they appear vertically in a stack. If you
must choose one of the items, one item of the stack appears on the main path.

»—REQUIRED_ITEM—[required_choice]_| >

required_choice2

If choosing one of the items is optional, the entire stack appears below the main
path.

Debug Tool User’s Guide and Reference

A\
A

»>—REQUIRED_ITEM
i:zptional_choicel:‘
ptional_choice2

Repeatable items

An arrow returning to the left above the main line indicates that an item can be
repeated.

»»—REQUIRED ITEM—Y—repeatable item

A\
A

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

B

»»—REQUIRED_ITEM——repeatable_item ><

A repeat arrow above a stack indicates that you can specify more than one of the
choices in the stack.

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the syntax
diagram, the default choices are underlined.

A\
A

efault choice
»»—REQUIRED_ITEM |_d _l

i:zptional_choice:l
ptional_choice

About this book Xxiii

Xiv Debug Tool User’s Guide and Reference

Summary of changes

This section describes the major changes that have been made to this manual since
the previous edition. This book includes terminology, maintenance, and editorial
changes. Technical changes are marked in the text by a change bar () in the left
margin.

Statements regarding support of z/OS operating environment have been added.

Information on debugging in full-screen mode using a VTAM terminal has been
added, including the addition of a new suboption of the MFI suboption of the
TEST runtime option.

Tables have been added to help describe the operating environment and
programming languages supported by byDebug Tool.

Information regarding the preservation of breakpoint information in DTCN
profiles while debugging CICS applications has been added.

Clarification of the acceptable formats for the COBOL source listings have been
added.

Description of a new option to the QUIT command has been added.
Clarification on how to display Japanese DBCS characters has been added.

© Copyright IBM Corp. 1995, 2001 Xv

XVi Debug Tool User’s Guide and Reference

Chapter 1. Debug Tool - overview

Debug Tool helps you test programs and examine, monitor, and control the
execution of programs written in C/C++, COBOL, PL/I, or compiled Java on an
z/0S, O5/390, MVS, or VM system. Your applications can include other languages,
but Debug Tool does not debug those portions of your application. [Cable 1, hﬁ,
and tlbble_;’_on_pa.ge_ﬂ map out the combination of compiler, subsystems, and
remote debuggers that Debug Tool supports. A current list of supported compilers
and environments is available on the Debug Tool web site at:

http://www.ibm.com/servers/eservers/zseries/dt

You can use Debug Tool to debug your programs in batch mode, interactively in
full-screen mode, in line mode using a nonprogrammable terminal, or in remote
debug mode using a workstation user interface.

Table 1. Debug Tool Inteface Type versus Compiler

Batch mode Full-screen | Remote
mode mode
AD/Cycle COBOL/370 VIR1 X X
AD/Cycle C/370 V1R2 X X
AD/Cycle PL/I MVS & VM VIR1 X X
VS COBOL IT 1.3.1, 1.3.2, & 1.4.0 (with X X
limitations)
OS PL/T121, 2.2, & 2.3 (with limitations) X X
C/C++ for MVS & VM X X
COBOL for MVS & VM X X X
COBOL for OS/390 & VM X X X
0S/390 C/C++ feature version 1.3 and X X
below
0S5/390 C/C++ feature version 2.4 and X X X
above
PL/I for MVS & VM X X
IBM VisualAge PL/I for OS/390 X X X
VisualAge for Java, Enterprise Edition for X
0S/390
IBM COBOL for VSE/ESA X X
IBM C for VSE/ESA X X
IBM PL/I for VSE/ESA X X

“Support is for OS/390 or MVS only.

Table 2. Debug Tool Inteface Type versus Subsystem

Batch mode Full-screen | Remote
mode mode
TSO X X X
JES X X

© Copyright IBM Corp. 1995, 2001 1

Table 2. Debug Tool Inteface Type versus Subsystem (continued)

Batch mode Full-screen | Remote
mode mode

USss X
CICS X X X
DB2 X X X
DB2 Stored Procedures X
IMS (TM and DB) with BTS TSO X X
Foreground

IMS (TM and DB) with BTS Batch X X
IMS without BTS IMS DB Batch X X
IMS without BTS IMS TM X

Table 3. Debug Tool VisualAge Remote Debugger versus Operating System and
Communication Protocol

VisualAge COBOL | 0S/390 C/C++ VisualAge for Java,
Enterprise for OS/2 Enterprise Edition
and Windows NT for OS/390

0S/2 4.0 and APPC | X

0S/2 4.0 and TCP/IP | X X

Windows NT 4.0 and | X X X

TCP/IP

Windows 95 and X

TCP/IP

Related concepts

4 2

ATV : ”

4 : ”

Related tasks
I’(’hapfpr 2_Preparing your program for debugging” on page G|
- — —

7 . . ”

Related references

4 ”

Debug Tool interfaces

The terms full-screen mode, line mode, batch mode, and remote debug mode are used to
describe the types of debug interfaces that Debug Tool provides. Debug Tool
supports the following interfaces:

Full-screen mode
Debug Tool provides an interactive full-screen interface on a 3270 device,
with debugging information displayed in three windows.

* A Source window in which to view your program source or listing

* A Log window, which records commands and other interactions between
Debug Tool and your program

2 Debug Tool User’s Guide and Reference

* A Monitor window in which to monitor changes in your program

You can debug all languages supported by Debug Tool in full-screen mode,
except compiled Java.

Line mode
Debug Tool provides an interactive command line interface. Enter
commands on the command line and receive debugging information, one
line at a time.

You can debug all languages and subsystems, except CICS, that are
supported in full-screen mode.

Batch mode
Debug Tool command files provide a mechanism to predefine series of
Debug Tool commands to be performed on an executing batch application.
Neither terminal input nor user interaction is available for batch debugging
of a batch application.

Remote debug mode
Debug Tool, in conjunction with the VisualAge Remote Debugger or IBM
Distributed Debugger, provides users with the ability to debug host
programs, including batch, through a Graphical User Interface (GUI) on
the workstation. The VisualAge Remote Debugger is available through
products such as:

* VisualAge COBOL Enterprise Version 2.2

The IBM Distributed Debugger is available through products such as:
¢ C/C++ Productivity Tools for OS/390

* VisualAge COBOL for Windows® 3.0

* VisualAge for Java, Enterprise Edition for OS/390

* VisualAge PL/I

For more information, visit the IBM Software web site at:
http://www.ibm.com/software/ad/

Related references

[/D] :E]]II 5 4]

Differences between Debug Tool environments

Certain aspects of Debug Tool usage can differ, not only across platforms but from
system to system and from subsystem to subsystem. When this occurs, differences
are marked in the text in the following manner:

For MVS only: MVS-specific information.
Special language-specific information about accomplishing a task or using a

particular procedure might also be marked the same way. More extensive
differences are usually discussed in separate sections.

Terms used in Debug Tool

Because of differing terminology among the various languages supported by
Debug Tool, as well as differing terminology between platforms, a group of
common terms has been established. The table below lists these terms and their
equivalency in each language.

Chapter 1. Debug Tool - overview 3

Debug Tool
term

C/C++
equivalent

COBOL
equivalent

PL/T equivalent

Java equivalent

Compile unit

C/C++ source
file

Program or class

Program (or
PL/I source file
for VisualAge
PL/I for OS/390)

Java source file

Block Function or Program, nested | Block Function/method
compound program, method or compound
statement or PERFORM statement

group of
statements
Label Label Paragraph name | Label Label

or section name

References to MVS refer to both MVS, OS/390, and z/OS.

4 Debug Tool User’s Guide and Reference

Chapter 2. Preparing your program for debugging

Before using Debug Tool, you must prepare your program by compiling at least
one part of it with the TEST compiler option. This option, in combination with any
of the suboptions except NONE, inserts hooks, which are assembly instructions
that you can see in an assembly listing. These hooks are placed at the entrances
and exits of blocks, at statement boundaries, and at points in the program where
program flow might change between statement boundaries (called path points).
The execution of these hooks enables Debug Tool to gain control during program
run time.

Note: With the Dynamic Debug feature, you can debug COBOL for OS/390
programs compiled with the TEST(NONE) option.

To learn how to use Debug Tool, the simplest way to get started is to use the basic
TEST options shown below.

* For C and C++, compile your program with TEST

* For PL/I and COBOL, compile your program with TEST(ALL,SYM)

Debug Tool does not need any special postcompile step to be added to your
compile JCL. All you need to do is provide the appropriate TEST compiler option
and retain the source, listing, or separate debug file for Debug Tool to read when
you debug the program.

Link your program as usual. Debug Tool may require that you link to additional
libraries to debug your ISPE, USS, DB2, IMS, or CICS applications. These
requirements are described in other sections of the book.

Related concepts

TRE = it T

Related tasks

: e ST T oot el

7 ITT) . . . 173

7 ITT) . . . 173

” T . - . 172

7 B B N 77

I’Dphugging UNIX System Services (1JSS) prngramq” on page 124

‘Debugeine DB2 proerams” on page 128

’nnhncro-ing IMS programs” on page 13

G . ”

Related references

G 7

Considerations before compiling and debugging

Before using Debug Tool, you should plan how you want to conduct your debug
session. Although you can compile your program with the TEST compiler option
without suboptions and invoke Debug Tool with the TEST run-time option without
suboptions, you should consider the following questions before using Debug Tool:

© Copyright IBM Corp. 1995, 2001 5

Do you want to compile your program with hooks?
Hooks are instructions inserted in a program by a compiler at compile
time. Using hooks allows you to set breakpoints that instruct Debug Tool
to gain control at selected points during program run time.

You can decide where to place the hooks. For example, you can place them
at statements, or only at entry to and exit from blocks.

COBOL for OS/390 programs can be debugged without compiled-in debug
hooks using the Dynamic Debug feature.

More information about compiling your program with or without hooks
can be found in each programming language’s compiling section.

Do you want to reference variables during your Debug Tool session?
If yes, you need to instruct the compiler to create a symbol table. The
symbol table contains descriptions of variables, their attributes, and their
location in storage. These descriptions are used by Debug Tool when
referencing variables.

COBOL for OS/390 programs can be debugged with the symbol tables
saved in a separate debug file, instead of the program’s object file. This
allows you to reduce the size of your application’s load module without
losing debug capabilities.

Do you want full debugging capability or smaller application size and higher
performance?
Removing hooks, statement tables, or symbol tables can increase your
application’s performance and/or decrease its size. However, debug
capabilities are diminished.

COBOL for OS/390 programs can be compiled with the

TEST(NONE,SYM, SEPARATE) compiler option to decrease your application
size, increase performance, and retain most debug capabilities. You must
have the Dynamic Debug feature installed.

When do you want to start Debug Tool and when do you want it to gain
control?
There are a variety of ways to invoke Debug Tool, as well as many options
for allowing it to gain control of your program.

To invoke Debug Tool, you can use the TEST run-time option. This option
gives you the choice of invoking Debug Tool either before you run your
application, at the occurrence of an High Level Language (HLL) condition
while your application is running, or at the occurrence of an attention
interrupt. Also, Language Environment, as well as certain HLLs, provides a
run-time service you can call while your program is executing, at the
location of your choice.

After Debug Tool is invoked, it gains control of your program and
suspends execution to allow you to take such actions as checking the value
of a variable or examining the contents of storage.

Do you want to use Debug Tool in full-screen mode, in line mode, in batch
mode, or in remote debug mode?
Decide which interface you want to use when debugging your application.

Related concepts

tlD] I] l E ” j

6 Debug Tool User’s Guide and Reference

Related tasks

I’(’hapfm‘ 2. Preparing your program for debugging” on page A

member EQASVDOC of data set EQAW.VIR2MO0.SEQASAMP

Authorized Debug Facility

The Debug Tool Authorized Debug Facility allows authorized users and users of
authorized CICS regions to debug programs that have been loaded in protected
storage, located in subpools 251 or 252. These programs include reentrant
programs and programs loaded by CICS in RDSA or ERDSA. The Authorized
Debug Facility allows you to debug these programs only under Debug Tool with
its Dynamic Debug feature enabled.

When the Dynamic Debug feature of Debug Tool is enabled, Debug Tool overlays
storage to place the hooks needed to support program debugging. If a user is not
authorized or if the program is not in either subpool 251 or 252, Debug Tool does
not attempt to place overlay hooks. Instead, Debug Tool relies on compiled-in
hooks, placed in the object code at compile time. If the program does not have
compiled-in hooks, the user is unable to debug the program.

Related concepts
0S/390 MVS Programming: Authorized Assembler Services Guide

How to use the Authorized Debug Facility
To authorize users to debug modules in protected storage, the RACF security
administrator must take the following steps:

1. Establish a profile for the Authorized Debug Facility in the FACILITY class by
issuing the following RDEFINE command:

RDEFINE FACILITY EQADTOOL.AUTHDEBUG UACC(NONE)

Ensure that generic profile checking is in effect for the class FACILITY by
issuing the following command:

SETROPTS GENERIC(FACILITY)

2. Permit the user (in this example DUSER1) to use the Authorized Debug Facility
by issuing the following command:

PERMIT EQADTOOL.AUTHDEBUG CLASS(FACILITY) ID(DUSER1) ACCESS(READ)

DUSER1 must be the name of a RACF-defined user or group profile. Note that
instead of specifying individual users, the RACF security administrator can
specify the name of a RACF group profile and connect authorized users to the
group.

3. If the FACILITY class is not already active, make the FACILITY class active by
issuing the following SETROPTS command:

SETROPTS CLASSACT(FACILITY)

Ensure that the FACILITY class is active by issuing the SETROPTS LIST
command:

SETROPTS LIST

4. Refresh the FACILITY resource class by issuing the SETROPTS RACLIST
command:

Chapter 2. Preparing your program for debugging 7

SETROPTS RACLIST(FACILITY) REFRESH

Compiling a C program with the TEST compiler option

Before testing your C program with Debug Tool, you must compile it with the C
TEST compiler option. This causes the compiler to generate information about your
application program that Debug Tool uses.

The TEST suboptions BLOCK, LINE, and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks that are used to instruct Debug Tool where to gain control of your program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. Debug Tool uses the symbol tables to obtain
information about the variables in the program.

If you are compiling and launching programs on an HFS file system, you must do
one of the following:

* Compile and launch the programs from the same location, or

* specify the full path name when you compile the programs.

By default, the C compiler stores the relative path and file names in the object.
When you start a debug session, if the source is not in the same location as where
the progam is launched, Debug Tool cannot locate the source. To avoid this
problem, specify the full path name for the source when you compile the program.
For example, if you execute the following series of commands:

1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c89 -g -0 "//TEST.LOAD(HELLO)" hello.c

2. Exit USS and return to the TSO ready prompt.
3. Launch the program with the TEST run-time option.
call TEST.LOAD(HELLO) 'test/'

Debug Tool cannot locate the source because the source is located in another
directory (/u/myid/mypgm). Change the compile command to:

c89 -g -0 "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.c

Debug Tool can locate the source. Another example where the full path name
should be specified during the compile is if you are creating an executable that
runs in the CICS environment.

When using the C TEST compiler option, be aware that:
e The C TEST compiler option generates entry and exit hooks for functions.

* The C TEST compiler option implicitly specifies the GONUMBER option, which
causes the compiler to generate line number tables corresponding to the input
source file. You can explicitly remove this option by specifying NOGONUMBER.
However, Debug Tool does not display the current execution line as you step
through your code.

* Programs compiled with both the TEST and either OPT(1) or OPT(2) options do
not have line hooks, block hooks, path hooks, or a symbol table generated,
regardless of the TEST suboptions specified. Only function entry and exit hooks
are generated for optimized programs.

* You can specify any number of TEST suboptions, including conflicting suboptions
(for example, both PATH and NOPATH). The last suboptions specified take effect.

8 Debug Tool User’s Guide and Reference

For example, if you specify TEST(BLOCK, NOBLOCK, BLOCK, NOLINE, LINE), what
takes effect is TEST(BLOCK, LINE) since BLOCK and LINE are specified last.

* No duplicate hooks are generated even if two similar TEST suboptions are
specified. For example, if you specify TEST(BLOCK, PATH), the BLOCK suboption
causes the generation of entry and exit hooks. The PATH suboption also causes
the generation of entry and exit hooks. However, only one hook is generated at
each entry and exit.

You can specify any combination of the C TEST suboptions in any order. The
default suboptions are BLOCK, LINE, PATH, and SYM.

C TEST compiler option

The syntax for the C TEST compiler option is:

NOTEST |

TEST <
F’ BLOCK J
\\(y |—NOBLOCT|)
LINE
J:NOLINE
PATH
J:NOPATH
SYM
J:NOSYM

—ALL
—NONE

The TEST compiler suboptions control the generation of symbol tables and program
hooks Debug Tool needs to debug your programs. The choices you make when
compiling your program affect the amount of Debug Tool function available during
your debug session. When a program is under development, you should compile
the program with TEST(ALL) to get the full capability of Debug Tool.

The following list explains what is produced by each option and suboption and
how Debug Tool uses them when debugging your program:

NOTEST
Specifies that no debugging information is to be generated. That is, no
statement hooks or path hooks are compiled into your program, no symbol
tables are created, and Debug Tool does not have access to any symbol
information.
* You cannot STEP through program statements. You can suspend execution of

the program only at the initialization of the main compile unit.

* You cannot examine or use any program variables.
* You can LIST storage and registers.
* You cannot use the Debug Tool command GOTO.

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected.
The following restrictions apply when using TEST:

¢ The maximum number of lines in a single source file cannot exceed 131,072.

Chapter 2. Preparing your program for debugging 9

e The maximum number of include files that have executable statements
cannot exceed 1024.

BLOCK
Inserts only block entry and exit hooks into your program’s object. A block
is any number of data definitions, declarations, or statements enclosed
within a single set of braces. BLOCK also creates entry and exit hooks for
nested blocks. If SYM is enabled, symbol tables are generated for variables
local to these nested blocks.

* You can only gain control at entry and exit of blocks.
* Issuing a command such as STEP causes your program to run, until it
reaches the exit point.

NOBLOCK
Prevents symbol information and entry and exit hooks from being
generated for nested blocks.

LINE
Hooks are generated at most executable statements. Hooks are not
generated for:
* Lines that identify blocks (lines containing braces)

e Null statements
e Labels

NOLINE
Suppresses the generation of statement (line number) hooks.

PATH
Hooks are generated at all path points (if-then-else, calls, etc.)

* This option does not influence the generation of entry and exit hooks for
nested blocks. The BLOCK suboption must be specified if such hooks are
desired.

* Debug Tool can gain control only at path points and block entry and exit
points. If you attempt to STEP through your program, Debug Tool gains
control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

* The Debug Tool command GOTO is valid only for statements and labels
coinciding with path points.

NOPATH
No path hooks are generated.

SYM
Generates symbol tables in the program’s object that give Debug Tool
access to variables and other symbol information.

* You can reference all program variables by name, allowing you to
examine them or use them in expressions.

* You can use the Debug Tool command GOTO to branch to a label
(paragraph or section name).

NOSYM
Suppresses the generation of symbol tables. Debug Tool does not have
access to any symbol information.

* You cannot reference program variables by name.

* You cannot use commands such as LIST or DESCRIBE to access a variable
or expression.

10 Debug Tool User’s Guide and Reference

* You cannot use commands such as CALL or GOTO to branch to another
label (paragraph or section name).

ALL
Block and line hooks are inserted and a symbol table is generated. Hooks
are generated at all statements, all path points (if-then-else, calls, and so
on), and at all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).

NONE
Generates compiled-in hooks only at function entry and exit points. Block
and line hooks are not inserted, and the symbol tables are suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

Placing compiled-in hooks for functions and nested blocks
The following rules apply to the placement of compiled-in hooks for getting in and
out of functions and nested blocks:

* The hook for function entry is placed before any initialization or statements for
the function.

* The hook for function exit is placed just before actual function return.

¢ The hook for nested block entry is placed before any statements or initialization
for the block.

* The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points
The following rules apply to the placement of compiled-in hooks for statements
and path points:

* Label hooks are placed before the code and all other statement or path point
hooks for the statement.

* The statement hook is placed before the code and path point hook for the
statement.

* A path point hook for a statement is placed before the code for the statement.

Related tasks

[1 Tqing C/Ctt #pragma to qppr‘ifv the TEST rnmpi]pr nph'(m”l

Related references
E/0OS C/Ca+ 1ser’s Guidd

Using C/C++ #pragma to specify the TEST compiler option

The TEST/NOTEST compiler option can be specified either when you compile your
program or directly in your program, using a #pragma.

This #pragma must appear before any executable code in your program.

The following example generates symbol table information, symbol information for
nested blocks, and line number hooks:

#pragma options (test(SYM,BLOCK,LINE))

This is equivalent to TEST(SYM,BLOCK,LINE,PATH).

You can also use a #pragma to specify run-time options.

Chapter 2. Preparing your program for debugging 11

Related tasks

I’Qppcifving TEST run-time option with #pragma runopts in C/C++” on page 37

7 1. n n . 77

7 1. n . n 7

z/OS C/C++ Language Reference

Compiling a C++ program with the TEST compiler option

Before testing your C++ program with Debug Tool, you must compile it with the
C++ TEST compiler option. This causes the compiler to generate information about
your application program that Debug Tool uses.

If you are compiling and launching programs on an HFS file system, you must do
one of the following:

* Compile and launch the programs from the same location, or
* specify the full path name when you compile the programs.

By default, the C++ compiler stores the relative path and file names in the object.
When you start a debug session, if the source is not in the same location as where
the progam is launched, Debug Tool cannot locate the source. To avoid this
problem, specify the full path name for the source when you compile the program.
For example, if you execute the following series of commands:

1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
c++ -g -0 "//TEST.LOAD(HELLO)" hello.cpp

2. Exit USS and return to the TSO ready prompt.
3. Launch the program with the TEST run-time option.
call TEST.LOAD(HELLO) 'test/'
Debug Tool can not locate the source because it is located in another directory
(/u/myid/mypgm). Change the compile command to:
ct+ -g -0 "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.cpp

Debug Tool can locate the source. Another example where the full path name
should be specified during the compile is if you are creating an executable that
runs in the CICS environment.

The syntax for the C++ TEST compiler option is:

(1)
()
Ho0k—
NOHOOK

NOTEST
TEST —l

Y
A

Notes:

1 The HOOK and NOHOOK options are only available with Version 2 Release
4, Version 2 Release 6, and Version 2 Release 9.

The following list explains what is produced by each option and how Debug Tool

uses them when debugging your program:

NOTEST
Specifies that no debugging information is to be generated. That is, no

12 Debug Tool User’s Guide and Reference

statement hooks or path hooks are compiled into your program, no symbol

tables are created, and Debug Tool does not have access to any symbol

information.

* You cannot STEP through program statements. You can suspend execution of
the program only at the initialization of the main compile unit.

* You cannot examine or use any program variables.

* You can LIST storage and registers.

* You cannot use the Debug Tool command GOTO.

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The following restrictions apply when using the TEST
option
¢ The maximum number of lines in a single source file cannot exceed 131,072.
* The maximum number of include files that have executable statements
cannot exceed 1024.

HOOK
Generates some or all possible hook information, depending on NOOPT or OPT.
This option is only available on Version 2, Release 4; Version 2, Release 6; and
Version 2, Release 9 of OS/390 C/C++.

NOHOOK
No hook information is generated. This option is only available on Version 2,
Release 4; Version 2, Release 6; and Version 2, Release 9 of OS/390 C/C++.

Placing compiled-in hooks for functions and nested blocks

The following rules apply to the placement of compiled-in entry and exit hooks for
functions and nested blocks:

* The hook for function entry is placed before any initialization or statements for
the function.

* The hook for function exit is placed just before actual function return.

¢ The hook for nested block entry is placed before any statements or initialization
for the block.

¢ The hook for nested block exit is placed after all statements for the block.

Placing compiled-in hooks for statements and path points

The following rules apply to the placement of compiled-in hooks for statements
and path points:

* Label hooks are placed before the code and all other statement or path point
hooks for the statement.

* The statement hook is placed before the code and path point hook for the
statement.

* A path point hook for a statement is placed before the code for the statement.

Related tasks

Related references
b/QS C/Car+ 1cer's Guidd

Chapter 2. Preparing your program for debugging 13

Compiling a COBOL program with the TEST compiler option

Before testing your COBOL program with Debug Tool, you must compile it with
the COBOL TEST compiler option. This causes the compiler to create the symbol
tables and insert program hooks at selected points in your program. Debug Tool
uses the symbol tables to obtain information about program variables. Debug Tool
uses program hooks to gain control of your program at selected points during its
execution. These points can be at the entrances and exits of blocks, at statement
boundaries, and at points in the program where program flow might change
between statement boundaries (called path points), such as before and after a CALL
statement. The program hooks do not modify your source.

Note: COBOL for OS/390 programs can be debugged without program hooks
inserted by the compiler. These programs must be compiled with the
TEST(NONE) compiler option and the feature Dynamic Debug must be
installed. These programs must not reside in read-only storage.

Note: If your program requires the use of CICS, specify the CICS start up option
RENTPGM=NOPROTECT or link-edit the program with the NORENT option.

When using the COBOL TEST compiler option, be aware that:

* If you specify NUMBER with TEST, make sure the sequence fields in your source
code all contain numeric characters.

* Usually, when you specify TEST, the compiler options NOOPTIMIZE and OBJECT
automatically go into effect, preventing you from debugging optimized
programs. However, TEST(NONE, SYM) does not conflict with OPT, allowing
debugging of optimized programs with some limitations and behavioral
differences.

* The TEST compiler option and the DEBUG run-time option are mutually exclusive,
with DEBUG taking precedence. If you specify both the WITH DEBUGGING MODE
clause in your SOURCE-COMPUTER paragraph and the USE FOR DEBUGGING statement
in your code, TEST is deactivated. The TEST compiler option appears in the list of
options, but a diagnostic message is issued telling you that because of the
conflict, TEST is not in effect.

* For VS COBOL II programs, in addition to the TEST compiler option, you must
specify:

— the SOURCE compiler option. This option is required to generate a listing file.
— the RESIDENT parameter. This parameter is required by LE/370 to ensure that
the necessary Debug Tool routines are loaded dynamically at run time.

The syntax for the COBOL TEST compiler option is:

14 Debug Tool User’s Guide and Reference

NOTEST
oL resT >

|—(ALL, SYM)
L 1)
s NOSEPARATE
(—-ALL ,—-SYM B i)
BLOCK L (1) J
NONE s SEPARATE
PATH NOSYM
STMT L (1)
,—NOSEPARATE
Notes:
1 SEPARATE and NOSEPARATE are available only for COBOL for OS/390
programs.

The TEST compiler suboptions control the production of such debugging aids as
symbol tables and program hooks that Debug Tool needs to debug your program.
The suboptions you choose can affect the amount of Debug Tool function available
during your debug session:

* To get the full capabilities of Debug Tool, compile your program with
TEST (ALL,SYM).

* To get a smaller load module, compile your programs with
TEST(NONE, SYM, SEPARATE). You can then use the Dynamic Debug feature to
debug your program. This is currently only available for COBOL for OS/390
programs.

The following list explains each option and suboption and the capabilities of
Debug Tool when your program is compiled using these options.

NOTEST
Specifies that no debug information is to be generated, that is, no statement
hooks or path hooks are compiled into your program, no symbol tables are
created, and Debug Tool does not have access to any symbol information.
Using NOTEST produces the following results:

* You cannot STEP through program statements.

* You can suspend execution of the program only at the initialization of the
main compile unit.

* You can include calls to CEETEST in your program to allow you to suspend
program execution and issue Debug Tool commands.

* You cannot examine or use any program variables.
* You can LIST storage and registers.

* The source listing produced by the compiler cannot be used; therefore, no
listing is available during a debug session.

* Because a statement table is not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY location.

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected.

Chapter 2. Preparing your program for debugging 15

ALL
Generates all compiled-in hooks, including all statement, path, date
processing, and program entry and exit hooks.

¢ The COBOL compiler only generates compiled-in hooks for date
processing statements when the DATEPROC compiler option is specified. A
date processing statement is any statement that references a date field, or
any EVALUATE or SEARCH statement WHEN phrase that references a
date field.

* You can set breakpoints at all statements and path points, and STEP
through your program.

* Debug Tool can gain control of the program at all statements, path
points, date processing statements, labels, and block entry and exit
points, allowing you to enter Debug Tool commands.

* Branching to statements and labels using the Debug Tool command GOTO
is allowed.

BLOCK
Hooks are inserted at all block entry and exit points.

* Debug Tool gains control at entry and exit of your program, methods,
and nested programs.

* Debug Tool can be explicitly invoked at any point with a call to CEETEST.

* Issuing a command such as STEP causes your program to run until it
reaches the next entry or exit point.

* GOTO can be used to branch to statements that coincide with block entry
and exit points.

NONE
No hooks are inserted in the program.

* The GOTO command is valid for some statements and labels coinciding
with path points.

* A call to CEETEST can be used at any point to invoke Debug Tool.

COBOL for OS/390 programs compiled with TEST(NONE,SYM) can be
debugged using the Dynamic Debug feature. However, due to compiler
optimization effects, these programs may not always halt execution at the
same statement number that the same program compiled with TEST(ALL)
would have.

PATH
Hooks are inserted at all path points and at all program entry and exit
points. A path point is anywhere in a program where the logic flow is not
necessarily sequential or can change. Some examples of path points are
IF-THEN-ELSE constructs, PERFORM loops, ON SIZE ERROR phrases, and CALL
statements.

* Debug Tool can gain control only at path points and block entry and exit
points. If you attempt to STEP through your program, Debug Tool gains
control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

* A call to CEETEST can be used at any point to invoke Debug Tool.

¢ The Debug Tool command GOTO is valid for all statements and labels
coinciding with path points.

STMT
Hooks are inserted at every statement and label, at every date processing
statement, and at all entry and exit points.

16 Debug Tool User’s Guide and Reference

¢ The COBOL compiler only generates compiled-in hooks for date
processing statements when the DATEPROC compiler option is specified. A
date processing statement is any statement that references a date field, or
any EVALUATE or SEARCH statement WHEN phrase that references a
date field.

* You can set breakpoints at all statements and STEP through your
program.

* Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

* Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates symbol tables in the program’s object that give Debug Tool
access to variables and other symbol information.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

* SYMis required to support labels (paragraph or section names) as GOTO
targets.

SEPARATE (COBOL for OS/390 programs only)
Saves the symbolic table information in a separate debug file.

NOSEPARATE (COBOL for OS/390 programs only)
The symbolic table information is stored in the object. NOSEPARATE is
the default.

NOSYM
Suppresses the generation of dictionary tables. Debug Tool does not have
access to any symbol information. Using NOSYM produces the following
results:

* You cannot reference program variables by name.

* You cannot use commands such as LIST or DESCRIBE to access a variable
or expression.

* You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (paragraph or section name).

Specifying TEST with no suboptions is equivalent to TEST(ALL, SYM, NOSEPARATE).

Note: To be able to view your source code while debugging in full-screen or
remote debug mode, you must direct the source or listing to a
nontemporary file that is available during the debug session. If you are
debugging a COBOL for OS/390 program and specified the SEPARATE
suboption of the compiler option, the listing does not need to be saved but
the separate debug file must be a nontemporary file. The separate debug file
must also be available during the debug session. If you move or rename
these nontemporary files, use the SET SOURCE or SET DEFAULT LISTINGS
command to specify the new location or name of the files.

Related tasks

” . . . 17

Member EQASVDOC of data set EQAW.VIR2M0.SEQASAMP

Related references

g ”

Chapter 2. Preparing your program for debugging 17

['SET DEFAUIT LISTINGS (MVS)” on page 321

’/ 7

COBOL for 0S/390 & VM Language Referencd

Compiling a PL/I program with the TEST compiler option

The PL/I compiler provides support for Debug Tool under control of the TEST
compiler option and its suboptions for hook locations and symbol tables. The hook
location suboptions (BLOCK, STMT, PATH, ALL, and NONE) regulate the points at which
the compiler inserts hooks. These program hooks allow Debug Tool to gain control
at select points in a program during execution. The symbol table suboption (SYM or
NOSYM) controls the insertion of symbol tables into the the program’s object file.
Debug Tool uses the symbol tables to obtain information about program variables.

For OS PL/I programs, you must specify the SOURCE compiler option in addition to
the TEST compiler option. The SOURCE compiler option is required to generate a
listing file.

If you are compiling and launching VisualAge PL/I for OS/390 programs on an
HES file system, you must do one of the following:

* Compile and launch the programs from the same location, or

¢ specify the full path name when you compile the programs.

By default, the VisualAge PL/I for OS/390 compiler stores the relative path and
file names in the object. When you start a debug session, if the source is not in the
same location as where the progam is launched, Debug Tool cannot locate the
source. To avoid this problem, specify the full path name for the source when you
compile the program. For example, if you execute the following series of
commands:

1. Change to the directory where your program resides and compile the program.

cd /u/myid/mypgm
pli -g "//TEST.LOAD(HELLO)" hello.pli

2. Exit USS and return to the TSO ready prompt.
3. Launch the program with the TEST run-time option.
call TEST.LOAD(HELLO) 'test/'
Debug Tool can not locate the source because it is located in another directory
(/u/myid/mypgm). Change the compile command to:
pli -g "//TEST.LOAD(HELLO)" /u/myid/mypgm/hello.pli
Debug Tool can locate the source. Another example where the full path name
should be specified during the compile is if you are creating an executable that

runs in the CICS environment.

The syntax for the PL/I TEST compiler option is:

18 Debug Tool User’s Guide and Reference

NOTEST

TEST L
(

NONE
|_BLOCK_|

STMT
PATH
ALL

SYM
vos-L

SYM
— —[NOSYM

NONE
—, BLOCK
STMT
PATH
ALL

The syntax for the VisualAge PL/I for OS/390 TEST compiler option is:

NOTEST

> TEST L
(

NONE

SYM
oS-

[crarr]
ot " ow

NOSYM

NONE
{5
ALL

1 ‘

The choices you make when compiling your program can affect the amount of
Debug Tool function available during your debug session. When a program is
under development, compile the program with TEST(ALL) to get the full capability
of Debug Tool. The following list explains each option and suboption and the
capabilities of Debug Tool when your program is compiled using these options:

NOTEST

Specifies that no debugging information is generated, that is, no statement
hooks or path hooks are compiled into your program, no dictionary tables are
created, and Debug Tool does not have access to any symbol information.

Using NOTEST produces the following results:

* You can LIST storage and registers.

* You can include calls to PLITEST or CEETEST in your program so you can
suspend running your program and issue Debug Tool commands.

* You cannot STEP through program statements. You can suspend running
your program only at the initialization of the main compile unit.

* You cannot examine or use any program variables.

* Because statement hooks are not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY LOCATION.

* The source listing produced by the compiler cannot be used; therefore, no

listing is available during a debug session.

TEST

Produces debugging information for Debug Tool to use during batch and

Chapter 2. Preparing your program for debugging 19

interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected:

ALL

Generates all compiled-in hooks, including all statement, path, and
program entry and exit hooks.

BLOCK

You can set breakpoints at all statements and path points, and STEP
through your program.

Debug Tool can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter
Debug Tool commands.

Enables branching to statements and labels using the Debug Tool
command GOTO.

Hooks are inserted at all block entry and exit points.

NONE

Enables Debug Tool to gain control at block boundaries: block entry and
block exit.

You can gain control only at entry and exit of your program and all
entry and exit points of internal program blocks.

A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

Issuing a command such as STEP causes your program to run until it
reaches the next block entry or exit point.

Block hooks are not inserted into an empty ON-unit or an ON-unit
consisting of a single GOTO statement.

No hooks are inserted in the program.

PATH

A call to PLITEST or CEETEST can be used to invoke Debug Tool at any
point in your program.

Hooks are inserted at all path points:

Before the THEN part of an IF statement.

Before the ELSE part of an IF statement.

Before the first statement of all WHEN clauses of a SELECT-group.
Before the OTHERWISE statement of a SELECT-group.

At the end of a repetitive DO statement, just before the Do-group is to be
executed.

At every CALL or function reference, both before and after control is
passed to the routine.

Before the statement following a user label, excluding labeled FORMAT
statements. If a statement has multiple labels, only one hook is inserted.

Specifying PATH also causes BLOCK hooks to be inserted.

STMT

Hooks are inserted before most executable statements and labels. STMT also
causes BLOCK hooks to be inserted.

You can set breakpoints at all statements and STEP through your
program.

Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

20 Debug Tool User’s Guide and Reference

¢ Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates a symbol table in the program’s object. The symbol table is
required for examining program variables or program control constants by
name.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

* Enables the support for labels as GOTO targets.

NOSYM
Suppresses the generation of a symbol table. Debug Tool does not have
access to any symbol information that causes the following results:

* You cannot reference program variables by name.

* You cannot use commands such as LIST or DESCRIBE to access a variable
or expression.

* You cannot use commands such as CALL variable to branch to another
program, or GOTO to branch to another label (procedure or block name).

Note: To be able to view your listing while debugging in interactive mode, PL/I
for MVS & VM and OS PL/I programs must be compiled using the PL/I
SOURCE compiler option. You must also direct the listing to a nontemporary
file that is available during the debug session. During a debug session,
Debug Tool displays the first file it finds named userid.pgmname.list in the
Source window. If Debug Tool can not find the listing at this location, use
the SET SOURCE command to associate your source listing with the program
you are debugging.

Compiling with TEST(STMT), TEST(PATH), or TEST(ALL) causes a statement number
table to be generated. If the STMT compiler option is in effect, specifying TEST
causes the GOSTMT compiler option to be in effect. If the NUMBER compiler option is
in effect, specifying TEST causes the GONUMBER compiler option to be in effect.

Related references

['SET SOURCE” on page 338

U'SET DEFAUIT TISTINGS (MVS)” on page 321
PL/I for MVS and VM Programming

Guide

ﬁ/iqualAgP PL/ for OS/390 Programming Guidd

Chapter 2. Preparing your program for debugging 21

22 Debug Tool User’s Guide and Reference

Chapter 3. Beginning a debug session

To begin a debug session, Debug Tool must gain control of the application you
want to debug. You can specify how Debug Tool gains control by using the TEST
run-time option or by invoking Debug Tool from your program (with calls to
CEETEST, PLITEST, or _ ctest()).

An easy way to begin using Debug Tool is to specify the TEST run-time option with
no suboption; this defaults to using the suboptions ALL and PROMPT. When you start
your application, Debug Tool gains control immediately, and halts execution before
the first statement in the application. You can then choose to step through the
application, set breakpoints, and so on.

Debug Tool displays your source file in the Source Window using a source, listing,
or separate debug file, depending on the compiler.

For MVS only: When you start Debug Tool, if your source or listing is not
displayed, press PF4. This puts you in the Source Identification
panel. The Source Identification panel indicates the name of the
source, listing or separate debug file that was intended to be used
by Debug Tool. With this name, you can verify if the file exists or
if you have authorization to access it. If your file is stored at a
different place, do one of the following;:

e Use the SET SOURCE command with the new name of the source,
listing, or debug file; or

e use the SET DEFAULT LISTINGS command with the new name of
the source, listing or debug file (provided they are stored in a
PDS); or

* type over the Listing/Source file field with the new name for the
source, listing, or separate debug file.

When Debug Tool is invoked, it interrupts the execution of your program to allow
you to take appropriate actions. Debug Tool returns control to your program at the
point of its interruption as the result of a GO or STEP command. You can also
specify that control return to some other point in your program with the GOTO or GO
BYPASS command. You can even specify that control be given to another program
with the CALL command or a C/C++ function invocation.

If Debug Tool gains control because of a program condition, when control is
returned to the program, the condition is raised in the program unless explicitly
prevented.

Related tasks

tlc] l 2 E : E l] . ” g

Related references

G ”

© Copyright IBM Corp. 1995, 2001 23

Data sets used by Debug Tool

Debug Tool uses the following data sets:

C/C++ source
This data set is input to the compiler, and should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to show you
the program as it is executing.

The C/C++ compiler stores the name of the source data set inside the load
module. Debug Tool uses this data set name to access the source.

This might not be the original source data set; for example, the program
might have been preprocessed by the CICS translator. If you use a
preprocessor, you must keep the data set input to the compiler in a
permanent data set for later use with Debug Tool.

As this data set might be read many times by Debug Tool, we recommend
that you define it with the largest block size that your DASD can hold.

COBOL listing
This data set is output by the compiler and should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to show you
the program as it is executing.

The COBOL compiler stores the name of the listing data set inside the load
module. Debug Tool uses this data set name to access the listing.

Debug Tool does not use the output created by the COBOL LIST compiler
option; performance will be improved if you specify NOLIST.

COBOL for OS/390 programs compiled with the SEPARATE suboption do
not need to save the listing file. The separate debug file must be saved.

Note: The above behavior does not apply to VS COBOL II or OS/VS
COBOL. For these two compilers, Debug Tool creates a default name
in the form userid.cuname.LIST and uses that name to locate the
listing.

As this data set might be read many times by Debug Tool, we recommend
that you define it with the largest block size that your DASD can hold.

Separate debug file (for COBOL for OS/390 only)
This data set is output by the compiler when you compile your program
with the SEPARATE compiler suboption. It should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to retrieve the
listing and debug data.

The COBOL compiler stores the date set name of the separate debug file
inside the load module. Debug Tool uses this data set name to access the
listing and other debug data, such as the symbol table.

PL/I source (for VisualAge PL/I for OS/390 only)
This data set is input to the compiler, and should be kept in a permanent
PDS member, sequential file, or HFS file. Debug Tool uses it to show you
the program as it is executing.

The VisualAge PL/I for OS/390 compiler stores the name of the source
data set inside the load module. Debug Tool uses this data set name to
access the source.

24 Debug Tool User’s Guide and Reference

This might not be the original source data set; for example, the program

might have been preprocessed by the CICS translator. If you use a
preprocessor, you must keep the data set input to the compiler in a
permanent data set, for later use with Debug Tool.

As this data set might be read many times by Debug Tool, we recommend

that you define it with the largest block size that your DASD can hold.

PL/I listing (for all other versions of PL/I compiler)

This data set is output by the compiler and should be kept in a permanent

file. Debug Tool uses it to show you the program as it is executing.

The PL/I compiler does not store the name of the listing data set. Debug

Tool looks for the listing in a data set with the name in the form of
userid.cuname.LIST.

Debug Tool does not use the output created by the PL/I compiler LIST

option; performance will be improved if you specify NOLIST.

As this data set might be read many times by Debug Tool, we recommend

that you define it with the largest block size that your DASD can hold.

Preferences file

This data set contains Debug Tool commands that customize your session.

You can use it, for example, to change the default screen colors set by

Debug Tool. It can be a sequential or PDS data set.

The default DD name for the Debug Tool preferences file is INSPPREF.

Preferences files are not used in remote debug mode.

Commands file

This data set contains Debug Tool commands that control the debug

session. You can use it, for example, to set breakpoints or set up monitors

for common variables. It can be a sequential or PDS member.

The default DD name for the Debug Tool commands file is INSPIN.

Commands files are not used in remote debug mode.

Log file

Debug Tool uses this file to record the progress of the debugging session.

We recommend that you define this data set as a sequential data set.

The default DD name for the Debug Tool log file is INSPLOG.
Log files are not used in remote debug mode.

Save file

Debug Tool uses this file to store preference settings such as screen colors

and panel layouts at the end of each session. These settings are then
restored at the start of subsequent sessions. The file must have a record

format of Fixed and a record length of 80.
The default DD name for the Debug Tool save file is INSPSAFE.
Save files are not used for remote debug sessions.

Save files are not used under CICS.

Related references
I'SET DEEALLT LISTINGS (MVS)” on page 321

g ”

Chapter 3. Beginning a debug session

25

Related references

Invoking Debug Tool using the TEST run-time option

To specify how Debug Tool gains control of your application and begins a debug
session, you can use the TEST run-time option. The simplest form of the TEST
option is TEST with no suboption; however, suboptions provide you with more
flexibility. There are four suboptions available, summarized below.

test_level
Determines what HLL conditions raised by your program will cause
Debug Tool to gain control

commands_file
Determines which primary commands file is used as the initial source of
commands

prompt_level
Determines whether an initial commands list is unconditionally executed
during program initialization

preferences_file
Specifies the session parameter and a file that you can use to specify
default settings for your debugging environment, such as customizing the
settings on the Debug Tool Profile panel

Related tasks

I‘qum'Fving TEST run-time aption with #pragma runopts in C/C++” on page 37
o M 4

Related references
['Data sets n1sed by Dp}‘mg Tool” on page 24
[TEST run-time nph'(m’l

[TEST run-time npﬁnn usage notes” on page 33

TEST run-time option

You can specify any combination of the TEST run-time suboptions, but they must
be specified in the order presented. Any option or suboption referred to as
"default" is the IBM-supplied default, and might have been changed by your
system administrator during installation.

The syntax for this option is:

NOTEST
> TEST —l

»]

L‘ test_Tevel ’J L‘ commands_file ’J
] ,)])
L‘ prompt_Tevel ’J L‘ preferences_file ’J

26 Debug Tool User’s Guide and Reference

test_level:

|—ALL—|

i:ERROR;‘
NONE

commands_file:

—commands_file_designator—

prompt_level:

—PROMPT

—NOPROMPT

*.

o [
1w

preferences_file:

command——[. :I—

—MFI
—%—terminal_iﬂ
—%—VTAM_LU id
I >
(2)
—VADAPPC& appc_workstation_id |_ _| T
%session_id
(2) |—°/.,8000
—VADTCPIP& tepip_workstation_id |_ —
%port_id—
—INSPPREF

y

—preferences_file_designator—

Notes:

1
2

Double quotes for MVS; single quotes for VM.

Specifies remote debug mode.

NOTEST

Specifies that Debug Tool is not invoked at program initialization. However,

Chapter 3. Beginning a debug session

27

invoking Debug Tool is still possible through the use of CEETEST, PLITEST, or
the _ ctest() function. In such a case, the suboptions specified with NOTEST
are used when Debug Tool is invoked.

TEST
Specifies that Debug Tool is given control according to its suboptions. The TEST
suboptions supplied are used if Debug Tool is invoked with CEETEST, PLITEST,
or _ctest().

test_level:

ALL (or blank)
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or Language
Environment condition of Severity 1 and above causes Debug Tool to gain
control, regardless of whether a breakpoint is defined for that type of
condition. If a condition occurs and a breakpoint exists for the condition, the
commands specified in the breakpoint are executed. If a condition occurs and a
breakpoint does not exist for that condition, or if an attention interrupt occurs,
Debug Tool does the following;:

* In interactive mode, Debug Tool reads commands from a commands file (if
it exists and is available) or prompts you for commands.

* In noninteractive mode, Debug Tool reads commands from the commands
file. If none is available, the program runs uninterrupted.

ERROR
Specifies that only the following conditions cause Debug Tool to gain control
without a user-defined breakpoint.

* For C/C++:
- An attention interrupt
Program termination
A predefined Language Environment condition of Severity 2 or above
Any C/C++ condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

* For COBOL:
— An attention interrupt
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

e For PL/I:
- An attention interrupt
— Program termination
— A predefined Language Environment condition of Severity 2 or above.

If a breakpoint exists for one of the above conditions, commands specified in
the breakpoint are executed. If no commands are specified, Debug Tool reads
commands from a commands file or prompts you for them in interactive
mode.

NONE
Specifies that Debug Tool gains control from a condition only if a breakpoint is
defined for that condition. If a breakpoint exists for the condition, the
commands specified in the breakpoint are executed. An attention interrupt
does not cause Debug Tool to gain control unless Debug Tool has previously
been invoked. To change the TEST level after you start your session, use the SET
TEST command.

commands_file:

28 Debug Tool User’s Guide and Reference

* (or blank)
Indicates that no commands file is supplied. The terminal, if available, is used
as the source of Debug Tool commands.

commands_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
for the primary commands file which is used instead of the terminal as initial
source of commands after the preferences file finishes running. If the
designator might cause an ambiguity in the list of suboptions, enclose it in
single or double quotation marks to differentiate it from the remainder of the
list. If you are using a single ddname, no quotation marks are required.

The commands_file_designator has a maximum length of 80 characters.

If the specified ddname is longer than eight characters, it is automatically
truncated, but no error message is issued.

When the end of the file is reached, Debug Tool interactively prompts you for
commands until a QUIT command or the end of your application is reached.

The use of a primary commands file is required when debugging batch
programs with a noninteracting interface, and this suboption enables you to
specify a source of commands when using Debug Tool in batch mode. It also
allows you to use a log file from one Debug Tool session as a source of
commands in a subsequent Debug Tool session to regression test your
application.

The primary commands file is required for batch debug sessions, unless you
are debugging in full-screen mode using a VTAM terminal or remote debug
mode and conducting interactive batch debug sessions. The commands file acts
as a surrogate terminal. Debug Tool reads and executes commands from it
until either the file runs out of commands or your program finishes running.

If the end of the file is reached without encountering a QUIT command, Debug
Tool looks to your terminal, if available, for commands. If your terminal is not
available (if you are debugging in batch, for example), Debug Tool forces the
GO command to run your program until the end is reached.

The primary commands file is shared across multiple enclaves.
Note: Commands file is not supported in remote debug mode.

prompt_level:

PROMPT (or ; or blank)
Indicates that you want Debug Tool invoked immediately after Language
Environment initialization. Commands are read from the preferences file and
then any designated primary commands file. If neither file exists, commands
are read from your terminal or workstation.

NOPROMPT (or *)
Indicates that you do not want Debug Tool invoked immediately after
Language Environment initialization. Instead, your application begins running.

command
One or more valid Debug Tool commands. Debug Tool is invoked immediately
after program initialization, and then the command (or command string) is
executed. The command string can have a maximum length of 250 characters,
and should be enclosed in double quotation marks (MVS) or single quotation
marks (VM). Multiple commands must be separated by a semicolon.

Chapter 3. Beginning a debug session 29

Note: If you include a STEP or GO in your command string, none of the
subsequent commands are processed. The use of a command in
prompt_level is not supported in remote debug mode.

preferences_file:

MFI
Specifies Debug Tool should be invoked in MFI mode, that is, you are using a
3270-type terminal for your debug sessions.

terminal_id (for CICS only)
Specifies up to a four-character terminal id to receive Debug Tool screen output
during dual terminal session. The corresponding terminal should be in service
and acquired, ready to receive Debug Tool-related 1/0.

VTAM_LU_id (for full-screen mode using a VTAM terminal only)
Specifies up to an eight-character VTAM logical unit (LU) identifier for a
terminal used in full-screen mode. The VTAM_LU_id parameter can not be
used to debug CICS applications. The LU must be:

* known to the z/OS, OS/390 or MVS system on which the job is executing,
* must be marked SLU enabled, and

* must not be in session with any application unless the application is a
terminal session manager that allows another application to take control of
the LU.

When you specify a VTAM_LU_id, you debug your program in full-screen
mode.

If you do not know the LU identifier for your terminal, log on to TSO and use
the EQALUNAM command to determine the LU identifier. If Debug Tool is present
in your system linklist, the EQALUNAM TSO command (with no parameters) can
be used to determine the LU identifier. Alternatively, you can use the TSO CALL
command as follows:

CALL dtdsn(EQALUNAM)

where dtdsn is the name of the data set containing the Debug Tool load
modules.

INSPPREF (or blank)
Debug Tool-supplied default preferences file ddname. Any preferences file that
is specified to Debug Tool becomes the first source of Debug Tool commands
after the debugger is invoked. It is often used to set up the Debug Tool
environment.

preferences_file_designator
Valid designation (ddname or data set for MVS, or filedef or file id for CMS)
specifying the preferences file to be used.

This file is read the first time Debug Tool is invoked and must contain a
sequence of Debug Tool commands to be executed.

* Specifies that no preferences file is supplied.

Note: INSPPREF and preferences_file_designator are not supported when
using remote debug mode. * is always assumed.

For use in remote debug mode only:

30 Debug Tool User’s Guide and Reference

Remote debugging allows you to debug host-based applications via a
workstation-based GUI interface. It also provides important additional function
such as the ability to interactively debug batch processes. For example, a COBOL
batch job running in MVS/JES, or a COBOL CICS batch transaction, can be
interactively debugged via a TCP/IP connection to a workstation equipped with a
remote debugger. You can debug VisualAge for Java, Enterprise Edition for
0S/390, applications; VisualAge PL/I for OS/390 applications; and applications
running in UNIX System Services Shell. The Debug Tool web site contains a
current list of environments supporting remote debugging.

Remote debugging works like this: the host application invokes Debug Tool, which
uses a TCP/IP (Windows or OS/2) or APPC (OS/2 only) connection to
communicate with a remote debugger on your workstation.

The following TEST suboptions are for use only in remote debug mode:

VADAPPC&
Specifies that Debug Tool is interfacing with a workstation equipped with the
VisualAge Remote Debugger and configured for APPC communications with
the host. This suboption is valid only with the VisualAge Remote Debugger on
a workstation.

appc_workstation_id
A 1-to-8 character alphanumeric name defining your workstation at APPC
configuration time. This is the APPC name of the workstation that will display
your debug information. An example of this symbolic destination name would
be AJSMITH or DEPTS?. If you do not define appc_workstation_id properly
when APPC is configured and your application is running in batch (for
example, JES), Debug Tool is not initiated. The batch program continues to run
or terminates, depending on its state when the debug session is attempted. If
appc_workstation_id is improperly defined and your application is running in
the TSO foreground, or in CICS when the task has a terminal associated with
it, an MFI session is created.

%session_id
Specifies a unique name of the application you want to debug. If you identify
your session with the same session_id as that of an existing session, an
initialization failure for the session being started will occur.

VADTCPIP&
Specifies that Debug Tool is interfacing with a workstation equipped with a
remote debugger and configured for TCP/IP communications with the host.

tepip_workstation_id
TCP/IP name or address of the workstation where the remote debug daemon
is executing. The name can be specified as a symbolic address, such as
some.name.com. The address can be specified as a TCP/IP address, such as
9.112.26.333.

%8000
Default port_id. If this suboption is omitted, Debug Tool uses 8000 as the port
ID.

Yoport_id
Specifies a unique TCP/IP port on your workstation that is used by the remote
debug daemon.

When using the VADTCPIP& suboption, consider the following possible errors:

Chapter 3. Beginning a debug session 31

* The tcpip_workstation_id or port_id parameters must be syntactically or
functionally correct. If they are not and you attempt an interactive session, an
MEFI session is allocated, where possible. For example, if you attempt a session
from TSO or CICS with incorrect parameters, you will receive an MFI session at
your host window. This error is noted in the MVS SDSF log as an allocation
failure.

* If the tcpip_workstation_id or port_id parameters are not syntactically or
functionally correct, and you attempt an interactive batch session with Debug
Tool, Debug Tool will terminate and the batch application will continue to run as
though no debug session was ever attempted. This error occurs when, for
example, you run a JES batch job or CICS batch transaction. This error is noted
in the MVS SDSF log as an allocation failure.

* If your OS/390 or MVS environment is not using the default TCP/IP data set
named TCPIP.TCPIP.DATA and you attempt to run an interactive batch session,
Debug Tool terminates. Batch applications continue to run as though no debug
session was ever attempted. This error is noted in the MVS SDSF log as an
allocation error.
To fix this error, specify the SYSTCPD DDNAME with the appropriate TCP/IP
data set name. For example,
//SYSTCPD DD DISP=SHR,DSN=MY.TCPIP.DATA

* For TCP/IP sessions, the remote debug daemon must be started at the

workstation before you initialize Debug Tool. Refer to the appropriate product
documentation for help on using the remote debug daemon.

There are two TEST suboptions that are used when you are debugging Japanese
programs in remote debug mode. Use one of these suboptions to notify Debug
Tool which code page to use. When you specify one of these suboptions, it must be
the second suboption in the suboption list.

VADSCP930
Use this option to specify that IBM-930 is the Japanese EBCDIC code page. For
example:

TEST(,VADSCP930,,VADTCPIPmachine name:*)

Where machinename is the IP address of your workstation.

VADSCP939
Use this option to specify that IBM-939 is the Japanese EBCDIC code page. For
example:

TEST(,VADSCP939, ,VADTCPIPmachine name:=*)

Where machinename is the IP address of your workstation.

v . . . ”

Related tasks

: — — . 7

Related references

t/IESI l | | 7 33

” . . . 7y

g 77

z/OS Language Environment Debugging
Guide

32 Debug Tool User’s Guide and Reference

TEST run-time option usage notes

Defining TEST suboptions in your program

In C, C++ or PL/I, you can define TEST with suboptions using a #pragma runopts
or PLIXOPT string, then specify TEST with no suboptions at run time. This causes
the suboptions specified in the #pragma runopts or PLIXOPT string to take effect.

You can change the TEST/NOTEST run-time options at any time with the SET TEST
command.

Suboptions and NOTEST

Some suboptions are disabled with NOTEST, but are still allowed. This means you
can start your program using the NOTEST option and specify suboptions you might
want to take effect later in your debug session. The program begins to run without
Debug Tool taking control.

To enable the suboptions you specified with NOTEST, invoke Debug Tool during
your program’s run time using a library service call such as CEETEST, PLITEST, or
the ctest() function.

Implicit breakpoints

If the test level in effect causes Debug Tool to gain control at a condition or at a
particular program location, an implicit breakpoint with no associated action is
assumed. This occurs even though you have not previously defined a breakpoint
for that condition or location using an initial command string or a primary
commands file. Control is given to your terminal or to your primary commands
file.

Primary commands file and USE file

The primary commands file acts as a surrogate terminal. Once it is accessed as a
source of commands, it continues to act in this capacity until all commands have
been executed or the application has ended. This differs from the USE file in that,
if a USE file contains a command that returns control to the program (such as STEP
or G0), all subsequent commands are discarded. However, USE files invoked from
within a primary commands file take on the characteristics of the primary
commands file and can be executed until complete.

The initial command list, whether it consists of a command string included in the
run-time options or a primary commands file, can contain a USE command to get
commands from a secondary file. If invoked from the primary commands file, a
USE file takes on the characteristics of the primary commands file.

Running in batch mode

In batch mode, when the end of your commands file is reached, a GO command is
forced at each request for a command until the program terminates. If another
command is requested after program termination, a QUIT command is forced.

Invoking Debug Tool at different points

If Debug Tool is invoked during program initialization, invocation occurs before
the main prolog has completed. At that time, no program blocks are active and
references to variables in the main procedure cannot be made, compile units
cannot be called, and GOTO cannot be used. However, references to static variables
can be made.

If you enter STEP at this point, before entering any other commands, both program

and Language Environment initialization will complete and give you access to all
variables. You can also enter all valid commands.

Chapter 3. Beginning a debug session 33

If Debug Tool is invoked while your program is running (for example, using a
CEETEST call), it might not be able to find all compile units associated with your
application. Compile units located in load modules that are not currently active are
not known to Debug Tool, even if they were run prior to Debug Tool’s
initialization.

Debug Tool also does not know about compile units that were not compiled with
the TEST compiler option, even if they are active, nor does Debug Tool know about
compile units written in unsupported languages.

For example, suppose load module modl contains compile units cul and cu2, both
compiled with the TEST option. The compile unit cul calls cux, contained in load
module mod2, which returns after it completes processing. The compile unit cu2
contains a call to the CEETEST library service. When the call to CEETEST initializes
Debug Tool, only cul and cu2 are known to it. Debug Tool does not recognize cux.

The initial command string is performed only once, when Debug Tool is first
initialized in the process.

Commands in the preferences file are performed only once, when Debug Tool is
first initialized in the process.

Session log
The session log stores the commands entered and the results of the execution of
those commands. The session log saves the results of the execution of the

commands as comments. This allows you to use the session log as a commands
file.

Related tasks

[/E]. . .] D] :E] . DI:I I,,]3j

Related references
['UUSE command” on page 353

'SET TEST” on page 340

Precedence of Language Environment run-time options

The Language Environment run-time options have the following order of
precedence (from highest to lowest):

1. Installation options in the CEEDOPT file that were specified as nonoverrideable
with the NONOVR attribute.

2. Options specified by the Language Environment assembler user exit. Debug
Tool uses the DTCN transaction in the CICS environment and customized
Language Environment user exit EQADCCXT that is link-edited with the
application.

3. Options specified at the invocation of your application, using the TEST run-time
option, unless accepting run-time options is disabled by Language Environment
(EXECOPS /NOEXECOPS).

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with your
application.

If the object module for the source program is input to the linkage editor before
the CEEUOPT object module, then these options override CEEUOPT defaults.
You can force the order in which objects modules are input by using linkage
editor control statements.

34 Debug Tool User’s Guide and Reference

5. Region-wide CICS or IMS options defined within CEEROPT.
6. Option defaults specified at installation in CEEDOPT.
7. IBM-supplied defaults.

Suboptions are processed in the following order:

1. Commands entered at the command line override any defaults or suboptions
specified at run time.

2. Commands executed from a preferences file override the command string and
any defaults or suboptions specified at run time.

3. Commands from a commands file override default suboptions, suboptions
specified at run time, commands in a command string, and commands in a
preferences file.

Related references
z/OS Language Environment Programming
Guide

Example: TEST run-time options

The following examples of using the TEST run-time option are provided to
illustrate run-time options available for your programs. They do not illustrate
complete commands.

NOTEST Debug Tool is not invoked at program initialization. Note that a call to
CEETEST, PLITEST, or _ ctest() causes Debug Tool to be invoked during
the program’s execution.

NOTEST (ALL,MYCMDS, *,*)
Debug Tool is not invoked at program initialization. Note that a call to
CEETEST, PLITEST, or _ ctest() causes Debug Tool to be invoked during
the program’s execution. After Debug Tool is invoked, the suboptions
specified become effective and the commands in the file allocated to DD
name of MYCMDS are processed.

TEST Specifying TEST with no suboptions causes a check for other possible
definitions of the suboption. For example, C and C++ allow default
suboptions to be selected at compile time using #pragma runopts. Similarly,
PL/I offers the PLIXOPT string. Language Environment provides the macro
CEEXOPT. Using this macro, you can specify installation and
program-specific defaults.

If no other definitions for the suboptions exist, the IBM-supplied default
suboptions are (ALL, *, PROMPT, INSPREF).

TEST(ALL,*,*,*)
Debug Tool is not invoked initially; however, any condition or an attention
in your program causes Debug Tool to be invoked, as does a call to
CEETEST, PLITEST, or _ ctest(). Neither a primary commands file nor
preferences file is used.

TEST(NONE, , *,*)
Debug Tool is not invoked initially and begins by running in a "production
mode", that is, with minimal effect on the processing of the program.
However, Debug Tool can be invoked using CEETEST, PLITEST, or
__ctest().

TEST(ALL,test.scenario,PROMPT,prefer)
Debug Tool is invoked at the end of environment initialization, but before
the main program prolog has completed. The ddname prefer is processed

Chapter 3. Beginning a debug session 35

as the preferences file, and subsequent commands are found in data set
test.scenario. If all commands in the commands file are processed and
you issue a STEP command when prompted, or a STEP command is
executed in the commands file, the main block completes initialization
(that is, its AUTOMATIC storage is obtained and initial values are set). If
Debug Tool is reentered later for any reason, it continues to obtain
commands from test.scenario repeating this process until end-of-file is
reached. At this point, commands are obtained from your terminal.

TEST(ALL, , ,MFI%F000:)
For CICS dual terminal and CICS batch, Debug Tool is invoked on the
terminal FOOO at the end of the environment initialization.

TEST(ALL, , ,MFI%TCP00001:)
For environments other than CICS, Debug Tool is invoked on the terminal
associated with the VTAM LU TCP00001. This terminal must be known to
VTAM and not in session when Debug Tool is invoked.

Remote debug mode
If you are working from a cooperative environment, that is, you are
debugging your host application from your workstation, the following
examples apply:
TEST(,,,VADAPPCOSCAR:*) /* Using VADAPPC suboption */
TEST(,,,VADTCPIP&ERNIE:) /* Using VADTCPIP suboption =/
TEST(,,,VADTCPIP&machine.somewhere.something.com:*)

TEST(,,,VADTCPIP&9.24.104.79:%)
NOTEST(,,,VACTCPIP&9.24.111.55:%)

where 0SCAR and ERNIE is a workstation_id.

Related references
z/OS Language Environment Programming
Guide

Specifying additional run-time options with VS COBOL Il and
OS PL/I applications

There are two additional run-time options that you need to use to debug VS
COBOL II and OS PL/I programs: STORAGE and TRAP(ON).

Specifying the STORAGE run-time option

The STORAGE run-time option controls the initial content of storage when allocated
and freed, and the amount of storage that is reserved for the "out-of-storage”
condition. When you specify one of the parameters in the STORAGE run-time option,
all allocated storage processed by the parameter is initialized to that value.

Specifying the TRAP(ON) run-time option

The TRAP(ON) option is used to fully enable the Language Environment condition
handler that passes exceptions to the Debug Tool. Along with the TEST option, it
must be used if you want the Debug Tool to take control automatically when an
exception occurs. Using TRAP(0FF) with the Debug Tool causes unpredictable
results to occur.

Note: This option replaces the OS PL/I and VS COBOL II STAE/NOSTAE options.

36 Debug Tool User’s Guide and Reference

Specifying TEST run-time option with #pragma runopts in
C/C++

The TEST run-time option can be specified either when you invoke your program,
or directly in your source by using this #pragma:

#pragma runopts (test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. For
example, if you specified the following in the source:

#pragma runopts (notest(all,=*,prompt))

then entered TEST on the command line, the result would be
TEST(ALL, *, PROMPT) .

TEST overrides the NOTEST option specified in the #pragma and, because TEST does
not contain any suboptions of its own, the suboptions ALL, *, and PROMPT remain in
effect.

If you link together two or more compile units with differing #pragmas, the options
specified with the first compile are honored. With multiple enclaves, the options
specified with the first enclave (or compile unit) invoked in each new process are
honored.

If you specify options on the command line and in a #pragma, any options entered
on the command line override those specified in the #pragma unless you specify
NOEXECOPS. Specifying NOEXECOPS, either in a #pragma or with the EXECOPS compiler
option, prevents any command line options from taking effect.

Related tasks
L/OS C/Ca+ 1Iser’s Guidd

Invoking Debug Tool from a program

Debug Tool can also be invoked directly from within your program using one of
the following methods:

* Language Environment provides the callable service CEETEST that is invoked
from Language Environment-enabled languages.

* For C or C++ programs, you can use a __ctest() function call or include a
#pragma runopts specification in your program.

Note: The _ ctest() function is not supported in CICS.

* For PL/I programs, you can use a call to PLITEST or by including a PLIXOPT
string that specifies the correct TEST run-time suboptions to invoke Debug Tool.

To invoke Debug Tool using these alternatives, you still need to be aware of the
TEST suboptions specified using NOTEST, CEEUOPT, or other "indirect" settings.

’ . . . ”

v . . . ”

v . . . ’”

Related tasks

Finuokine Debis Tool i CEETEST 3

G : : 77

Chapter 3. Beginning a debug session 37

- - B . ’”

[1 Jsing CEEUOPT ta invoke Dpl‘;g Tool under CICS” on page 141l

Related references

FTEST ro | = 3
Invoking Debug Tool with CEETEST

Using CEETEST, you can invoke Debug Tool from within your program and send it
a string of commands. If no command string is specified, or the command string is
insufficient, Debug Tool prompts you for commands from your terminal or reads
them from the commands file. In addition, you have the option of receiving a
feedback code that tells you whether the invocation procedure was successful.

If you don’t want to compile your program with hooks, you can use CEETEST calls
to invoke Debug Tool at strategic points in your program. If you decide to use this
method, you still need to compile your application so that symbolic information is
created.

Using CEETEST when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for CEETEST is:

For C/C++
NOTEST |
TEST L >
BLOCK—| J
(— NOBLOCK)
LINE
NOLINE
J:PATH
NOPATH
SYM
NoSYH-—
—ALL
-NONE
For COBOL

(1) NOTEST
>>—|:—TEST ><

|—(ALL , SYM)
\\ (%%%)
,—NOSEPARATE
(ALL , SYM |_ —l)—
BLOCK \\ (%) J
NONE ,—SEPARATE
PATH NOSYM
STMT \\ (%*x)
,—NOSEPARATE———-

38 Debug Tool User’s Guide and Reference

Notes:

1 SEPARATE and NOSEPARATE are available only for COBOL for OS/390
programs.

For PL/I
NOTEST |

>> TEST

NONE J

| e |
STMT SYM
ALL

SYM
NOSE|

NONE
—, BLOCK
STMT
PATH
ALL

string_of_commands (input)
Halfword-length prefixed string containing a Debug Tool command list,
string_of_commands is optional.

If Debug Tool is available, the commands in the list are passed to the debugger
and carried out.

If string_of commands is omitted, Debug Tool prompts for commands in
interactive mode.

For Debug Tool, remember to use the continuation character if your command
exceeds 72 characters.

fc (output)

A 12-byte feedback code, optional in some languages, that indicates the result of
this service.

CEE000

Severity = 0

Msg_No = Not Applicable

Message = Service completed successfully
CEE2F2

Severity = 3

Msg_No = 2530

Message = A debugger was not available

Note: The CEE2F2 feedback code can also be obtained by MVS/]JES batch
applications or CICS nonterminal tasks getting APPC allocation failures.

For example, either the Debug Tool environment was corrupted or the
debug event handler could not be loaded.

Language Environment provides a callable service called CEEDCOD to help you

decode the fields in the feedback code. Requesting the return of the feedback code
is recommended.

Chapter 3. Beginning a debug session 39

For C/C++ and COBOL, if Debug Tool was invoked through CALL CEETEST, the
GOTO command is only allowed after Debug Tool has returned control to your
program via STEP or GO.

Usage notes
C/C++ Include Teawi.h header file.

COBOL
Include CEEIGZCT. CEEIGZCT is in the Language Environment SCEESAMP
data set.

PL/I Include CEEIBMAW and CEEIBMCT. CEEIBMAW is in the Language Environment
SCEESAMP data set.

Batch and CICS nonterminal processes
We strongly recommend that you use feedback codes (fc) when using
CEETEST to initiate Debug Tool from a batch process or a CICS nonterminal
task; otherwise, results are unpredictable.

I’Fynmp]p- using CEETEST to invoke nphng Tool from C/C++"1

% . . : ”

Related tasks

: THE T EI T = GIE

Related references
z/OS Language Environment Programming
Guide

Example: using CEETEST to invoke Debug Tool from C/C++

The following examples show how to use the Language Environment callable
service CEETEST to invoke Debug Tool from C or C++ programs.

Example 1
In this example, an empty command string is passed to Debug Tool and a
pointer to the Language Environment feedback code is returned. If no
other TEST run-time options have been compiled into the program, the call
to CEETEST invokes Debug Tool with all defaults in effect. After it gains
control, Debug Tool prompts you for commands.
#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy (commands.string, "");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);

}

Example 2
In this example, a string of valid Debug Tool commands is passed to
Debug Tool and a pointer to Language Environment feedback code is
returned. The call to CEETEST invokes Debug Tool and the command string
is processed. At statement 23, the values of x and y are displayed in the

40 Debug Tool User’s Guide and Reference

Log, and execution of the program resumes. Barring further interrupts,
Debug Tool regains control at program termination and prompts you for
commands. The command LIST(z) is discarded when the command GO is
executed.

Note: If you include a STEP or GO in your command string, all commands
after that are not processed. The command string operates like a
commands file.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;
strcpy (commands.string, "AT LINE 23; {LIST(x); LIST(y);} GO; LIST(z)");
commands.length = strlen(commands.string);

CFETEST(&commands, &fc);

Example 3

In this example, a string of valid Debug Tool commands is passed to
Debug Tool and a pointer to the feedback code is returned. If the call to
CEETEST fails, an informational message is printed.

If the call to CEETEST succeeds, Debug Tool is invoked and the command
string is processed. At statement 30, the values of x and y are displayed in
the Log, and execution of the program resumes. Barring further interrupts,
Debug Tool regains control at program termination and prompts you for
commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

#define SUCCESS "\0\0\0\0"
int main (void) {

int x,y,z;
VSTRING commands;

_FEEDBACK fc;

strcpy (commands.string,"AT LINE 30 { LIST(x); LIST(y); } GO;");
commands.length = strlen(commands.string);

pEETEST(&commands,&fc) ;

if (memcmp(&fc,SUCCESS,4) != 0) {
printf("CEETEST failed with message number %d\n",fc.tok msgno);
return(2999);
1
}

Chapter 3. Beginning a debug session 41

Example: using CEETEST to invoke Debug Tool from COBOL

The following examples show how to use the Language Environment callable
service CEETEST to invoke Debug Tool from COBOL programs.

Example 1
A command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes

active and prompts you for commands or reads them from a commands
file.

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.
03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.
03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.
04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.
03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.

02 I-S-INFO PIC S9(9) BINARY.
77 Debugger Picture x(7) Value 'CEETEST'.
01 Parms.
05 AA Picture S9(4) comp Value 14.
05 BB Picture x(14) Value 'SET SCREEN ON;'.

CALL Debugger USING Parms FC.

Example 2
A string of commands is passed to Debug Tool when it is invoked. After it
gains control, Debug Tool sets a breakpoint at statement 23, runs the LIST
commands and returns control to the program by running the GO
command. The command string is already defined and assigned to the
variable COMMAND-STRING by the following declaration in the DATA
DIVISION of your program:

01 COMMAND-STRING.
05 AA Picture 99 Value 60 USAGE IS COMPUTATIONAL.
05 BB Picture x(60) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

In addition, the result of the call is returned in the feedback code, using a
variable defined as:

01 FC.
02 CONDITION-TOKEN-VALUE.
COPY CEEIGZCT.
03 CASE-1-CONDITION-ID.
04 SEVERITY PIC S9(4) BINARY.
04 MSG-NO PIC S9(4) BINARY.
03 CASE-2-CONDITION-ID
REDEFINES CASE-1-CONDITION-ID.
04 CLASS-CODE PIC S9(4) BINARY.
04 CAUSE-CODE PIC S9(4) BINARY.
03 CASE-SEV-CTL PIC X.
03 FACILITY-ID PIC XXX.
02 I-S-INFO PIC S9(9) BINARY.

in the DATA DIVISION of your program. You are not prompted for
commands.

CALL "CEETEST" USING COMMAND-STRING FC.

42 Debug Tool User’s Guide and Reference

Example: using CEETEST to invoke Debug Tool from PL/I

The following examples show how to use the Language Environment callable
service CEETEST to invoke Debug Tool from PL/I programs.

Example 1
No command string is passed to Debug Tool at its invocation and no
feedback code is returned. After it gains control, Debug Tool becomes
active and prompts you for commands or reads them from a commands
file.

CALL CEETEST(*,%*); /* omit arguments */

Example 2
A command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes
active and executes the command string. Barring any further interruptions,
the program runs to completion, where Debug Tool prompts for further
commands.

DCL ch char(50)
init('AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;');

DCL 1 fb,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case bit(2),
8 Sev bit(3),
8 Ctrl bit(3),
5 FaclID Char(3),
5 IS info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,

254 real fixed bin(15), /* MsgSev */

254 real fixed bin(15), /* MSGNUM */

254 /* Flags */,
255 bit(2), /* Flags_Case */
255 bit(3), /* Flags_Severity */
255 bit(3), /* Flags_Control =*/

254 char(3), /* Facility ID x/

254 fixed bin(31)) /* 1_S Info */

options(assembler) ;

CALL CEETEST(ch, fb);

Example 3
This example assumes that you use predefined function prototypes and
macros by including CEEIBMANW, and predefined feedback code constants and
macros by including CEEIBMCT.

A command string is passed to Debug Tool that sets a breakpoint on every
tenth executed statement. Once a breakpoint is reached, Debug Tool
displays the current location information and continues the execution.
After the CEETEST call, the feedback code is checked for proper execution.

Note: The feedback code returned is either CEEOOO or CEE2F2. There is no
way to check the result of the execution of the command passed.

%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/% if CEEIBMCT is NOT included, the following DECLARES need to be

Chapter 3. Beginning a debug session 43

provided: ---------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builtin;
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);
DECLARE

fbtoken CHAR;

condition CHAR;
RETURN(' (ADDR("' || fbtoken||')—>CEEIBMCT = '||condition|]")");
%END FBCHECK;
%ACT FBCHECK;

---------- comment end ------mmmmmmmmm %/

Call CEETEST('AT Every 10 STATEMENT = Do; Q Loc; Go; End;' ||
"List AT;', FC);

If =FBCHECK(FC, CEE000)

Then Put Skip List(" > ERROR! in CEETEST call', FC.MsgNo);

Invoking Debug Tool with PLITEST

For PL/I programs, the preferred method of invoking Debug Tool is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform
declarations.

The syntax is:

»»>—CALL—PLITEST ; ><
I—(—characterﬂ_string_expression—)—|

character_string_expression
Specifies a list of Debug Tool commands. If necessary, this is converted to a
fixed-length string.

Notes:

1. If Debug Tool executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don’t want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your
application so that symbolic information is created.

The following examples show how to use PLITEST to invoke Debug Tool for PL/L

Example 1
No argument is passed to Debug Tool when it is invoked. After gaining
control, Debug Tool prompts you for commands.

CALL PLITEST;

Example 2
A string of commands is passed to Debug Tool when it is invoked. After
gaining control, Debug Tool sets a breakpoint at statement 23, and returns
control to the program. You are not prompted for commands. In addition,
the List Y; command is discarded because of the execution of the GO
command.

CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

44 Debug Tool User’s Guide and Reference

Example 3
Variable ch is declared as a character string and initialized as a string of
commands. The string of commands is passed to Debug Tool when it is
invoked. After it runs the commands, Debug Tool prompts you for more
commands.

DCL ch Char(45) Init('At Statement 23 Do; List x; End;');

CALL PLITEST(ch);

Invoking Debug Tool with the __ctest() function

You can also use the C/C++ library routine __ctest() or ctest() to invoke Debug
Tool. Add:

#include <ctest.h>
to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use _ ctest() function. The _ ctest()
function is not supported in CICS.

When a list of commands is specified with _ ctest(), Debug Tool runs the
commands in that list. If you specify a null argument, Debug Tool gets commands
by reading from the supplied commands file or by prompting you. If control
returns to your application before all commands in the command list are run, the
remainder of the command list is ignored. Debug Tool will continue reading from
the specified commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use __ctest()
function calls to invoke Debug Tool at strategic points in your program. If you
decide to use this method, you still need to compile your application so that

symbolic information is created.

Using _ ctest() when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for this option is:

(1)

»>—int—_ ctest (—char—=*char_str_exp—) ><

Notes:
1 The syntax for ctest() and _ ctest() is the same.
char_str_exp
Specifies a list of Debug Tool commands.
The following examples show how to use the __ctest() function for C/C++.

Example 1
A null argument is passed to Debug Tool when it is invoked. After it gains
control, Debug Tool prompts you for commands (or reads commands from
the primary commands file, if specified).

__ctest(NULL);

Chapter 3. Beginning a debug session 45

Example 2
A string of commands is passed to Debug Tool when it is invoked. At
statement 23, Debug Tool lists x and y, then returns control to the program.
You are not prompted for commands. In this case, the command 1ist z; is
never executed because of the execution of the command GO.
__ctest("at Tine 23 {"
"list x;"
" Tist y;"
e
go;
"Tist z;3");
Example 3
Variable ch is declared as a pointer to character string and initialized as a
string of commands. The string of commands is passed to Debug Tool
when it is invoked. After it runs the string of commands, Debug Tool
prompts you for more commands.

char *ch = "at Tine 23 Tist x;";

__ctest(ch);

Example 4
A string of commands is passed to Debug Tool when it is invoked. After
Debug Tool gains control, you are not prompted for commands. Debug
Tool runs the commands in the command string and returns control to the
program by way of the GO command.

#include <stdio.h>
#include <string.h>

char *ch = "at Tine 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[35.132];

strcpy (buffer, "at change x.y;");

__ctest(strcat(buffer, ch));

Invoking your program when starting a debug session

After you decide what level of testing you want to employ during your debug
session, you can invoke your program using the proper TEST run-time option for
your language. If you are using Debug Tool, this requires no special procedures,
although there are certain considerations depending on the environment where
you are debugging your program. Before you begin your session, make sure all
Debug Tool and program libraries are available and that all necessary Debug Tool
files, such as the session log file, the primary commands file, the preferences file,
and any desired USE files are defined and created. If the program you want to
debug is authorized, ensure that the Debug Tool load library SEQAMOD is
authorized and placed in the MVS LNKLST concatenation.

Related tasks

% . . ”

s . ”

G : . ”

46 Debug Tool User’s Guide and Reference

Invoking Debug Tool under CICS

To use Debug Tool under CICS, you need to ensure that all of the required
installation and configuration steps for CICS/ESA®, Language Environment, and
Debug Tool have been completed.

You can invoke Debug Tool in four ways:

Single terminal mode
Debug Tool displays its screens on the same terminal as the application.
This can be set up using DTCN, CEETEST, pragma, or CEEUOPT (TEST).

Dual terminal mode
Debug Tool displays its screens on a different terminal than the one used
by the application. This can be set up with DTCN or CEDFE.

Batch mode
Debug Tool does not have a terminal, but uses a commands file for input
and writes output to the log. This can be set up using DTCN, CEETEST,
pragma, or CEEUOPT (TEST).

Remote debug mode
Debug Tool works with a remote debugger to display results on a
graphical user interface. This can be set up using DTCDN, CEETEST, pragma,or
CEEUOPT (TEST).

Related tasks

Dl T z Y
Invoking Debug Tool under MVS in TSO

To begin a debug session, ensure your program has been compiled with the TEST
compiler option, and take the following steps:

1. Make sure all Debug Tool data sets are available. This might involve defining
them as part of a STEPLIB library.

Note: High-level qualifiers and load library names will be specific to your
installation. Ask the person who installed Debug Tool what the data sets
are called. The names will probably end in SEQAMOD. These data sets
might already be in the linklist or included in your TSO logon
procedure, in which case you don’t need to do anything to access them.

The installation options will determine whether or not this step is needed.

2. Allocate all other data sets containing files your program needs.

3. If you want a session log file, allocate one. This is a file that keeps a record of
your debug session and can be used as a commands file during subsequent
sessions. Do not allocate the session log file to a terminal. For example, do not
use ALLOC FI(INSPLOG) DA(x).

4. Start your program with the TEST run-time option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or _ ctest() in the program’s
source.

The following two example CLISTs show how you might allocate the Debug Tool

load library data set (SEQAMOD) if it is not in the linklist or TSO logon
procedure:

Chapter 3. Beginning a debug session 47

PROC O TEST

ALLOCATE DA('EQAW.V1R2MO.SEQAMOD') FILE(SEQAMOD) SHR REUSE
STEPLIB SET(SEQAMOD)

END

and

PROC O TEST

TSOLIB DEACTIVATE

FREE FILE(SEQAMOD)

ALLOCATE DA('EQAW.VIR2MO.SEQAMOD') FILE(SEQAMOD) SHR REUSE
TSOLIB ACTIVATE FILE(SEQAMOD)

END

If you store either example CLIST in MYID.CLIST(DTSETUP), you can execute the
CLIST by entering the following at the TSO READY prompt:

EXEC 'MYID.CLIST(DTSETUP)'
The CLIST will execute and the appropriate Debug Tool data set will be allocated.

After allocating all necessary program data sets, the command line is used to
allocate the preferences file setup.pref and the session log file session.log as
shown in the following example:

ALLOCATE FILE(insppref) DATASET(setup.pref) REUSE

ALLOCATE FILE(insplog) DATASET(session.log) REUSE
CALL tstscrpt '/TEST'

No primary commands file is created. The TEST run-time option is entered from the
command line during invocation of the COBOL program tstscrpt. Default
run-time suboptions are assumed, as well as the Language Environment default
run-time options for your installation.

The following CLIST fragment shows how to define Debug Tool-related files and
invoke the C program progl with the TEST run-time option:

ALLOC FI(inspsafe) DA(debug.save) REUSE
ALLOC FI(insplog) DA(debug.log) REUSE
ALLOC FI(insppref) DA(debug.preferen) REUSE

CALL 'MYID.MYQUAL.LOAD(PROG1)' +
' TRAP(ON) TEST(,*,;,insppref)/!

Files include the session log file, debug.1og; the preferences file, debug.preferen;
and the settings file, debug.save, a Debug Tool file that saves Debug Tool settings
for use in future debug sessions. Its Debug Tool-supplied default ddname is
inspsafe. All necessary data sets must exist prior to invoking this CLIST.

Invoking your program from a terminal that works only in line mode results in a
line-mode session of Debug Tool. If you want to debug in line mode and you have
a 3270-compatible terminal that is capable of sustaining a full-screen session, you
must specify SET SCREEN OFF. You can specify this with the TEST run-time option
by including the command in a preferences file, or by specifying it as a command
string (for example, TEST(,*,"SET SCREEN OFF",insppref)).

To invoke Debug Tool from a terminal other than the terminal currently controlling
your TSO session, use the VTAM_LU_id parameter to specify the LU id of a VTAM
terminal. The VTAM terminal you specify controls your debugging session as long
as you remain in full-screen mode. If you enter line mode, control reverts to your
TSO terminal until you re-enter full-screen mode using the SET SCREEN ON
command.

48 Debug Tool User’s Guide and Reference

Related tasks

I’Rpcm‘ding yvour debug session in a log file” on page 64
2 M 4

7 . n 0 173

Related references
z/OS Language Environment Programming
Guide

Invoking Debug Tool under CMS

To begin a debug session, ensure that you have compiled your program with the
TEST compiler option and take the following steps:

1. Access the product minidisk where Debug Tool resides.
2. Access any other minidisks containing files your programs need.

3. Load any text decks your programs need. For example, to use PL/I, C, and
COBOL on VM, the following MACLIB, TXTLIB and LOADLIB definitions
would be required:

GLOBAL MACLIB SCEEMAC OSMACRO
GLOBAL TXTLIB SCEELKED CMSLIB
GLOBAL LOADLIB SCEERUN

4. Create and define any Debug Tool file you need, such as a preferences file, a

USE file, or a primary commands file.

5. Define the session log file. This is a file that keeps a record of your debug
session and can be used as a commands file during subsequent sessions.

6. Start your program with the TEST run-time option, specifying the appropriate
suboptions.

Note: You can also include a call to CEETEST, PLITEST, or _ ctest() in the
program’s source.

After you access all necessary disks and load required text decks, the command
line is used to define the preferences file setup pref a and the session log file
seslog Tog a as shown in the following example:

FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F

FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F

LOAD tstscr2
START = TEST/

No primary commands file is created. The TEST run-time option is entered from the
command line during invocation of the C program tstscr2. Default suboptions are
assumed.

If you created a load module with GENMOD, enter:

FILEDEF insppref DISK setup pref a (LRECL 80 RECFM F
FILEDEF insplog DISK seslog log a (LRECL 72 RECFM F
tstscrpt2 TEST/

The REXX EXEC shown below, called startup exec, is created to define all Debug
Tool-related files and invoke the COBOL program progl with the TEST run-time
option. progl must be a load module.

'"FILEDEF insplog DISK dbg log a (LRECL 72 RECFM F'

'"FILEDEF insppref DISK dhg pref a (LRECL 80 RECFM F
'"FILEDEF inspin DISK dbg cmds a (LRECL 72 RECFM F'

Chapter 3. Beginning a debug session 49

'"FILEDEF inspsafe DISK dhg settings a (LRECL 80 RECFM F'
'GENMOD progl '

'progl * /TEST(,inspin,;,insppref)’

This assumes that the CBLOPTS run-time option was set to ON in the CEEDOPT or
CEEUOPT assembly programs containing defaults and user-defined Language
Environment options.

Files include the session log file, dbg Tog a, and dbg settings a, a Debug Tool file
that saves Debug Tool settings for use in future debug sessions. Its Debug
Tool-supplied ddname is inspsafe. Also defined are two preallocated files: dbg pref
a (the Debug Tool preferences file) and dbg cmds a (the Debug Tool primary
commands file).

Related tasks

th l :]] 7]] d

n . - . N 7

Related references
z/OS Language Environment Programming Guide

Invoking Debug Tool in batch

Before running a batch debug session, ensure that you have compiled your
program with the TEST compiler option. Next, modify the JCL to run your batch
program to include the appropriate Debug Tool data sets and to specify the TEST
run-time option. Finally, run the modified JCL.

Sample JCL for a batch debug session for the COBOL program, EMPLRUN, is
provided below. The job card and data set names need to be modified to suit your
installation.

//DEBUGJCL JOB <appropriate JOB card information>

//* KKK KKKKKKRKKRKRKRKRKRRRKRKARKRRKR XKk hkkkhkkhkhkkhkhkhkhkkhkhkkkhkkkhkkkhkhkkkhxk*

//* JCL to run a batch Debug Tool session

//* Program EMPLRUN was previously compiled with the COBOL

//* compiler TEST option

//* KA IIAAIAAA A A A A Ak hhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhrrrhrrrhrrhrrrsx

//STEP1 EXEC PGM=EMPLRUN,

/] PARM="/TEST(, INSPIN,,)"

/1%

//* Include the Debug Tool SEQAMOD data set

//*

//STEPLIB DD DISP=SHR,DSN=userid.TEST.LOAD

// DD DISP=SHR,DSN=EQAW.V1R2M0O.SEQAMOD
/1%

//* Specify a commands file with DDNAME matching the one

//* specified in the /TEST runtime option above

//* This example shows inline data but a data set could be

/1* specified 1ike: //INSPIN DD DISP=SHR,DSN=userid.TEST.INSPIN

/1*
//INSPIN DD =
STEP;
AT *
PERFORM
QUERY LOCATION;
GO;
END-PERFORM;
GO;
QUIT;
/*
/1*

50 Debug Tool User’s Guide and Reference

/1%
/1%
/1%
/1%
/1%
/1%
/1%

Specify a log file for the debug session
Log file can be a data set with LRECL >= 42 and <= 256
For COBOL only, use LRECL <= 72 if you are planning to
use the log file as a commands file in subsequent Debug
Tool sessions. You can specify the log file like:
//INSPLOG DD DISP=SHR,DSN=userid.TEST.INSPLOG

//INSPLOG DD SYSOUT=*,DCB=(LRECL=72,RECFM=FB,BLKSIZE=7200)
//SYSPRINT DD SYSOUT=+

//SYSUDUMP DD DUMMY

//SYSOUT DD SYSOUT=+

/*
//

You can debug an MVS batch job in full-screen mode. Use the MFI option to
specify the LU id of a VTAM terminal that interacts with Debug Tool. In the
previous example, change the EXEC statement to specify the LU name of the VTAM
terminal. For example:

//STEP1 EXEC PGM=EMPLRUN,

/!

PARM="/TEST(, INSPIN, ,MFI%TCP000O1:)"

Related tasks

4

Flising Debre Tool i baichaode” 54

”

G

1

Chapter 3. Beginning a debug session

51

52 Debug Tool User’s Guide and Reference

Chapter 4. Debugging your programs in full-screen mode

The topics below describe the Debug Tool full-screen interface, and how to use this
interface to perform common debugging tasks.

Debugging your programs in full-screen mode is the easiest way to learn how to
use Debug Tool, even if you plan to use batch or line modes later.

Note: The PF key definitions used in these topics are the default settings.

Related tasks

[‘'Stepning throngh ar running vaur program” on page 694
e — - AN 12287

I’Diq‘p]nving and monitoring a variable’s value” on pacge 6d

I'Dicp]aving error numbers for messages in the oo window” on page 7d

”

Starting a full-screen debug session

You can invoke Debug Tool by using the Language Environment TEST run-time

option in one of the following ways:

¢ For TSO, you need to include the Debug Tool library in your STEPLIB
concatenation and invoke your program with the TEST run-time option as shown
in the following example for C, C++, and PL/I:
MYPROG TEST / prog arg list

For COBOL, invoke your program as follows:
MYPROG prog arg list / TEST

Contact your systems programmer if you do not know the name of the Debug
Tool library on your system.

To control Debug Tool from a separate terminal, specify the VTAM LU identifier
of the separate terminal in the TEST parameter, as in the following example:

TEST(,,,MFI%TCPOOOO1:)/
* For MVS batch, you need to include the Debug Tool library in your STEPLIB

concatenation and invoke your program with the TEST run-time option
specifying the VTAM LU identifier of a terminal, as in the following example

TEST(,,,MFI%TCPOO0OOL:)/

© Copyright IBM Corp. 1995, 2001 53

* For CICS, make sure Debug Tool is installed in your CICS region. Enter DTCN
to start the Debug Tool control transaction. Press PF4 to save the default
debugging profile. Press PF3 to exit from the DTCN transaction. Enter the name
of the transaction you want to debug.

* If you build your application using the c¢89 orc++, do the following steps:

1. Compile your source code as usual, but specify the —g option to generate
debugging information. The —g option is equivalent to the TEST compiler
option under TSO or MVS batch. For example, to compile the C source file
fred.c from the u/mike/app directory, specify:

cd /u/mike/app
c89 —g —o "//PROJ.LOAD(FRED)" fred.c

Note: The double quotes in the command line above are required.
2. Set up your TSO environment, as described above.
3. Debug the program under TSO by entering the following:

FRED TEST ENVAR('PWD=/u/mike/app') / asis

Note: The single quotes in the command line above are required.
ENVAR('PWD=/u/mike/app') sets the environment variable PWD to the
path from where the source files were compiled. Debug Tool uses this
information to determine from where it should read the source files.

If you are debugging your application in the UNIX System Services Shell, you
must debug in remote debug mode or in full-screen mode using a VTAM
terminal. The workstation component of remote debuggers is available through
several products, including C/C++ Productivity Tools for OS/390 and VisualAge
COBOL.

Related tasks
[l: .]. : ~[] I] IESI 'I [‘ 7 : :3; E Ei

Related references

MDebiis Tool sossi 7

Ending a full-screen debug session

When you have finished debugging your program, you can either press PF3 (QUIT)
or enter QUIT on the command line to end your Debug Tool session.

If the log file is allocated to the 3270 terminal device, issue the command SET LOG
OFF before issuing the QUIT command.

Debug Tool session panel

The Debug Tool session panel contains a header with information about the
program you are debugging, a command line, and up to three windows.

Source window
Displays your program source code

54 Debug Tool User’s Guide and Reference

Log window
Records your commands and Debug Tools responses

Monitor window

Continuously displays the value of monitored variables and other items,
depending on the command used

The Debug Tool session panel below shows the default layout for the Monitor
window [, the Source window B, and the Log window H.

/COBOL LOCATION: IBTUFS4 :> 100.1)
Command ===> Scroll ===> PAGE
MONITOR -=-+===-=l--modomeu2mmmmtomm3emmedoeenfme oo b ot----6 LINE: 1 OF 3

TOP OF MONITOR

0001 1 77 IBTUFS4:>VARBL2 21
0002 2 77 IBTUFS4:>VARBL1 11
0003 3 77 IBTUFS4:>X 1

BOTTOM OF MONITOR
SOURCE: IBTUFS& =-1----#mm==2mmmtomo-3moootbomoofomo—too-G-——— LINE: 98 OF 118

98 ADD 1 TO VARBL1

9 H ADD 1 TO VARBL2

100 CALL "SUBPRO1" USING BY CONTENT PARAM1
101 ADD 1 TO X

102 END-PERFORM.

LOG 0--=-t=-=clo-metoce2emctocnc3emmetommcfemetommobommot-—-- LINE: 13 OF 19

0013 The command element MONITOR is invalid.

0014 MONITOR

0015 LIST VARBL2 ;

0016 MONITOR

0017 LIST VARBLI ;

0018 MONITOR

0019 LIST X ;

& %

Related tasks

Related references

s T hoader

% : . ”

i : ”

G : 7

Session panel header

The first few lines of the Debug Tool session panel contain a command line and
header fields that display information about the program you are debugging.

Below is an example header for a C program under MVS/TSO.

c LOCATION: MYID.SOURCE(TSTPGM1):>248
Command ===> SCROLL ===> PAGE A}

Below is an example header for a COBOL program under CMS.

COBOL LOCATION: XYZPROG::>SUBR:>118
Command ===> SCROLL ===> PAGE |}

The header fields are described below.

Chapter 4. Debugging your programs in full-screen mode 55

C/C++, COBOL, or PL/I
The name of the current programming language. This is not necessarily the
programming language of the code in the Source window.

Note: Debug Tool does not differentiate between C and C++ programs. If
there is a C++ program in the Source window, only C is displayed
in this field.

H LOCATION
The program unit name and statement where execution is suspended,
usually in the form compile unit:>nnnnnn.

In the MVS/TSO example above, execution in MYID.SOURCE (TSTPGM1) is
suspended at line 248.

In the CMS example above, execution in XYZPROG is suspended at
XYZPROG: :>SUBR:>118, or line 118 of subroutine SUBR.

EH coOMMAND
The input area for the next Debug Tool command. You can enter any valid
Debug Tool command here.

[SCROLL
The number of lines or columns you want to scroll when you enter a scroll
command without an amount specified. To hide this field, enter the SET
SCROLL DISPLAY command. To modify the scroll amount, use the SET
DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL
DOWN, SCROLL LEFT, and SCROLL RIGHT scrolling commands. The scrolling
commands can be used to scroll by increments of n lines, half a page, a full
page, to the top or bottom of the data, to the limit of the data, to the left or
right by specified amounts, or to the position of the cursor.

H Message areas
Information and error messages are displayed in the space immediately
below the command line.

Source window

/SOURCE: MULTCU ==-1-==-t--=2--ootoue3mmootoooboooodo---5-——-—+ LINE: 70 OF 85)
70 PROCEDURE DIVISION. .
71 hrkkkhkkhhrkhhrhhrhhrhhdhhrhhrrhhrhhhhhrhhhrhhrhhrhhrhhrrhrrdrrdrrsc |
72 * THIS IS THE MAIN PROGRAM AREA. This program only displays
73 * text.
74

B s DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE.

76 MOVE 25 TO PROGRAM-USHORT-BIN. .
77 MOVE -25 TO PROGRAM-SSHORT-BIN. .Aa
78 PERFORM TEST-900.
79 PERFORM TEST-1000.

9 80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE. .)

The Source window displays the source file or listing. The Source window has four
parts, described below.

Header area
Identifies the window, shows the compile unit name, and shows the
current position in the source or listing.

56 Debug Tool User’s Guide and Reference

H Prefix area
Occupies the leftmost eight columns of the Source window. Contains
statement numbers or line numbers you can use when referring to the
statements in your program. You can use the prefix area to set, display, and
remove breakpoints with the prefix commands AT, CLEAR, ENABLE, DISABLE,
QUERY, and SHOW.

El Source display area
Shows the source code (for a C/C++ program), or the source listing (for a
COBOL or PL/I program) for the currently qualified program unit. If the
current executable statement is in the source display area, it is highlighted.

B Suffix area
A narrow, variable-width column at the right of the screen that Debug Tool
uses to display frequency counts. It is only as wide as the largest count it
must display.

The suffix area is optional. To show the suffix area, enter SET SUFFIX ON. To
hide the suffix area, enter SET SUFFIX OFF. You can also set it on or off
with the Source Listing Suffix field in the Profile Settings panel.

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Related tasks

[,II - E 1 .E.]. 7 i]I

7 . v n . 7

Monitor window

COBOL LOCATION: MULTCU :> 75.1

Command ===> Scroll ===> PAGE
MONITOR --+-==-l----t--uu2ommmtoemBemedoefetoo b —t----6 LINE: 1 OF 2
TOP OF MONITOR
0001 1 01 MULTCU:>PROGRAM-USHORT-BIN 00000
0002 2 01 MULTCU:>PROGRAM-SSHORT-BIN +00000
wokkok * BOTTOM OF MONITOR #%*#*x *k

Use the Monitor window to continuously display output from the MONITOR LIST,
MONITOR QUERY, and MONITOR DESCRIBE commands. If this window is not open,
Debug Tool opens it when you enter a monitor command. Its contents are
refreshed whenever Debug Tool receives control and after every Debug Tool
command that can affect the display.

When you issue a MONITOR command, it is assigned a reference number between 1
and 99, then added to the monitor list. You can specify the monitor number;
however, you must either replace an existing monitor number or use the next
sequential number.

While the MONITOR command can generate an unlimited amount of output,

bounded only by your storage capacity, the Monitor window can display a
maximum of only 1000 scrollable lines of output.

Chapter 4. Debugging your programs in full-screen mode 57

If a window is not wide enough to show all the output it contains, you can either
issue SCROLL RIGHT (to scroll the window to the right) or ZOOM (to make it fill the
screen).

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Related tasks

U . . ”

Related references

G ”

Log window

LOG O-n-=+=mmnlommmtmmmoemobmoc3mmccbomocbom ot 5oootooo6 LINE: 6 OF 14
0007 MONITOR

0008 LIST PROGRAM-USHORT-BIN ;

0009 MONITOR

0010 LIST PROGRAM-SSHORT-BIN ;

0011 AT 75 ;

0012 AT 77 ;

0013 AT 79 ;

0014 GO ;

Ao J

The Log window records and displays your interactions with Debug Tool. All
commands that are valid in line mode, and their responses, are automatically
appended to the Log window. The following commands are not recorded in the
Log window.

PANEL

FIND

CURSOR

RETRIEVE

SCROLL

WINDOW

IMMEDIATE

QUERY prefix command

SHOW prefix command

If SET INTERCEPT ON is in effect for a file, that file’s output also appears in the Log
window.

You can optionally exclude STEP and GO commands from the log by specifying SET
ECHO OFF.

Commands that can be used with IMMEDIATE, such as the SCROLL and WINDOW
commands, are excluded from the Log window.

By default, the Log window keeps 1000 lines for display. To change this value,
enter SET LOG KEEP n, where n is the number of lines you want kept for display.

The maximum number of lines is determined by the amount of storage available.

58 Debug Tool User’s Guide and Reference

The labeled header line for each window contains a scale and a line counter. If you
scroll a window horizontally, the scale also scrolls to indicate the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Entering commands on the session panel

You can enter a command or modify what is on the session panel in seven areas,

as shown below.

/,C LOCATION: "ICFSSCU1" :> 89)
Command ===> Scroll ===> PAGE H
MONITOR ==+-===lomomtomac2emmmbomc3mmootoccabonctboaocbomootooonf LINE: 1 OF 2

TOP OF MONITOR

0001 1 VARBL1 10
0002 2 VARBLZ 20

BOTTOM OF MONITOR *
SOURCE: ICFSSCUL - [l --+----2---#--=-3---—#ocfooet-——-5-———+ LINE: 81 OF 96
81 main() .
82 |
83 int VARBL1
A s int VARBL2
85 int R = 1;

10;
20;

87 printf("— IBFSSCCL : BEGIN\n");
88 do {
89 VARBL1++;
90 printf("INSIDE PERFORM\n");
91 VARBL2 = VARBL2 - 2;
92 R++; .
L0G [--+----1----#--=-2em—tmeo-3emo oo cfmeotoaeoBeeetoof LINE: 7 OF 15
0007 STEP ;
0008 AT 87 ;
0009 MONITOR
0010 LIST VARBLL ;
0011 MONITOR
0012 LIST VARBL2 ;
0013 GO ;
0014 STEP ;
0015 STEP ;
. %

Command line
You can enter any valid Debug Tool command on the command line.

H Scroll area
You can redefine the default amount you want to scroll by typing the
desired value over the value currently displayed.

Compile unit name area
You can change the qualification by typing the desired qualification over
the value currently displayed. For example, to change the current
qualification from ICFSSCU1, as shown in the Source window header, to
ICFSSCU2, type ICFSSCU2 over ICFSSCUL and press Enter.

B Prefix area
You can enter only Debug Tool prefix commands in the prefix area, located
in the left margin of the Source window.

B Source window
You can modify any lines in the Source window and place them on the
command line.

Chapter 4. Debugging your programs in full-screen mode 59

@ Window id area
You can change your window configuration by typing the name of the
window you want to display over the name of the window that is
currently being displayed.

Log window
You can modify any lines in the log and have Debug Tool place them on
the command line.

Related tasks

Isst ling system commands”

” . . i . ”

” . g ey 17

1 Ising Program Function (PF') kevs to enter commands” on page 62

” . . . 7

” . . . 17

Related references

FOrd e DT : T : 7

7 gt . 7

Order in which Debug Tool accepts commands from the
session panel

If you enter commands in more than one valid input area on the session panel and
press Enter, the input areas are processed in the following order of precedence.

1. Prefix area

Command line

Compile unit name area

Scroll area

Window id area

Source/Log window

ook wn

Using the session panel command line

You can enter any Debug Tool command in the command field. You can also enter
any CMS or TSO command by prefixing them with CMS, SYSTEM, or TS0. Commands
can be up to 48 SBCS characters or 23 DBCS characters in length.

If you need to enter a lengthy command, Debug Tool provides a command
continuation character, the SBCS hyphen (-). When the current programming
language is C/C++, you can also use the back slash (\) as a continuation character.

Debug Tool also provides automatic continuation if your command is not
complete; for example, if the command was begun with a left brace ({) that has not
been matched by a right brace (}). If you do need to continue your command,
Debug Tool provides a MORE ===> prompt that is equivalent to another command
line. You can continue to request additional command lines with continuation
characters until you complete your command.

Related tasks

Issuing system commands

During your Debug Tool session, you can still access your base operating system
using the SYSTEM command. The string following the SYSTEM command is passed on

60 Debug Tool User’s Guide and Reference

to your operating system. You can communicate with CMS in a CMS environment,
or TSO in a TSO environment. For example, if you want to see a CMS filelist while
in a debugging session, enter SYSTEM FILELIST;.

For CMS only: If you enter SYSTEM without a system command, you enter CMS
subset mode. To return to Debug Tool, enter RETURN.

For TSO only:

e A command is required after the SYSTEM keyword. Do not enter any required
parameters. Debug Tool prompts you.

* If you are debugging in batch and need system services, you can include
commands and their requisite parameters in a CLIST and substitute the CLIST
name in place of the command.

 If you want to enter several TSO commands, you can include them in a USE file,
a procedure, or other commands list. Or you can enter:

SYSTEM ISPF;

This invokes ISPF and displays an ISPF panel on your host emulator screen that
you can use to issue commands.

For CICS only: The SYSTEM command is not supported.

The SYSTEM command has two synonyms: CMS for the CMS environment, and TSO
for the TSO environment. Truncation of the CMS and TS0 commands is not allowed.

Related references

7 ”

Using prefix commands on specific lines or statements

Certain commands, known as prefix commands, can be typed over the prefix area in
the Source window, and then processed by pressing Enter. These commands (AT,
CLEAR, DISABLE, ENABLE, QUERY, and SHOW) pertain only to the line or lines of code
before which they are typed. For example, the AT command typed in the prefix
area of a specific line sets a statement breakpoint only at that line.

You can use prefix commands to specify the particular verb or statement in the line
where you want the command to apply. For example, AT typed in the prefix area of
a line sets a statement breakpoint at the first relative statement in that line, while
AT 3 sets a statement breakpoint at the third relative statement in that line. Typing
DISABLE 3 in the prefix area and pressing Enter disables that breakpoint.

Related references

G . ”

Using commands that are sensitive to the cursor position

Certain commands are sensitive to the position of the cursor. These commands,
called cursor-sensitive commands, include all those that contain the keyword CURSOR
(AT CURSOR, DESCRIBE CURSOR, FIND CURSOR, LIST CURSOR, SCROLL...CURSOR, TRIGGER
AT CURSOR, WINDOW. ..CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the
cursor at the location in your Source window where you want the command to
take effect (for example, at the beginning of a statement or at a verb), and press
Enter.

Chapter 4. Debugging your programs in full-screen mode 61

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command,
which returns the cursor to its last saved position.

Related tasks

Related references
AT CLURSOR. (full-screen mode)” on page 229

s ”

s ”

ILIST CLIRSOR. (full-screen mode)” on page 284

U ”

4 ”

[YAINDOW command (full-screen mode)” on page 354

4 ”

Using Program Function (PF) keys to enter commands

The cursor-sensitive commands, as well as other full-screen tasks, can be issued
more quickly by assigning PF keys to them than by typing them on the command
line. You can issue the WINDOW CLOSE, LIST, CURSOR, SCROLL TO, DESCRIBE
ATTRIBUTES, RETRIEVE, FIND, WINDOW SIZE, and the scrolling commands (SCROLL UP,
DOWN, LEFT, and RIGHT) this way. Using PF keys makes tasks convenient and easy.

Related tasks
I’npﬁning PE keys” aon page 113

7 - oy eg 77

Related references

il DET —

Initial PF key settings
The table below shows the initial PF key settings.

PF key |Label Definition Use

R ’ ECosiing online holp for Dobug Tool
[L omiad T

PF2 STEP STEP EStepping through or running voud
l 7, |

PF3 QUIT QUIT ‘Endi - on

PF4 LIST LIST Finding a renamed source, listing od
Eepazate debug file” 20

PF4 LIST LIST variable_name l”ni‘ﬂp]m’iﬂg il Lot d

PF5 FIND IMMEDIATE FIND m ing i - a

PF6 AT/CLEAR |AT TOGGLE CURSOR P'q@f’ring breakpoints to halt vaul
Progran line” q

PF7 UP IMMEDIATE UP ’ i] Z

PF8 DOWN IMMEDIATE DOWN ’ i - G

62 Debug Tool User’s Guide and Reference

PF key |Label Definition Use

PF9 GO GO ESteppmg_thmu.gh_or_ummngqmu.ﬂ

PF10 ZOOM IMMEDIATE ZOOM tZgomm.g_mmdomg_gcaLp.)Lthd

PF11 ZOOM LOG | IMMEDIATE ZOOM LOG EEmm%umdeccup;Ltbd

PF12 RETRIEVE IMMEDIATE RETRIEVE ER.e.tue.m.n.g_p.tem:us_cumma.n.dsﬂ

Related tasks

Retrieving previous commands

To retrieve the last command you entered, press PF12 (RETRIEVE). The retrieved
command is displayed on the command line. You can make changes to the
command, then press Enter to issue it.

To step backwards through previous commands, press PF12 to retrieve each
command in sequence. If a retrieved command is too long to fit in the command
line, only its last line is displayed.

Related tasks

FRa P TS oo

Related references
[RETRIEVE command (full-screen made)” on page 319

Retrieving commands from the Log and Source windows

You can retrieve lines from the Log and Source windows and use them as new
commands.

To retrieve a line, move the cursor to the desired line, modify it (for example,
delete any comment characters) and press Enter. The input line appears on the

command line. You can further modify the command, then press Enter to issue it.

When retrieving long or multiple Debug Tool commands, a pop-up window is
displayed, with the command as typed in so far. However, trailing blanks on the

last line are removed. To expand the pop-up window, place the cursor below it and

press Enter.

Related tasks

Related references

G 7

Navigating through Debug Tool session panel windows

You can navigate in any of the windows using the CURSOR command and the
scrolling commands: SCROLL UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and BOTTOM. You
can also search for character strings using the FIND command, which scrolls you
automatically to the specified string.

Chapter 4. Debugging your programs in full-screen mode

63

The window acted upon by any of these commands is determined by one of
several factors. If you specify a window name (LOG, MONITOR, or SOURCE) when
entering the command, that window is acted upon. If the command is
cursor-oriented, the window containing the cursor is acted upon. If you do not
specify a window name and the cursor is not in any of the windows, the window
acted upon is determined by the settings of Default window and Default scroll
amount under the Profile Settings panel.

Related tasks

Related references

7 ”

Moving the cursor between windows

To move the cursor back and forth quickly from the Monitor, Source, or Log
window to the command line, use the CURSOR command. This command, and
several other cursor-oriented commands, are highly effective when assigned to PF
keys. After assigning the CURSOR command to a PF key, move the cursor by
pressing that PF key. If the cursor is not on the command line when you issue the
CURSOR command, it goes there. To return it to its previous position, press the
CURSOR PF key again.

Related tasks

[/D E EE] ”]]d

Related references

4 ”

Scrolling the windows

If the cursor is on the command line, you can scroll the Source window by
pressing PF7 (UP) or PF8 (DOWN). To scroll through other windows, place the cursor
in the desired window before pressing PF7 or PES.

You can toggle one of the Source, Log or Monitor windows to full screen
(temporarily not displaying the others) by moving the cursor into the window you
want to zoom and pressing PF10 (Z0OOM). To toggle back, press PF10 again. PF11
(ZOOM LOG) toggles the Log window the same way without the cursor needing to be
in the Log window.

You can scroll any of the windows vertically and horizontally by issuing the
SCROLL UP, DOWN, LEFT, and RIGHT commands (the SCROLL keyword is optional). You
can use the command line to specify which window to scroll. For example, to
scroll the monitor window up 5 lines, enter SCROLL UP 5 MONITOR.

Alternately, you can use the position of the cursor to indicate the window you

want to scroll; if the cursor is in a window, that window is scrolled. If you do not
specify the window, the default window (determined by the setting of the DEFAULT

64 Debug Tool User’s Guide and Reference

WINDOW command) is scrolled. You can change the default window by changing the
settings of Default window and Default scroll amount under the Profile Settings
panel.

Related tasks

Related references

I'SCROLL command (full-screen mnﬂp)” onpage 314

G ”

Scrolling to a particular line number

To display a particular line at the top of a window, use the SCROLL T0 command
with the statement numbers shown in the window prefix areas. Enter SCROLL TO n
(where n is a line number) on the command line and press Enter.

For example, to bring line 345 to the top of the window, enter SCROLL TO 345 on
the command line. The selected window is scrolled vertically so that your specified
line is displayed at the top of that window.

Related references

4 ”

Finding a string in a window
To find the next occurrence of a string within a window:

1. On the command line, type the string you want to find, enclosed in double
quotes (COBOL or C/C++) or single quotes (PL/I), but do not press Enter.

2. Move the cursor into the window to be searched.
3. Press PF5 (FIND).

To repeat the search in whatever window the cursor is in, press PF5 again.

Related references

4 7

Changing which source file appears in the Source window

To change which source file appears in the Source window, overtype the name
after SOURCE: on the top line of the Source window with the desired name. This
only works if the compile unit (CU) is already known to Debug Tool. You might
want to issue the LIST NAMES CUS command first to determine which CUs are
known.

Alternately, you can enter the command:
LIST NAMES CUS

and a list of compile units will be written to the Log window, as shown below.

USERID.MFISTART.C(CALC)
USERID.MFISTART.C(PUSHPOP)
USERID.MFISTART.C(READTOKN)

You can overtype or insert characters on one of these lines in the Log window and
press Enter to display the modified text on the command line, for example:

Chapter 4. Debugging your programs in full-screen mode 65

SET QUALIFY CU "USERID.MFISTART.C(READTOKN)"

and then press Enter to issue the command. Overtyping a line in the Log window
and issuing them as commands is a way to save keystrokes and reduce errors in
long commands.

Another way to change which source file appears in the Source window is to press
PF4 (LIST) with the cursor on the command line. This displays the Source
Identification Panel, where associations are made between listings or source files
shown in the Source window and their compile units. Overtype the Listings/Source
File field with the new name.

For C/C++ only

For C/C++ compile units, Debug Tool requires a file containing the source code.
By default, when Debug Tool encounters a new C/C++ compile unit, it looks for
the source code in a file whose name is the one that was used in the compile step.

For COBOL and PL/I only

For COBOL and PL/I compile units, Debug Tool requires a file containing the
compiler listing. By default, when Debug Tool encounters a new VS COBOL II or a
non-VisualAge PL/I for OS/390 compile unit, it looks for the listing in a file
named h1q.cuname.LIST. For VisualAge PL/I for OS/390, Debug Tool looks for the
listing in the data set specified in the load module. For COBOL/370" and COBOL
for MVS, Debug Tool looks for the listing in the data set specified during the
compile step. For COBOL for OS/390, there are two possible places Debug Tool
looks for compiler listing:

* Debug Tool look for the listing in the data set specified during the compile step.

* If your program is compiled with the SEPARATE sub-option of the TEST compiler
option, Debug Tool looks for the compiler listing in the separate debug file.

Related tasks

[,E.]]]. . i] E.] 77 ZDI

Related references

’ ”

7 ”

Displaying the line at which execution halted

After displaying different source files and scrolling, you can go back to the halted
execution point by entering the following command:

SET QUALIFY RESET

Related references

g ”

Recording your debug session in a log file

Debug Tool can record your commands and their generated output in a session log
file. This allows you to record your session and use the file as a reference to help
you analyze your session strategy. You can also use the log file as a command
input file in a later session by specifying it as your primary commands file. This is
a convenient method of reproducing debug sessions or resuming interrupted
sessions.

66 Debug Tool User’s Guide and Reference

The following appear as comments (preceded by an asterisk {*} in column 7 for

COBOL programs, and enclosed in /* */ for C/C++ or PL/I programs):

e All command output

* Commands from USE files

* Commands specified on a __ctest() function call

* Commands specified on a CALL CEETEST statement

* Commands specified on a CALL PLITEST statement

¢ Commands specified in the run-time TEST command string suboption

e QUIT commands

* Debug Tool messages about the program execution (intercepted console
messages, exceptions, etc.)

The default ddname associated with the Debug Tool session log file is INSPLOG. If
you do not allocate a file with ddname INSPLOG, no default log file is created.

Related tasks

FCroating the oo o]

” . . . 17

Creating the log file
To create a permanent log of your debug session, first create a file with the
following specifications:
* A logical record length between 32 and 256. If the log file has a logical record
length outside the limits, Debug Tool issues a message and does not use the file.
* The record format and blocksize have no restrictions.
* On MVS, this file must be a sequential data set.

Then, allocate the file to the DD name INSPLOG in the CLIST, JCL, or EXEC you
use to run your program.

For COBOL only, if you want to subsequently use the session log file as a
commands file, make the LRECL less than or equal to 72. Debug Tool ignores
everything after column 72 for file input during a COBOL debug session.

For CICS only, SET LOG OFF is the default. To start the log, you must use the SET
LOG ON file command. For example, to have the log written to a data set named
TSTPINE.DT.LOG, issue: SET LOG ON FILE TSTPINE.DT.LOG;.

Make sure the default of SET LOG ON is still in effect. If you have issued SET LOG
OFF, output to the log file is suppressed. If Debug Tool is never given control, the
log file is not used.

When the default log file (INSPLOG) is accessed during initialization, any existing
file with the same name is overwritten. On MVS, if the log file is allocated with
disposition of MOD, the log output is appended to the existing file. Entering the
SET LOG ON FILE xxx command also appends the log output to the existing file.

If a log file was not allocated for your session, you can allocate one with the SET
LOG command by entering:

SET LOG ON FILE logddn;

This causes Debug Tool to write the log to the file which is allocated to the DD
name LOGDDN.

Note: Do not use MVS partitioned data sets to store session logs.

Chapter 4. Debugging your programs in full-screen mode 67

At any time during your session, you can stop information from being sent to a
log file by entering:
SET LOG OFF;

To resume use of the log file, enter:
SET LOG ON;

The log file is active for the entire Debug Tool session.

Debug Tool keeps a log file in the following modes of operation: line mode,
full-screen mode, and batch mode.

Related references
I'SET_ LOG” on page 329

Recording how many times each source line runs

To record of how many times each line of your code was executed:

1. Allocate the INSPLOG file if you want to keep a permanent record of the
results.

2. Issue the command:
SET FREQUENCY ON;

After you have entered the SET FREQUENCY ON command, your Source window
is updated to show the current frequency count. Remember that this command
starts the statistic gathering to display the actual count, so if your application
has already executed a section of code, the data for these executed statements
will not be available.

If you want statement counts for the entire program, issue:

GO ;
LIST FREQUENCY = ;

which lists the number of times each statement is run. When you quit, the
results are written to the Log file. You can issue the LIST FREQUENCY * at any
time, but it will only display the frequency count for the currently active
compile unit.

Related tasks

Setting breakpoints to halt your program at a line

To set or clear a line breakpoint, move the cursor over an executable line in the
Source window and press PF6 (AT/CLEAR). You can temporarily turn off the
breakpoint with DISABLE and turn it back on with ENABLE.

Related tasks

I'T—Tn]fing on-aline in C onlv if a condition is true” on page 74

” ey . 7

” . . . g . 17

” . . . ey . 7

Related references

4 ”

68 Debug Tool User’s Guide and Reference

Stepping through or running your program

By default, when Debug Tool starts, none of your program has run yet (including
C++ constructors and static object initialization).

To run your program up to the next hook, press PF2 (STEP). If you compiled with
TEST for C or C++, TEST(ALL,SYM) for COBOL or PL/I, or TEST(NONE,SYM) for
COBOL for 0OS/390 with Dynamic Debug installed, STEP performs one statement.

To run your program until a breakpoint is reached, the program ends, or a
condition is raised, press PF9 (GO).

Note: A condition being raised is determined by the setting of the TEST run-time
suboption test_level.

The command STEP OVER runs the called function without stepping into it. If you
accidentally step into a function when you meant to step over it, issue the STEP
RETURN command that steps to the return point (just after the call point).

Related tasks

I’Fhapfpr 2_Preparing your prooram for debugoing” on page G|

[/I] . D] :D] .] IESI . 77 21

Related references

4 ”

'STEP cammand” on page 344

Displaying and monitoring a variable’s value

To display the contents of a single variable, move the cursor to the variable name
and press PF4 (LIST). The value of the variable is displayed in the Log window.

To continuously display (“monitor”) a variable’s value, you can issue most LIST
commands preceded by the word MONITOR. For example, enter:

MONITOR LIST num ;

The variable num is added to the Monitor window and the current value of num is
displayed. As you step through your program, the value of num is updated in the
Monitor window so that the window always reflects the current value of num. The
MONITOR command makes it easy to watch values while stepping through your
program.

Related tasks

| — — =

ST . . 7

Related references

G ”

s ”

G ”

Chapter 4. Debugging your programs in full-screen mode 69

Displaying error numbers for messages in the Log window

When an error message shows up in the Log window, you can also get the
message ID number to show up as

EQA1807E The command element d is ambiguous.

instead of

The command element d is ambiguous.

by either modifying your profile or using the SET MSGID ON command. To modify
your profile, use the PANEL PROFILE command and set Show message 1D numbers to
YES by overtyping.

Related tasks

T AT —

Related references

7 ”

I'PANEL command (full-screen maode)” on page 302

7 Z

Finding a renamed source, listing or separate debug file

If the source, listing, or separate debug file (COBOL for OS/390 only) has been
renamed since your program was compiled, Debug Tool will not be able to find it,
and it will not appear in the Source window when you debug your program.

To point Debug Tool to the renamed file:
* Use the Source Identification panel to direct Debug Tool to the new files:
1. With the cursor on the command line, press PF4 (LIST).
This displays the Source Identification panel, where associations are made

between source, listings, or separate debug files shown in the Source window
and their compile units.

2. Overtype the Listing/Source File field with the new name.

* Use the SET SOURCE and SET DEFAULT LISTINGS commands to direct Debug Tool
to the new files:

1. With the cursor on the command line, type SET SOURCE new_file_name,
where new_file_name is the renamed source file. Press Enter.

2. With the cursor on the command line, type SET DEFAULT LISTINGS
new_file_name, where new_file_name is the renamed listing or separate debug
file. Press Enter.

If you need to do this repeatedly, note the SET SOURCE ON commands generated in
the Log window. You can save these commands in a file and reissue them with the
USE command for future invocations of Debug Tool.

Related tasks

: _ —— o 2

Related references

LIST (hlank)” on page 784

['SET SOURCE” on page 338

'SET DEFAULT LISTINGS (MVS)” on page 321

70 Debug Tool User’s Guide and Reference

Requesting an attention interrupt during interactive sessions

During an interactive Debug Tool session, you can request an attention interrupt, if
necessary. For example, you can stop what appears to be an unending loop, stop
the display of voluminous output at your terminal, or stop the execution of the
STEP command.

An attention interrupt should not be confused with the ATTENTION condition. If you
set an AT OCCURRENCE or ON ATTENTION, the commands associated with that
breakpoint are not run at an attention interrupt.

Language Environment TRAP and INTERRUPT run-time options should both be set to
ON in order for attention interrupts that are recognized by the host operating
system to be also recognized by Language Environment. The test_level suboption of
the TEST run-time option should not be set to NONE.

For CICS and full-screen mode using a VTAM terminal only: An attention
interrupt key is not supported in CICS or full-screen mode using a VTAM terminal.

For MVS only: For C, when using an attention interrupt, use SET INTERCEPT ON
FILE stdout to intercept messages to the terminal. This is required because
messages do not go to the terminal after an attention interrupt.

For Dynamic Debug only: The Dynamic Debug feature does not support attention
interrupts for programs compiled with TEST(NONE,SYM) compiler option.

The correct key might not be marked ATTN on every keyboard. Often the
following keys are used:

* Under TSO: PA1 key

¢ Under CMS: PA1 key twice

e Under IMS: PA1 key

When you request an attention interrupt, control is given to Debug Tool:

At the next hook if Debug Tool has previously gained control or if you specified
either TEST(ERROR) or TEST(ALL) or have specifically set breakpoints

e Ata __ ctest() or CEETEST call
* When an HLL condition is raised in the program, such as SIGINT in C

Related references

['SET INTERCEPT (C/C++ and COBQOIL)” on page 327
z/OS Language Environment Programming

Guide

Debugging a C program in full-screen mode

The descriptions of basic debugging tasks for C refer to the following C program.

4 . : ”

Related tasks

FChanter o Debusaine C/C Z =

% 17

I’Mndifxling the value of a C variable” on page 74

I'Halfing on_aline in C onlv if a condition is true” on page 74

a . : : 7”

Chapter 4. Debugging your programs in full-screen mode 71

’/ . 7

’/ : : ”

I’T)iﬁp]aving raw storage in C” on page 77

[/D] C DI I 7 ZZ

7 . . . 173

n 7

P . . . 17

P . o ege e . 7

” . . . 17

Example: sample C program for debugging

The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ — * /) is
read, the top two elements are popped off the stack, the operation is performed on
them, and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

CALC.H

L FILE CALC.H === = === mmmmmmmm oo x/
/* */
/* Header file for CALC.C PUSHPOP.C READTOKN.C */
/* a simple calculator x/

typedef enum toks {
T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP
} Token;
Token read_token(char buf[]);
typedef struct int_link {
struct int_Tink * next;
int i;
} IntLink;
typedef struct int_stack {
IntLink * top;
} IntStack;
extern void push(IntStack *, int);
extern int pop(IntStack *);

CALC.C

[x====- FILE CALC.C === == mmm oo s oo e e e e e e */
/* */
/* A simple calculator that does operations on integers that */
/* are pushed and popped on a stack */
/Ty */

#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
IntStack stack = { 0 };
main()
{

Token tok;

char word[100];

char buf_out[100];

int num, num2;

72 Debug Tool User’s Guide and Reference

for(;s)
{
tok=read_token(word);
switch(tok)
{
case T_STOP:
break;
case T_INTEGER:
num = atoi (word);
push (&stack,num); /* statement */
break;
case T_PLUS:
push(&stack, pop(&stack)+pop(&stack));
break;
case T_MINUS:
num = pop(&stack);
push(&stack, num-pop(&stack));
break;
case T_TIMES:
push(&stack, pop(&stack)=*pop(&stack));
break;
case T_DIVIDE:
num2 = pop(&stack);
num = pop(&stack);
push(&stack, num/num2); /«[XXE] statement =/
break;
case T_EQUALS:
num = pop(&stack);
sprintf(buf_out,"= %d ",num);
push(&stack,num);
break;

1
if (tok==T_STOP)
break;

}

return 0;

}

PUSHPOP.C

[*===== FILE PUSHPOP.C ====m == mmm s oo oo m o e e e e */
/* */
/* A push and pop function for a stack of integers */
e L */
#include <stdlib.h>

#include "calc.h"

2y */
/* input: stk - stack of integers */
/* num - value to push on the stack */
/* action: get a link to hold the pushed value, push Tink on stack */
/* */
extern void push(IntStack * stk, int num)
{

IntLink * ptr;

ptr = (IntLink *) malloc(sizeof(IntLink)); /+ EUNLLIZN =/

ptr—>i = num; /* BANIGOLZA statement =/

ptr—>next = stk—>top;

stk—>top = ptr;
}
2 */
/* return: int value popped from stack */
/* action: pops top element from stack and gets return value from it =/
e */
extern int pop(IntStack * stk)
{

IntLink * ptr;

Chapter 4. Debugging your programs in full-screen mode

73

int num;

ptr = stk—>top;
num = ptr—>1i;
stk—>top = ptr—>next;
free(ptr);

return num;

READTOKN.C

#i
#1
#i

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

To
{

----- FILE READTOKN.C === ==mmmmmmmm o mm oo oo oo

nclude <ctype.h>
nclude <stdio.h>
nclude "calc.h"
action: get next input char, update index for next call
return: next input char

input action:
2 push 2 on stack
18 push 18
+ pop 2, pop 18, add, push result (20)
= output value on the top of the stack (20)
5 push 5
/ pop 5, pop 20, divide, push result (4)
= output value on the top of the stack (4)
char * buf_in ="2 18 +=5/=";
static int index; /* starts at 0 =/
char ret;
ret = buf_in[index];
++index;
return ret;

output: buf - null terminated token
return: token type
action: reads chars through nextchar() and tokenizes them

ken read_token(char buf[])

int i;
char c;
/* skip leading white space */
for(c=nextchar();
isspace(c);
c=nextchar())

buf[0] = ¢; /* get ready to return single char e.g."+" %/
buf[1] = 0;
switch(c)

case '+' : return T_PLUS;

case '-' : return T_MINUS;
case '#' : return T_TIMES;
case '/' : return T_DIVIDE;

case '=' : return T_EQUALS;
default:
i=0;

while (isdigit(c))
buf[i++] = c;

74 Debug Tool User’s Guide and Reference

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

¢ = nextchar();
}
buf[i] = 0;
if (i==0)
return T_STOP;
else
return T_INTEGER;
}
1

Related tasks

FDal . Rl o 7
Halting when certain functions are called in C

% . - 7

To halt just before read_token is called, issue the command:
AT CALL read_token ;

To halt just after read_token is called, issue the command:
AT ENTRY read_token ;

To take advantage of either of the above actions, you must compile your program
with the TEST compiler option.

Modifying the value of a C variable

To LIST the contents of a single variable, move the cursor to the variable name and
press PF4 (LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

v . . ”

Run the CALC program above to the statement labeled [¥{{#§, move the cursor
over num and press PF4 (LIST). The following appears in the Log window:

LIST (num) ;
num = 2

To modify the value of num to 22, overtype the num = 2 line with num = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing PF2 (STEP) and step until the
statement labeled PUSHPOP2 is reached. To view the attributes of variable ptr,
issue the Debug Tool command:

DESCRIBE ATTRIBUTES =ptr;

The result in the Log window is similar to the following:

ATTRIBUTES for * ptr
Its address is OBB6EO1O and its length is 8
struct int_Tink
struct int_link =*next;
int i;

You can use this action to browse structures and unions.

Chapter 4. Debugging your programs in full-screen mode 75

You can list all the values of the members of the structure pointed to by ptr with
the command:

LIST =ptr ;

with results in the Log window appearing similar to the following;:

LIST = ptr ;
(* ptr).next = 0x00000000
(* ptr).i =0

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

(* ptr).i =33 ;

Halting on a line in C only if a condition is true

Often a particular part of your program works fine for the first few thousand
times, but fails afterwards because a specific condition is present. Setting a simple
line breakpoint is an inefficient way to debug the program because you need to
execute the G0 command a thousand times to reach the specific condition. You can
instruct Debug Tool to continue executing a program until a specific condition is
present.

‘ . . 7

For example, in the main procedure of the program above, you want to stop at
T_DIVIDE only if the divisor is O (before the exception occurs). Set the breakpoint
like this:

AT 40 { if(num2 !'= 0) GO; }

Line 40 is the statement labeled [W\{#] . The command causes Debug Tool to stop
at line 40. If the value of num2 is not 0, the program continues. You can enter
Debug Tool commands to change the value of num2 to a nonzero value.

Debugging C when only a few parts are compiled with TEST
Mo e T =

Suppose you want to set a breakpoint at entry to the function push() in the file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. Debug Tool comes up with an empty Source window. To display the compile
units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool. Depending on the compiler you are using, or if
"USERID.MFISTART.C(PUSHPOP)" is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU "USERID.MFISTART.C(PUSHPOP)"
AT ENTRY push;
GO ;

or
AT ENTRY "USERID.MFISTART.C(PUSHPOP)":>push
GO;

If it is not displayed, set an appearance breakpoint as follows:

76 Debug Tool User’s Guide and Reference

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When that happens, you can set
breakpoints at entry to push():

AT ENTRY push;

You can also combine the breakpoints as follows:
AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" AT ENTRY push; GO;

Capturing C output to stdout
To redirect stdout to the Log window, issue the following command:
SET INTERCEPT ON FILE stdout ;

With this SET command, you will capture not only stdout from your program, but
also from interactive function calls. For example, you can interactively call printf
on the command line to display a null-terminated string by entering:

printf(sptr);

You might find this easier than using LIST STORAGE.

Calling a C function from Debug Tool

You can invoke a library function (such as strlen) or one of the program functions
interactively by calling it on the command line.

‘ . . 7

Below, we call push() interactively to push one more value on the stack just before
a value is popped off.

AT CALL pop
GO ;

push(77);

GO ;

The calculator produces different results than before because of the additional
value pushed on the stack.

Displaying raw storage in C
A char = variable ptr can point to a piece of storage containing printable
characters. To display the first 20 characters enter:
LIST STORAGE(*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line, as in:

puts(ptr)

Debugging a C DLL
Build PUSHPOP.C as a DLL, exporting push() and pop(). Build CALC.C and

READTOKN.C as the program that imports push() and pop() from the DLL
named PUSHPOP. When the application CALC starts the DLL, PUSHPOP will not

Chapter 4. Debugging your programs in full-screen mode 77

be known to Debug Tool. Use the AT APPEARANCE breakpoint to gain control in the
DLL the first time code in that compile unit appears, as shown in the following
example:

AT APPEARANCE "USERID.MFISTART.C(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Related references

7 ”

Getting a function traceback in C

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

v . . 7

For example, if you run the CALC example with the commands:
AT ENTRY read_token ;

GO ;

LIST CALLS ;

the Log window will contain something like:

At ENTRY in C function CALC ::> "USERID.MFISTART.C(READTOKN)" :> read_token.
From LINE 18 in C function CALC ::> "USERID.MFISTART.C(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.

Related references

METCALLS T,
Tracing the run-time path for C code compiled with TEST

To trace a program showing the entry and exit points without requiring any
changes to the program, place the following Debug Tool commands in a file and
USE them when Debug Tool initially displays your program. Assuming you have a
data set USERID.DTUSE(TRACE) that contains the following Debug Tool commands:

int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY * { \
++indent; \
if (indent < 0) indent = 0; \

printf("%*.s>%s\n", indent, " ", %block); \
GO; \

1

AT EXIT = {\
if (indent < 0) indent = 0; \
printf("%*.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

78 Debug Tool User’s Guide and Reference

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file will be
displayed in the Log window.
int foo(int i, int j) {
return i+j;
}
int main(void) {
return foo(1,2);

}

The following trace in the Log window is displayed after running the sample
program, with the USE file as a source of input for Debug Tool commands:
>main

>foo

<foo
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Related references
I'1TISE command” on page 353

Finding unexpected storage overwrite errors in C

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happens. Consider this example where
function set_i changes more than the caller expects it to change.

struct s { int i; int j;};

struct s a=1{0, 0 };

/* function sets only field i */
void set_i(struct s * p, int k)

{

p—>i = ks
p—>j = k; /* error, it unexpectedly sets field j also */
main() {

set_i(&a,123);
1

Find the address of a with the command
LIST &(a.j)

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE (0x7042A04,4)
When the program is run, Debug Tool will halt if the value in this storage changes.

Related references
AT CHANGE” on page 224

s . ”

Chapter 4. Debugging your programs in full-screen mode 79

Finding uninitialized storage errors in C

To help find your uninitialized storage errors, run your program with the
Language Environment TEST run-time and STORAGE options. In the following
example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through malloc() is filled with the byte OxFD.
If you see this byte repeated through storage, it is likely uninitialized heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by calling free() might be filled
with the byte OxFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely
uninitialized auto storage.

The values chosen in the example are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address you will get an
exception immediately.

7 . : ”

As an example of uninitialized heap storage, run program CALC with the
STORAGE run-time option as STORAGE (FD,FB,F9) to the line labeled PUSHPOP2
and issue the command:

LIST #ptr ;

You will see the byte fill for uninitialized heap storage as the following example

shows:

LIST = ptr ;

(* ptr).next = OxFDFDFDFD
(* ptr).i = -33686019

Related references
[‘LIST PXp]‘PQQiOn” on page 284

Halting before calling a NULL C function

Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL ©

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debug session without
raising a condition.

Related references
AT CALL” on page 774

7 ”

80 Debug Tool User’s Guide and Reference

Debugging a C++ program in full-screen mode

The descriptions of basic debugging tasks for C++ refer to the following C++
program.

T ——"—a A

Related tasks

I’Phnpfpr 9_Debugeging C/Crt programs” on page 157

” 77

"Mndifxring the value of a C++ variable” on page RE|

” R . N . oge . 7

X T ”

” . . . 7

4 . ”

4 . : ”

I’ﬁiqp]nving raw storage in C++” on page]9

G : 7

” . . . 77

I"T'rm*ing the run-time path for C++ code compiled with TEST” an page a9
—_— - - ~

= . . e - . 17

v . . . ”

Example: sample C++ program for debugging
The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ — * /) is
read, the top two elements are popped off the stack, the operation is performed on
them, and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

CALC.HPP

YR — FILE CALC.HPP == - - oo s oo oo e e e e e mem */
/* */
/* Header file for CALC.CPP PUSHPOP.CPP READTOKN.CPP */
/* a simple calculator */

typedef enum toks {
T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T_DIVIDE,
T_EQUALS,
T_STOP
} Token;
extern "C" Token read_token(char buf[]);
class IntLink {
private:
int i;
IntLink * next;
public:
IntLink();
“IntLink();
int get_i();
void set_i(int j);
IntLink * get_next();

Chapter 4. Debugging your programs in full-screen mode 81

void set_next(IntLink * d);
1
class IntStack {
private:
IntLink * top;
public:
IntStack();
“IntStack();
void push(int);
int pop();
1

CALC.CPP

e — FILE CALC.CPP === mmmmmmmmmmm oo

/*
/* A simple calculator that does operations on integers that
/* are pushed and popped on a stack

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"
IntStack stack;
int main()
{
Token tok;
char word[100];
char buf _out[100];
int num, num2;
for(;s)
{

tok=read_token(word);
switch(tok)

case T_STOP:
break;
case T_INTEGER:
num = atoi(word);

stack.push(num); /% statement =/
break;

case T_PLUS:
stack.push(stack.pop()+stack.pop());
break;

case T_MINUS:
num = stack.pop();
stack.push(num-stack.pop());
break;

case T_TIMES:
stack.push(stack.pop()*stack.pop());
break;

case T_DIVIDE:
num2 = stack.pop();
num = stack.pop();
stack.push (num/num2) ; /* statement */
break;

case T_EQUALS:
num = stack.pop();
sprintf(buf_out,"= %d ",num);
stack.push (num);
break;

1
if (tok==T_STOP)
break;
}

return 0;

}

82 Debug Tool User’s Guide and Reference

*/
*/
*/

PUSHPOP.CPP

L FILE: PUSHPOP.CPP == -mmmmmmmmm o dmmmmm oo

#include <stdio.h>
#include <stdlib.h>
#include "calc.hpp"

/* input: num - value to push on the stack
/* action: get a link to hold the pushed value, push Tlink on stack

void IntStack::push(int num) {
IntLink * ptr;
ptr = new IntLink;
ptr—>set_i(num);
ptr—>set _next(top);
top = ptr;

/* return: int value popped from stack (0 if stack is empty)
/* action: pops top element from stack and get return value from it

int IntStack::pop() {
IntLink * ptr;

int num;
ptr = top;
num = ptr—>get_i();

top = ptr—>get_next();
delete ptr;
return num;

}
IntStack::IntStack() {

top = 0;
}
IntStack:: " IntStack() {
while(top)
pop() s

IntLink::IntLink() { /* constructor leaves elements unassigned */

1
IntLink:: " IntLink() {

1

void IntLink::set i(int j) {
i=3;

1

int IntLink::get i() {
return 1i;

1

void IntLink::set_next(IntLink * p) {
next = p;

1

IntLink * IntLink::get_next() {
return next;

}

READTOKN.CPP

JEEEEE FILE READTOKN.CPP === e e e e e e e e e e e oo
/*

/* A function to read input and tokenize it for a simple calculator
#include <ctype.h>
#include <stdio.h>
#include "calc.hpp"

/* action: get next input char, update index for next call

Chapter 4. Debugging your programs in full-screen mode

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

83

/* return: next input char */

/Ty */
static char nextchar(void)
{

/* input action

¥ mmmmem smem———-

* 2 push 2 on stack

* 18 push 18

* + pop 2, pop 18, add, push result (20)

* = output value on the top of the stack (20)

* 5 push 5

* / pop 5, pop 20, divide, push result (4)

* = output value on the top of the stack (4)

*/

char * buf in ="2 18 +=5/=";

static int index; /* starts at 0 */

char ret;

ret = buf_in[index];

++index;

return ret;
}
2y */
/* output: buf - null terminated token */
/* return: token type */
/* action: reads chars through nextchar() and tokenizes them */
Jmm e e cececence s */
extern "C"
Token read_token(char buf[])
{

int i;

char c;

/* skip leading white space */
for(c=nextchar();

isspace(c);

c=nextchar())

buf[0] = c; /* get ready to return single char e.g. "+" x/

buf[1] = 0;

switch(c)

{
case '+' : return T_PLUS;
case '=' : return T _MINUS;

case '#' : return T_TIMES;
case '/' : return T_DIVIDE;
case '=' : return T_EQUALS;
default:
i=0;
while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 0;
if (i==0)
return T_STOP;
else
return T_INTEGER;
}
1

Related tasks

Halting when certain functions are called in C++

You need to include the C++ signature along with the function name to set an AT
ENTRY or AT CALL breakpoint for a C++ function.

84 Debug Tool User’s Guide and Reference

To facilitate entering the breakpoint, you can display PUSHPOP.CPP in the Source
window by overtyping the name of the file on the top line of the Source window.
This makes PUSHPOP.CPP your currently qualified program. You can then issue
the command:

LIST NAMES

which displays the names of all the blocks and variables for the currently qualified
program. Debug Tool displays information similar to the following in the Log
window:

There are no session names.

The following names are known in block CALC ::> "USERID.MFISTART.CPP(PUSHPOP)"
IntStack:: IntStack()

IntStack::IntStack()

IntLink::get_i()

IntLink::get_next()

IntLink::"IntLink()

IntLink::set_i(int)

IntLink::set_next(IntLinkx)

IntLink::IntLink()

Now you can save some keystrokes by inserting the command next to the block
name.

To halt just before IntStack::push(int) is called, insert AT CALL next to the
function signature and, by pressing Enter, the entire command is placed on the
command line. Now, with AT CALL IntStack::push(int) on the command line, you
can enter the command:

AT CALL IntStack::push(int)

To halt just after IntStack::push(int) is called, issue the command:
AT ENTRY IntStack::push(int) ;

in the same way as the AT CALL command.

To be able to halt, the file with the calling code must be compiled with the TEST
compiler option.

Related references

AT CATI” on page 225

AT ENTRY/EXIT” on page 231|
['LIST NAMES” on page 291

Modifying the value of a C++ variable

To list the contents of a single variable, move the cursor to the variable name and
press PF4 (LIST). The value is displayed in the Log window. This is equivalent to
entering LIST TITLED variable on the command line.

v . . ’”

Run the CALC program and step into the first call of function
IntStack: :push(int) until just after the IntLink has been allocated. Enter the
Debug Tool command:

LIST TITLED num

Chapter 4. Debugging your programs in full-screen mode 85

Debug Tool displays the following in the Log window:

LIST TITLED num;
num = 2

To modify the value of num to 22, overtype the num = 2 line with num = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most C++ expressions on the command line.

To view the attributes of variable ptr in IntStack: :push(int), issue the Debug Tool
command:

DESCRIBE ATTRIBUTES =*ptr;

The result in the Log window is:

ATTRIBUTES for * ptr
Its address is OBA25EB8 and its length is 8
class IntLink
signed int i
struct IntLink *next

So for most classes, structures, and unions, this can act as a browser.

You can list all the values of the data members of the class object pointed to by ptr
with the command:

LIST ptr ;

with results in the Log window similar to:
LIST = ptr ; * ptr.i = 0 * ptr.next = 0x00000000

You can change the value of data member of a class object by issuing the
assignment as a command, as in this example:

(* ptr).i =33

Related tasks

[1 Tqing C/C++ variables with T)phng Tool” on page 154

Related references

4 ”

[‘LIST PXPI‘PQQi(Yn” on page 284

Halting on a line in C++ only if a condition is true

Often a particular part of your program works fine for the first few thousand
times, but fails under certain conditions. You don’t want to set a simple line
breakpoint because you will have to keep entering GO.

v . : ”

For example, in main you want to stop in T_DIVIDE only if the divisor is 0 (before
the exception occurs). Set the breakpoint like this:

AT 40 { if(num2 != 0) GO; }
Line 40 is the statement labeled [4\{#4 . The command causes Debug Tool to stop

at line 40. If the value of num is not 0, the program will continue. Debug Tool stops
on line 40 only if num?2 is 0.

86 Debug Tool User’s Guide and Reference

Related references
[“AT STATEMENT” on page 241]

Viewing and modifying data members of the this pointer in

C++

If you step into a class method, for example, one for class IntLink, the command:
LIST TITLED ;

responds with a list that includes this. With the command:
DESCRIBE ATTRIBUTES *this ;

you will see the types of the data elements pointed to by the this pointer. With the
command:

LIST =this ;

you will list the data member of the object pointed to and see something like:

LIST = this ;
(* this).i = 4
(* this).next = 0x0

in the Log window. To modify element i, enter either the command:
i = 2001;

or, if you have ambiguity (for example, you also have an auto variable named 1),
enter:

(* this).i = 2001 ;

Related references

G ”

i . 7

Debugging C++ when only a few parts are compiled with TEST

Mol e — z =

Suppose you want to set a breakpoint at entry to function IntStack::push(int) in
the file PUSHPOP.CPP. PUSHPOP.CPP has been compiled with TEST but the other
files have not. Debug Tool comes up with an empty Source window. To display the
compile units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool.

Depending on the compiler you are using, or if USERID.MFISTART.CPP (PUSHPOP) is
fetched later on by the application, this compile unit might or might not be known
to Debug Tool, and the PDS member PUSHPOP might or might not be displayed.
If it is displayed, enter:

SET QUALIFY CU "USERID.MFISTART.CPP(PUSHPOP)"
AT ENTRY IntStack::push(int) ;
GO ;

or

AT ENTRY "USERID.MFISTART.CPP(PUSHPOP)":>push
GO

Chapter 4. Debugging your programs in full-screen mode 87

If it is not displayed, you need to set an appearance breakpoint as follows:

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;

You can also combine the breakpoints as follows:
AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" AT ENTRY push; GO;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When that happens you can, for
example, set a breakpoint at entry to IntStack::push(int) as follows:

AT ENTRY IntStack::push(int) ;

Related references
AT APPEARANCE” on page 223

AT ENTRY /EXIT” on page 231l
[LIST NAMES” on page 291
'SET QUALIEY” on page 334

Capturing C++ output to stdout
To redirect stdout to the Log window, issue the following command:
SET INTERCEPT ON FILE stdout ;

With this SET command, you will not only capture stdout from your program, but
also from interactive function calls. For example, you can interactively use cout on
the command line to display a null terminated string by entering:

cout << sptr ;

You might find this easier than using LIST STORAGE.
For CICS only, SET INTERCEPT is not supported.
Related references

[LIST STORAGE” on page 295
USET INTERCEPT (C/Cx++ and COBQOIL)” on page 327

Calling a C++ function from Debug Tool

You can invoke a library function (such as strlen) or one of the programs
functions interactively by calling it on the command line. The same is true of C
linkage functions such as read_token. You cannot call C++ linkage functions
interactively.

In the example below, we call read_token interactively.
AT CALL read_token;

GO;

read_token(word) ;

The calculator produces different results than before because of the additional
token removed from input.

Related references

4 ”

88 Debug Tool User’s Guide and Reference

Displaying raw storage in C++
A char = variable ptr can point to a piece of storage containing printable
characters. To display the first 20 characters, enter;
LIST STORAGE (*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line as shown in this example:

puts(ptr) ;

Related references
'LIST STORAGE” on page 294

Debugging a C++ DLL
— e P <

Build PUSHPOP.CPP as a DLL, exporting IntStack::push(int) and IntStack::pop().
Build CALC.CPP and READTOKN.CPP as the program that imports
IntStack::push(int) and IntStack::pop() from the DLL named PUSHPOP. When the
application CALC starts, the DLL PUSHPOP is not known to Debug Tool. Use the
AT APPEARANCE breakpoint, as shown in the following example, to gain control in
the DLL the first time code in that compile unit appears.

AT APPEARANCE "USERID.MFISTART.CPP(PUSHPOP)" ;
GO ;

The only purpose of this appearance breakpoint is to gain control the first time a
function in the PUSHPOP compile unit is run. When this happens, you can set
breakpoints in PUSHPOP.

Related references
PNTAPPFARANFP"mqp%¢771

Getting a function traceback in C++

Often when you get close to a programming error, you want to know how you got
into that situation, especially what the traceback of calling functions is. To get this
information, issue the command:

LIST CALLS ;

For example, if you run the CALC example with the following commands:

AT ENTRY read_token ;
GO ;
LIST CALLS ;

the Log window contains something like:

At ENTRY in C function "USERID.MFISTART.CPP(READTOKN)" :> read_token.
From LINE 18 in C function "USERID.MFISTART.CPP(CALC)" :> main :> %BLOCK2.

which shows the traceback of callers.
Related references

‘AT ENTRY /EXIT” on page 231
LIST CAIIS” on page 287

Chapter 4. Debugging your programs in full-screen mode 89

Tracing the run-time path for C++ code compiled with TEST

To trace a program showing the entry and exit of that program without requiring
any changes to it, place the following Debug Tool commands, shown in the
example below, in a file and USE them when Debug Tool initially displays your
program. Assume you have a data set that contains USERID.DTUSE (TRACE) and
contains the following Debug Tool commands:
int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY = { \

++indent; \

if (indent < 0) indent = 0; \

printf("%x.s>%s\n", indent, " ", %block); \
GO; \

}

AT EXIT = {\
if (indent < 0) indent = 0; \
printf("%x.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DTUSE(TRACE)

The trace of running the program listed below after executing the USE file is
displayed in the Log window:
int foo(int i, int j) {
return i+j;
}
int main(void) {
return foo(1,2);

}

The following trace in the Log window is displayed after running the sample
program, using the USE file as a source of input for Debug Tool commands:
>main

>foo(int,int)

<foo(int,int)
<main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect will be achieved.

Related references

LSET INTERCEPT (C/Caa and COBQL)” on page 327

s ”

Finding unexpected storage overwrite errors in C++

During program run time, some storage might unexpectedly change its value and
you would like to find out when and where this happened. Consider this simple
example where function set_i changes more than the caller expects it to change.

struct s { int i; int j;};
struct sa=1{0, 0 };

/* function sets only field i */

90 Debug Tool User’s Guide and Reference

void set_i(struct s * p, int k)
{
p—>i

ks
p—>j = k;

/* error, it unexpectedly sets field j also */

main() {
set_i(&a,123);
1

Find the address of a with the command:
LIST &(a.j)

Suppose the result is 0x7042A04. To set a breakpoint that watches for a change in
storage values, starting at that address for the next 4 bytes, issue the command:

AT CHANGE %STORAGE(0x7042A04,4)
When the program is run, Debug Tool will halt if the value in this storage changes.

Related references
AT CHANGE” on page 224

G : ”

Finding uninitialized storage errors in C++

To help find your uninitialized storage errors, run your program with the
Language Environment TEST run-time and STORAGE options. In the following
example:

TEST STORAGE(FD,FB,F9)

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through operator new is filled with the byte
OxFD. If you see this byte repeated throughout storage, it is likely uninitialized
heap storage.

The second subparameter of STORAGE is the fill byte for storage allocated from the
heap but then freed. For example, storage freed by the operator delete might be
filled with the byte 0xFB. If you see this byte repeated throughout storage, it is
likely storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated throughout storage, it is likely that it
is uninitialized auto storage.

The values chosen in the example are odd and large, to maximize early problem
detection. For example, if you attempt to branch to an odd address, you will get an
exception immediately.

As an example of uninitialized heap storage, run program CALC, with the STORAGE
run-time option as STORAGE (FD,FB,F9), to the line labeled PUSHPOP2 and issue the
command:

LIST *ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:
LIST * ptr ;
(* ptr).next = OxFDFDFDFD
(* ptr).i = -33686019

Chapter 4. Debugging your programs in full-screen mode 91

Related references

s 7

z/OS Language Environment Programming
Guide

Halting before calling a NULL C++ function

Calling an undefined function or calling a function through a function pointer that
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL ©

When Debug Tool stops at this breakpoint, you can bypass the call by entering the
GO BYPASS command. This command allows you to continue your debug session
without raising a condition.

Related references
AT CALL” on page 225

G ”

Debugging a COBOL program in full-screen mode

The descriptions of basic debugging tasks for COBOL refer to the following
COBOL program.

T e e I

Related tasks

” 77

I’Mnr]ifving the value of a COBQI. variable” on page 94
I’Ha]h'ng on a COBOI line only if a condition is true” on page 97

I’Dphugging COBOI. when only a few parts are compiled with TEST” on page 98
I’(’aphlring COBOI.1/0 to the system console” on page 9d
I’T)iqp]aving raw storage in COBOIL” on page 9q

7 ”

I"T'mring the run-time path for COBOI. code compiled with TEST” on page 10d

7=l . . - 77

7 . - . - . 77

Related references
‘CQBRO a e listi

Example: sample COBOL program for debugging

The program below is used in various topics to demonstrate debugging tasks.

This program calls two subprograms to calculate a loan payment amount and the
future value of a series of cash flows. Several COBOL intrinsic functions are
utilized.

Main program COBCALC

B e e T R R R R T S T S S T T S L S L T

* COBCALC *

* *
* A simple program that allows financial functions to *

92 Debug Tool User’s Guide and Reference

* be performed using intrinsic functions. *

*

*

LR R R R R e R R R R S S R T e T Rt T

IDENTIFICATION DIVISION.
PROGRAM-ID. COBCALC.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARM-1.
05 CALL-FEEDBACK
01 FIELDS.
05 INPUT-1
01 INPUT-BUFFER-FIELDS.
05 BUFFER-PTR
05 BUFFER-DATA.
10 FILLER
10 FILLER
10 FILLER
10 FILLER
05 BUFFER-ARRAY

PROCEDURE DIVISION.

PIC XX.
PIC X(10).
PIC 9.

PIC X(10) VALUE "LOAN".

PIC X(10) VALUE "PVALUE".

PIC X(10) VALUE "pvalue".

PIC X(10) VALUE "END".
REDEFINES BUFFER-DATA
OCCURS 4 TIMES

PIC X(10).

DISPLAY "CALC Begins." UPON CONSOLE.
MOVE 1 TO BUFFER-PTR.
MOVE SPACES TO INPUT-1.
* Keep processing data until END requested
PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".

*

END requested

DISPLAY "CALC Ends." UPON CONSOLE.

GOBACK.
End of program.

*

Accept input data from

* % X

ACCEPT-INPUT.

buffer

MOVE BUFFER-ARRAY (BUFFER-PTR) TO INPUT-1.
ADD 1 BUFFER-PTR GIVING BUFFER-PTR.

* Allow input data to be

in UPPER or Tower case

EVALUATE FUNCTION UPPER-CASE(INPUT-1) CALC1

WHEN "END"

MOVE "END" TO INPUT-1

WHEN "LOAN"

PERFORM CALCULATE-LOAN

WHEN "PVALUE"

PERFORM CALCULATE-VALUE

WHEN OTHER

DISPLAY "Invalid input: " INPUT-1

END-EVALUATE.

*

* Calculate Loan via CALL to subprogram

*

CALCULATE-LOAN.

CALL "COBLOAN" USING CALL-FEEDBACK.

IF CALL-FEEDBACK IS

NOT EQUAL "OK" THEN

DISPLAY "Call to COBLOAN Unsuccessful.".

*

* Calculate Present Value via CALL to subprogram

*

CALCULATE-VALUE.

CALL "COBVALU" USING CALL-FEEDBACK.

IF CALL-FEEDBACK IS

NOT EQUAL "OK" THEN

DISPLAY "Call to COBVALU Unsuccessful.".

Subroutine COBLOAN

Chapter 4. Debugging your programs in full-screen mode

93

B e R T S e e T T e S e e S L e e L e L L

COBLOAN

for a loan.

* % * X X

*
*
* A simple subprogram that calculates payment amount
*
*

LR R R R R R R R R R R S R S R R R R R R Rt

IDENTIFICATION DIVISION.
PROGRAM-ID. COBLOAN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 FIELDS.

05 INPUT-1 PIC X(26).

05 PAYMENT PIC S9(9)V99 USAGE COMP.

05 PAYMENT-OUT PIC $$$5,$$%,$$9.99 USAGE DISPLAY.
05 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.

05 LOAN-AMOUNT-IN PIC X(16).

05 INTEREST-IN PIC X(5).

05 INTEREST PIC S9(3)V99 USAGE COMP.

05 NO-OF-PERIODS-IN PIC X(3).
05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 OUTPUT-LINE PIC X(79).
LINKAGE SECTION.
01 PARM-1.
05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
MOVE "30000 .09 24 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY ALL " "
INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL (LOAN-AMOUNT-IN).
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).
* Calculate annuity amount required
COMPUTE PAYMENT = LOAN-AMOUNT =*
FUNCTION ANNUITY((INTEREST / 12) NO-OF-PERIODS).
* Make it presentable
MOVE SPACES TO OUTPUT-LINE
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBLOAN: Repayment amount for_a_ " NO-OF-PERIODS-IN
"_month_Tloan_of_" LOAN-AMOUNT-IN
"_at_" INTEREST-IN "_interest_is: "
DELIMITED BY SPACES
INTO OUTPUT-LINE.
INSPECT OUTPUT-LINE REPLACING ALL "_" BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

Subroutine COBVALU

R R R e khkkhkhhkhhhhrhhhhhhkrrhrdhkrrhrrhx

COBVALU

for a series of cash flows.

* % kX X

*
*
* A simple subprogram that calculates present value
*
*

R R R e e R R R R R R T T S R T e L Rt L

IDENTIFICATION DIVISION.
PROGRAM-ID. COBVALU.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHAR-DATA.

94 Debug Tool User’s Guide and Reference

05 INPUT-1 PIC X(10).

05 PAYMENT-OUT PIC $$$%,$$%,$$9.99 USAGE DISPLAY.
05 INTEREST-IN PIC X(5).

05 NO-OF-PERIODS-IN PIC X(3).

05 INPUT-BUFFER PIC X(10) VALUE "5069837544".

05 BUFFER-ARRAY REDEFINES INPUT-BUFFER
OCCURS 5 TIMES

PIC XX.
05 OUTPUT-LINE PIC X(79).
01 NUM-DATA.
05 PAYMENT PIC S9(9)V99 USAGE COMP.
05 INTEREST PIC S9(3)V99 USAGE COMP.
05 COUNTER PIC 99 USAGE COMP.

05 NO-OF-PERIODS PIC 99 USAGE COMP.
05 VALUE-AMOUNT ~ OCCURS 99 PIC S9(7)V99 COMP.
LINKAGE SECTION.
01 PARM-1.
05 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
MOVE ".12 5 " TO INPUT-1.
UNSTRING INPUT-1 DELIMITED BY ","™ OR ALL " "
INTO INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).
Get cash flows
PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL
COUNTER IS GREATER THAN NO-OF-PERIODS.
Calculate present value
COMPUTE PAYMENT =
FUNCTION PRESENT-VALUE(INTEREST VALUE-AMOUNT(ALL)).
* Make it presentable
MOVE PAYMENT TO PAYMENT-OUT.
STRING "COBVALU:_Present_value_for_rate_of_"
INTEREST-IN " _given_amounts "
BUFFER-ARRAY (1) ", "
BUFFER-ARRAY (2) ", "
BUFFER-ARRAY (3) "
BUFFER-ARRAY (4) ",
BUFFER-ARRAY (5) " is: "
DELIMITED BY SPACES
INTO OUTPUT-LINE.
INSPECT OUTPUT-LINE REPLACING ALL " " BY SPACES.
DISPLAY OUTPUT-LINE PAYMENT-OUT.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

*

*

*
* Get cash flows for each period
*
GET-AMOUNTS.
MOVE BUFFER-ARRAY (COUNTER) TO INPUT-1.
COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

To halt just before COBLOAN is called, issue the command:
AT CALL COBLOAN

Chapter 4. Debugging your programs in full-screen mode

If the CU COBVALU is known to Debug Tool (that is, it has been called
previously), to halt just after COBVALU is called, issue the command:

AT ENTRY COBVALU ;

If the CU COBVALU is not known to Debug Tool (that is, it has not been called
previously), to halt just before COBVALU is entered the first time, issue the
command:

AT APPEARANCE COBVALU ;

You can display a list of all compile units that are known to Debug Tool by
entering the command:

LIST NAMES CUS ;

The Debug Tool Log window displays something similar to:

LIST NAMES CUS ;

The following CUs are known in *:
COBCALC

COBLOAN

COBVALU

Additionally, you can combine the breakpoints as follows:
AT APPEARANCE COBVALU AT ENTRY COBVALU ; GO ;

The purpose for the appearance breakpoint is to gain control the first time the
COBVALU compile unit is run.

To take advantage of either AT ENTRY or AT APPEARANCE, you must compile the
routine program (COBVALU in the above example) with the TEST compiler option.

If you have many breakpoints set in your program, you can issue the command:
QUERY LOCATION

to indicate where in your program execution has been interrupted. The Debug Tool
Log window displays something similar to:
QUERY LOCATION ;

You were prompted because STEP ended.
The program is currently entering block COBVALU.

Related references
‘AT CAIL” on page 227
‘AT APPEARANCE” on page 223

7 ”

s ”

7 ”

Modifying the value of a COBOL variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). Remember that Debug
Tool starts after program initialization but before symbolic COBOL variables are
initialized, so you cannot view or modify the contents of variables until you have
performed a step or run. The value is displayed in the Log window. This is
equivalent to entering LIST TITLED variable on the command line. Run the
COBCALC program to the statement labeled , and enter AT 46 ; GO ; on

96 Debug Tool User’s Guide and Reference

the Debug Tool command line. Move the cursor over INPUT-1 and press LIST (PF4).
The following appears in the Log window:

LIST (INPUT-1) ;
INPUT-1 = '"LOAN '

To modify the value of INPUT-1, enter on the command line:
MOVE 'pvalue' to INPUT-1 ;

You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing PF2 (STEP) and step until the
statement labeled is reached. To view the attributes of the variable
INTEREST, issue the Debug Tool command:

DESCRIBE ATTRIBUTES INTEREST ;

The result in the Log window is:

ATTRIBUTES FOR INTEREST
ITS LENGTH IS 4
ITS ADDRESS IS 00011DC8
02 COBVALU:>INTEREST S999Vv99 COMP

You can use this action as a simple browser for group items and data hierarchies.
For example, you can list all the values of the elementary items for the
CHAR-DATA group with the command:

LIST CHAR-DATA ;

with results in the Log window appearing something like this:

LIST CHAR-DATA ;
02 COBVALU:>INPUT-1 of 01 COBVALU:>CHAR-DATA = '.12 5 '
Invalid data for 02 COBVALU:>PAYMENT-OUT of 01 COBVALU:>CHAR-DATA is found.
02 COBVALU:>INTEREST-IN of 01 COBVALU:>CHAR-DATA = '.12 '
02 COBVALU:>NO-OF-PERIODS-IN of 01 COBVALU:>CHAR-DATA = '5 '
02 COBVALU:>INPUT-BUFFER of 01 COBVALU:>CHAR-DATA = '5069837544'

SUB(1) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '50'
SUB(2) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '69'
SUB(3) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '83'
SUB(4) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '75'
SUB(5) of 02 COBVALU:>BUFFER-ARRAY of 01 COBVALU:>CHAR-DATA = '44'

Note: If you use the LIST command to list the contents of an uninitialized variable,
or a variable that contains invalid data, Debug Tool displays INVALID DATA.

Related tasks

Related references

G ”

G . 7

G ”

Halting on a COBOL line only if a condition is true

Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. You don’t want to just set a line
breakpoint because you will have to keep entering GO.

’ . . ’”

Chapter 4. Debugging your programs in full-screen mode 97

For example, in COBVALU you want to stop at the calculation of present value
only if the discount rate is less than or equal to -1 (before the exception occurs).
First run COBCALC, step into COBVALU, and stop at the statement labeled

. To accomplish this, issue these Debug Tool commands at the start of
COBCALC:

AT 67 ; GO ;
CLEAR AT 67 ; STEP 4 ;

Now set the breakpoint like this:
AT 44 TIF INTEREST > -1 THEN GO ; END-IF ;

Line 44 is the statement labeled . The command causes Debug Tool to stop
at line 44. If the value of INTEREST is greater than -1, the program continues. The
command causes Debug Tool to remain on line 44 only if the value of INTEREST is
less than or equal to -1.

To force the discount rate to be negative, enter the Debug Tool command:
MOVE '-2 5' TO INPUT-1 ;

Run the program by issuing the G0 command. Debug Tool halts the program at
line 44. Display the contents of INTEREST by issuing the LIST INTEREST command.
To view the effect of this breakpoint when the discount rate is positive, begin a
new debug session and repeat the Debug Tool commands shown in this section.
However, do not issue the MOVE '-2 5' TO INPUT-1 command. The program
execution does not stop at line 44 and the program runs to completion.

Related references
AT STATEMENT” an page 241l

['MOVE caommand (COBOILY” an page 294

Debugging COBOL when only a few parts are compiled with
TEST

Suppose you want to set a breakpoint at entry to COBVALU. COBVALU has been
compiled with TEST but the other programs have not. Debug Tool comes up with
an empty Source window. You can use the LIST NAMES CUS command to determine
if the COBVALU compile unit is known to Debug Tool and then set the
appropriate breakpoint using either the AT APPEARANCE or the AT ENTRY command.

Instead of setting a breakpoint at entry to COBVALU in this example, issue a STEP
command when Debug Tool initially displays the empty Source window. Debug
Tool runs the program until it reaches the entry for the first routine compiled with
TEST, COBVALU in this case.

Related tasks

[,II]] . .]] l . :OBOI 77 95

Related references
AT ENTRY /EXIT” on page 23|
LIST NAMES” on page 291

98 Debug Tool User’s Guide and Reference

Capturing COBOL 1/O to the system console

To redirect output normally appearing on the system console to your Debug Tool
terminal, enter the following command:

SET INTERCEPT ON CONSOLE ;

For example, if you run COBCALC and issue the Debug Tool SET INTERCEPT ON
CONSOLE command, followed by the STEP 3 command, you will see the following
output displayed in the Debug Tool Log window:

SET INTERCEPT ON CONSOLE ;

STEP 3 ;
CONSOLE : CALC Begins.

The phrase CALC Begins. is displayed by the statement DISPLAY "CALC Begins."
UPON CONSOLE in COBCALC.

The SET INTERCEPT ON CONSOLE command not only captures output to the system
console, but also allows you to input data from your Debug Tool terminal instead
of the system console by using the Debug Tool INPUT command. For example, if
the next COBOL statement executed is ACCEPT INPUT-DATA FROM CONSOLE, the
following message appears in the Debug Tool Log window:

CONSOLE : 1GZ000OT AWAITING REPLY.

The program is waiting for input from CONSOLE.

Use the INPUT command to enter 114 characters for the intercepted
fixed-format file.

Continue execution by replying to the input request by entering the following
Debug Tool command:

INPUT some data ;

Note: Whenever Debug Tool intercepts system console 1/0, and for the duration
of the intercept, the display in the Source window is empty and the Location
field in the session panel header at the top of the screen shows Unknown.

Related references
[INPUT command (C/C++ and COBOI)” an page 283
['SET INTERCEPT (C/C++ and COBOI)” on page 327

Displaying raw storage in COBOL

You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 12 characters of BUFFER-DATA
enter:

LIST STORAGE(BUFFER-DATA,12)

Related references

s ”

Getting a COBOL routine traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling routines is. To get
this information, issue the command:

LIST CALLS ;

Chapter 4. Debugging your programs in full-screen mode 99

For example, if you run the COBCALC example with the commands:

AT APPEARANCE COBVALU AT ENTRY COBVALU;
GO;

GO;

LIST CALLS;

the Log window contains something like:

AT APPEARANCE COBVALU
AT ENTRY COBVALU ;
GO ;
GO ;
LIST CALLS ;
At ENTRY in COBOL program COBVALU.
From LINE 67.1 in COBOL program COBCALC.

which shows the traceback of callers.
Related references

AT ENTRY /EXIT” on page 231l
VLIST CAITS” on page 287

Tracing the run-time path for COBOL code compiled with
TEST

To trace a program showing the entry and exit points without requiring any
changes to the program, place the following Debug Tool commands in a file or
data set and USE them when Debug Tool initially displays your program.
Assuming you have a PDS member, USERID.DT.COMMANDS(COBCALC), that
contains the following Debug Tool commands:

* Commands in a COBOL USE file must be coded in columns 8-72.
* If necessary, commands can be continued by coding a '-' in
* column 7 of the continuation line.
01 LEVEL PIC 99 USAGE COMP;
MOVE 1 TO LEVEL;
AT ENTRY * PERFORM;
COMPUTE LEVEL = LEVEL + 1;
LIST ("Entry:", LEVEL, %CU);
GO;
END-PERFORM;
AT EXIT * PERFORM;
LIST ("Exit:", LEVEL);
COMPUTE LEVEL = LEVEL - 1;
GO;
END-PERFORM;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DT.COMMANDS (COBCALC)

If, after executing the USE file, you run COBCALC, the following trace (or similar)
is displayed in the Log window:

ENTRY:
LEVEL = 00002
%CU = COBCALC
ENTRY:
LEVEL = 00003
%CU = COBLOAN
EXIT:

100 Debug Tool User’s Guide and Reference

LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
ENTRY:
LEVEL = 00003
%CU = COBVALU
EXIT:
LEVEL = 00003
EXIT:
LEVEL = 00002

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Related references

v 7

G ”

Generating a COBOL run-time paragraph trace

To generate a trace showing the names of paragraphs through which execution has
passed, the Debug Tool commands shown in the following example can be used.
You can either enter the commands from the Debug Tool command line or place
the commands in a file or data set.

Assume you have a PDS member, USERID.DT.COMMANDS(COBCALC2), that
contains the following Debug Tool commands.
* COMMANDS IN A COBOL USE FILE MUST BE CODED IN COLUMNS 8-72.
* IF NECESSARY, COMMANDS CAN BE CONTINUED BY CODING A '-' IN
* COLUMN 7 OF THE CONTINUATION LINE.
AT GLOBAL LABEL PERFORM;
LIST LINES %LINE;
GO;
END-PERFORM;

When Debug Tool initially displays your program, enter the following command:
USE USERID.DT.COMMANDS (COBCALC2)

After executing the USE file, you can run COBCALC and the following trace (or
similar) is displayed in the Log window:

Chapter 4. Debugging your programs in full-screen mode 101

42 ACCEPT-INPUT.
59 CALCULATE-LOAN.
42 ACCEPT-INPUT.
66 CALCULATE-VALUE.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
42 ACCEPT-INPUT.
66 CALCULATE-VALUE.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
64 GET-AMOUNTS.
42 ACCEPT-INPUT.
- J

Related references
['1ISE command” on page 353

Finding unexpected storage overwrite errors in COBOL

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example
where the program changes more than the caller expects it to change.

05 FIELD-1 OCCURS 2 TIMES

PIC X(8).
05 FIELD-2 PIC X(8).
PROCEDURE DIVISION.
* (An invalid index value is set)

MOVE 3 TO PTR.
MOVE "TOO MUCH" TO FIELD-1(PTR).

Find the address of FIELD-2 with the command:
DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'0000F559'. To set a breakpoint that watches for a change in
storage values starting at that address for the next 8 bytes, issue the command:

AT CHANGE %STORAGE(H'0000F559',8)
When the program runs, Debug Tool halts if the value in this storage changes.

Related references
AT CHANGE” on page 224

G ”

102 Debug Tool User’s Guide and Reference

Halting before calling an invalid program in COBOL

Calling an undefined program is a severe error. If you have developed a main
program that calls a subprogram that doesn’t exist, you can cause Debug Tool to
halt just before such a call. For example, if the subprogram NOTYET doesn’t exist,
you can set the breakpoint:

AT CALL (NOTYET)

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debug session without
raising a condition.

Related references
AT CALL” an page 774

’ ”

Debugging a PL/I program in full-screen mode

The descriptions of basic debugging tasks for PL/I refer to the following PL/I
program.

T P— i R

Related tasks

” " . . ”

I’Mndifving the value of a PI /T variable” on page 107

I’T—Tz]h'ng on a PT /T line only if a condition is true” on page 108

I’T)phngging PT. /T when only a few parts are rnmpﬂpd with TEST” on page 108

I’T)iap].qving raw storage in PI./1” on page 108
s : : ”

I’Tm(*ing the run-time path for PI /T cade compiled with TEST” on page 10d

I’Finding lmpxpprfpd starage overwrite errors in PT./T” on page 114

ATV PNIT P T |
Example: sample PL/l program for debugging

The program below is used in various topics to demonstrate debugging tasks.

This program is a simple calculator that reads its input from a character buffer. If
integers are read, they are pushed on a stack. If one of the operators (+ - * /) is
read, the top two elements are popped off the stack, the operation is performed on
them and the result is pushed on the stack. The = operator writes out the value of
the top element of the stack to a buffer.

Before running PLICALC, you need to allocate SYSPRINT to the terminal by
entering one of the following commands:

¢ For MVS under TSO, enter the following command:
ALLOC FI(SYSPRINT) DA(x)

* For VM, enter the following command:
FILEDEF SYSPRINT TERMINAL

Main program PLICALC
plicalc: proc options(main);

Chapter 4. Debugging your programs in full-screen mode 103

/* A simple calculator that does operations on integers that
/* are pushed and popped on a stack

/*

dcl index builting
dcl Tength builtin;
dcl substr builting
/*
dcl 1 stack,
2 stkptr fixed bin(15,0) init(0),
2 stknum(50) fixed bin(31,0);
dcl 1 bufin,
2 bufptr fixed bin(15,0) init(0),
2 bufchr char (100) varying;
dcl 1 tok char (100) varying;
dcl 1 tstop char(1l) init ('s');
dcl 1 ndx fixed bin(15,0);
dcT num fixed bin(31,0);
del i fixed bin(31,0);
dcl push entry external;
dcl pop entry returns (fixed bin(31,0)) external;
dc1 readtok entry returns (char (100) varying) external;

2y
/* input action:

/* 2 push 2 on stack

/* 18 push 18

/* + pop 2, pop 18, add, push result (20)

/* = output value on the top of the stack (20)

/* 5 push 5

/* / pop 5, pop 20, divide, push result (4)

/* = output value on the top of the stack (4)

bufchr = '2 18 + =5 / =';
do while (tok = tstop);
tok = readtok(bufin); /* get next 'token' =/
select (tok);
when (tstop)
leave;
when ('+') do;
num = pop(stack);

call push(stack,num); /~ [MYNMN statement =/
end;
when ('-') do;

num = pop(stack);

call push(stack,pop(stack)-num);
end;
when ('x')

call push(stack,pop(stack)*pop(stack));
when ('/') do;

num = pop(stack);

call push(stack,pop(stack)/num); /+ [dXN¥Y statement x/

end;
when ('=') do;
num = pop(stack);
put Tist ('PLICALC: ', num) skip;
call push(stack,num);
end;
otherwise do;/* must be an integer x/
num = atoi(tok);
call push(stack,num);
end;
end;
end;
return;

TOK function

104 Debug Tool User’s Guide and Reference

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

atoi: procedure(tok) returns (fixed bin(31,0));

/2y */
/* */
/* convert character string to number */
/* (note: string validated by readtok) */
/* */
/gy */

dcl 1 tok char (100) varying;
dc1 1 num fixed bin (31,0);
dcl 1 j fixed bin(15,0);
num = 0;
do j = 1 to length(tok);
num = (10 * num) + (index('0123456789',substr(tok,j,1))-1);
end;
return (num);
end atoi;
end plicalc;

PUSH function

push: procedure(stack,num);

/gy */
/* */
/* a simple push function for a stack of integers */
/* */
e */

dcl 1 stack connected,
2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);
dcl num fixed bin(31,0);
stkptr = stkptr + 1;
stknum(stkptr) = num; /* statement =/
return;
end push;

POP function
pop: procedure(stack) returns (fixed bin(31,0));

S S Sy S Sy S Sy S Sy S Sy Sy S S S S S — */
/* */
/* a simple pop function for a stack of integers */
/% */
/gy */

dcl 1 stack connected,
2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);

stkptr = stkptr - 1;
return (stknum(stkptr+l));
end pop;

READTOK function
readtok: procedure(bufin) returns (char (100) varying);

/gy */
/* */
/* a function to read input and tokenize it for a simple calculator */
/* */
/* action: get next input char, update index for next call */
/* return: next input char(s) */
g */

dc1 Tength builtin;
dc1 substr builting
dc1 verify builtin;
dcl 1 bufin connected,
2 bufptr fixed bin(15,0),
2 bufchr char (100) varying;
dcl 1 tok char (100) varying;
dcl 1 tstop char(1l) init ('s');

Chapter 4. Debugging your programs in full-screen mode

105

dcl 1 j fixed bin(15,0);
/* start of processing */
if bufptr > length(bufchr) then do;

tok = tstop;
return (tok);
end;

bufptr = bufptr + 1;

do while (substr(bufchr,bufptr,1)
bufptr = bufptr + 1;
if bufptr > length(bufchr) then do;

n
~
we

tok = tstop;
return (tok);
end;
end;

tok = substr(bufchr,bufptr,1); /* get ready to return single char */
select (tok);
When (|+|,|_|,|/|’|*|’|:|)
bufptr = bufptr;
otherwise do; /* possibly an integer */
tok = '';
do j = bufptr to length(bufchr); R
if verify(substr(bufchr,j,1),'0123456789') = 0 then

leave;
end;
if j > bufptr then do;
J=i-L
tok = substr(bufchr,bufptr, (j-bufptr+l));
bufptr = j;
end;
else
tok = tstop;
end;
end;

return (tok);
end readtok;

Related tasks

Dl ST 7T —F = e
Halting when certain PL/I functions are called
Mmoo FREI e TiE|

To halt just before READTOK is called, issue the command:
AT CALL READTOK ;

To halt just after READTOK is called, issue the command:
AT ENTRY READTOK ;

To take advantage of the AT ENTRY command, you must compile your program
with the TEST option.

If you have many breakpoints set in your program, you can issue the command:
QUERY LOCATION

to indicate where in your program execution has been interrupted. The Debug Tool
Log window displays something similar to:

QUERY LOCATION ;
You are executing commands in the ENTRY READTOK breakpoint.
The program is currently entering block READTOK.

106 Debug Tool User’s Guide and Reference

Related references
‘AT ENTRY/EXIT” on page 231|
‘AT CAIL” on page 227

4 7

Modifying the value of a PL/I variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press PF4 (LIST). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the PLICALC program to the statement labeled
by entering AT 22 ; GO ; on the Debug Tool command line. Move the
cursor over NUM and press PF4 (LIST) The following appears in the Log window:

LIST NUM ;
NUM = 18

To modify the value of NUM to 22, overtype the NUM = 18 line with NUM = 22,
press Enter to put it on the command line, and press Enter again to issue the
command.

You can enter most PL/I expressions on the command line.

Now step into the call to PUSH by pressing PF2 (STEP) and step until the statement
labeled E{IN;IY is reached. To view the attributes of variable STKNUM, issue the
Debug Tool command:

DESCRIBE ATTRIBUTES STKNUM;

The result in the Log window is:

ATTRIBUTES FOR STKNUM
ITS ADDRESS IS 0003944C AND ITS LENGTH IS 200
PUSH : STACK.STKNUM(50) FIXED BINARY(31,0) REAL PARAMETER
ITS ADDRESS IS 0003944C AND ITS LENGTH IS 4

You can list all the values of the members of the structure pointed to by STACK with
the command:

LIST STACK;

with results in the Log window appearing something like this:

LIST STACK ;
STACK.STKPTR = 2

STACK.STKNUM(1) = 2
STACK.STKNUM(2) = 18
STAFK.STKNUM(3) = 233864
STACK.STKNUM(50) = 121604

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

STKNUM(STKPTR) = 33;

Related references

G ”

G . ”

Chapter 4. Debugging your programs in full-screen mode 107

Halting on a PL/I line only if a condition is true

Often a particular part of your program works fine for the first few thousand
times, but it fails under certain conditions. You don’t want to just set a line
breakpoint because you will have to keep entering GO.

% . : ’”

For example, in PLICALC you want to stop at the division selection only if the
divisor is O (before the exception occurs). Set the breakpoint like this:

AT 31 DO; IF NUM "= O THEN GO; END;

Line 31 is the statement labeled [4\{#4 . The command causes Debug Tool to stop
at line 31. If the value of NUM is not 0, the program continues. The command
causes Debug Tool to stop on line 31 only if the value of NUM is 0.

Related references
“’AT STATEMENT” on page 241|

Debugging PL/I when only a few parts are compiled with TEST
— P T e

Suppose you want to set a breakpoint at entry to subroutine PUSH. PUSH has
been compiled with TEST, but the other files have not. Debug Tool comes up with
an empty Source window. To display the compile units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool. If PUSH is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU PUSH
AT ENTRY PUSH;
GO ;

If it is not displayed, set an appearance breakpoint as follows:

AT APPEARANCE PUSH
GO ;

You can also combine the breakpoints as follows:
AT APPEARANCE PUSH AT ENTRY PUSH; GO;

The only purpose for this appearance breakpoint is to gain control the first time a
function in the PUSH compile unit is run. When that happens, you can set a
breakpoint at entry to PUSH like this:

AT ENTRY PUSH;

Related references

7 ”

s ”

7 ”

Displaying raw storage in PL/I
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of STACK enter:

LIST STORAGE(STACK,30)

108 Debug Tool User’s Guide and Reference

Related references
['LIST STORAGE” on page 294

Getting a PL/I function traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

v . : ”

For example, if you run the PLICALC example with the commands:

AT ENTRY READTOK ;
GO ;
LIST CALLS ;

the Log window will contain something like:
At ENTRY IN PL/I subroutine READTOK.
From LINE 17.1 IN PL/I subroutine PLICALC.

which shows the traceback of callers.

Related references

’ 77

G ”

Tracing the run-time path for PL/l code compiled with TEST

To trace a program showing the entry and exit without requiring any changes to
the program, place the following Debug Tool commands in a file or data set and
USE them when Debug Tool initially displays your program. Assuming you have a
PDS member, USERID.DT.COMMANDS(PLICALL), that contains the following
Debug Tool commands:

DCL LVLSTR CHARACTER (50) ;
DCL LVL FIXED BINARY (15) ;
LVL = 0 3
AT ENTRY =
DO ;
LVLSTR = ' ' 3
LVL = LVL + 1
SUBSTR (LVLSTR, LVL, 1) = '>' ;
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
GO ;
END ;
AT EXIT =
DO ;
SUBSTR (LVLSTR, LVL, 1) = '<'
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
LVL = LVL - 1 ;
GO ;
END ;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE USERID.DT.COMMANDS (PLICALL)
If, after executing the USE file, you run the following program sequence:

Chapter 4. Debugging your programs in full-screen mode 109

PLICALL: PROC OPTIONS(MAIN);
CALL PLISUB ;

END PLICALL;

PLISUB: PROCEDURE;
CALL PLISUBI ;

END PLISUB;

PLISUB1: PROCEDURE;
CALL PLISUBZ ;

END PLISUBI;

PLISUB2: PROCEDURE;

END PLISUBZ;

the following trace (or similar) is displayed in the Log window:

'>PLICALL '
' >PLISUB '
' >PLISUB1 '
' >PLISUB2 '
' <PLISUB2 '
' <PLISUB1 '
' <PLISUB '
'<PLICALL '

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Related references
['USE_command” on page 353

Finding unexpected storage overwrite errors in PL/I

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider the following
example where the program changes more than the caller expects it to change.

2 FIELD1(2) CHAR(8):

2 FIELD2 CHAR(8);

CTR = 3; /* an invalid index value is set */
FIELDL(CTR) = 'TOO MUCH';

Find the address of FIELD2 with the command:
DESCRIBE ATTRIBUTES FIELD2

Suppose the result is X'00521D42'. To set a breakpoint that watches for a change in
storage values starting at that address for the next 8 bytes, issue the command:

AT CHANGE %STORAGE ('00521D42"'px,8)

110 Debug Tool User’s Guide and Reference

When the program is run, Debug Tool halts if the value in this storage changes.

Related references
AT CHANGE” on page 224

4 ”

Halting before calling an undefined program in PL/I

Calling an undefined program or function is a severe error. To halt just before such
a call is run, set this breakpoint:

AT CALL 0

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debug session without
raising a condition.

Related references
AT CALL” on page 225

4 ”

Chapter 4. Debugging your programs in full-screen mode 111

112 Debug Tool User’s Guide and Reference

Chapter 5. Customizing your full-screen session

You have several options for customizing your session. For example, you can
resize and rearrange windows, close selected windows, change session parameters,
and change session panel colors. This section explains how to customize your
session using these options.

The window acted upon as you customize your session is determined by one of
several factors. If you specify a window name (for example, WINDOW OPEN MONITOR
to open the Monitor window), that window is acted upon. If the command is
cursor-oriented, such as the WINDOW SIZE command, the window containing the
cursor is acted upon. If you do not specify a window name and the cursor is not
in any of the windows, the window acted upon is determined by the setting of
Default window under the Profile Settings panel.

Related tasks

I’FhapfprA Debugeoing your proorams in full-screen maode” on page 53
” — —

I’npfini‘ng PE kevs/l

I'Dpﬁning a symbaol for commands or other cfriﬂgc”l

I’F11qfnmi7ing the lavout of windows on the session panp]” on page 114

” . . . ”

7 17

7 17

Defining PF keys
To define your PF keys, use the SET PFKEY command. For example, to define the
PF8 key as SCROLL DOWN PAGE, enter one of the following commands:
e For PL/I:
SET PF8 'Down'
* For C/C++:
SET PF8 "Down"

SCROLL DOWN PAGE ;

SCROLL DOWN PAGE ;

Use single quotation marks for PL/I, double quotation marks for C/C++. COBOL
allows the use of single or double quotation marks. The string set apart by the
quotation marks (Down in this instance) is the label that appears next to PF8 when
you SET KEYS ON and your PF key definitions are displayed at the bottom of your
screen.

Related references

G ”

F'SET KEYS (full-screen and line mode)” on page 324

4 ”

Defining a symbol for commands or other strings

You can define a symbol to represent a long character string. For example, if you
have a long command that you do not want to retype several times, you can use
the SET EQUATE command to equate the command to a short symbol. Afterwards,
Debug Tool treats the symbol as though it were the command. The following
examples show various settings for using EQUATEs:

© Copyright IBM Corp. 1995, 2001 113

» SET EQUATE info = "abc, def(h+1)"; Sets the symbol info to the string, "abc,
def(h+1)".

* CLEAR EQUATE (info); Disassociates the symbol and the string. This example
clears info.

* CLEAR EQUATE; If you do not specify what symbol to clear, all symbols created by
SET EQUATE are cleared.

If a symbol created by a SET EQUATE command is the same as a keyword or
keyword abbreviation in an HLL, the symbol takes precedence. If the symbol is
already defined, the new definition replaces the old. Operands of certain
commands are for environments other than the standard Debug Tool
environment,and are not scanned for symbol substitution.

Related references

4 ”

g ”

Customizing the layout of windows on the session panel

To change the relative layout of the Source, Monitor, and Log windows, use the
PANEL LAYOUT command (the PANEL keyword is optional).

The PANEL LAYOUT command displays the panel below, showing the six possible
window layouts.

4 N

Window Layout Selection Panel

Command ===>
2]
| yoososomenes e 2 e R . Legend:
| M [|
[E— I R | L - Log
S || ||locococoosoos| 0 ||oocoooooooos M - Monitor
___________ B] S - Source
| L [| | |
LN L Dl ccoommannos C B ' To reassign the
Source, Monitor,
4] (5| a
7] R ————— o B coooooooooas R . and Log windows,

i _ ‘ _ ‘ type over the
current settings

i ‘ ————— ‘ or underscores

| | _ | with L, M, or S.

Enter END/QUIT to return with current settings saved.
CANCEL to return without current settings saved.

Initially, the session panel uses the default window layout Y.

Follow the instructions on the screen, then press the END PF key to save your
changes and return to the main session panel in the new layout.

Note: You can choose only one of the six layouts. Also, only one of each type of
window can be visible at a time on your session panel. For example, you

cannot have two Log windows on a panel.

Related tasks

114 Debug Tool User’s Guide and Reference

7 . - S 7,

I’7nnming a_ window to occupy the whole screen” on page 114

7 . n n . n 77

Related references

l/l) I I I/I 54!
Opening and closing session panel windows

To close a window, either:

* Type the WINDOW CLOSE command, move the cursor to the window you want to
close, then press Enter.

or

e Enter the WINDOW CLOSE LOG, WINDOW CLOSE MONITOR, or WINDOW CLOSE SOURCE
command.

When you close a window, the remaining windows occupy the full area of the
screen.

To open a window, enter the WINDOW OPEN LOG, WINDOW OPEN MONITOR, or WINDOW
OPEN SOURCE command.

The WINDOW CLOSE command can be assigned to a PF key.

If you want to monitor the values of selected variables as they change during your
Debug Tool session, the Monitor window must be open. If it is closed, open it as
described above. The Monitor window occupies the available space according to
your selected window layout.

If at any time during your session you open a window and the contents assigned
to it are not available, the window is empty.

Related references

% ”

Resizing session panel windows

To resize windows, type WINDOW SIZE on the command line, move the cursor to
where you want the window boundary, then press Enter. The WINDOW keyword is
optional.

Rather than using the cursor, you can also explicitly specify the number of rows or
columns you want the window to contain (as appropriate for the window layout).
For example, to change the Source window from 10 rows deep to 12 rows deep,
enter:

WINDOW SIZE 12 SOURCE
WINDOW SIZE can be assigned to a PF key.

To restore window sizes to their default values for the current window layout,
enter the PANEL LAYOUT RESET command.

Related references

'PANEIL command (full-screen made)” an page 302

Chapter 5. Customizing your full-screen session 115

Zooming a window to occupy the whole screen

To toggle a window to full screen (temporarily not displaying the others), move
the cursor into that window and press PF10 (ZOOM). Press PF10 to toggle back.

PF11 (ZOOM LOG) toggles the Log window in the same way, without the cursor
needing to be in the Log window.

Related references

s ”

Customizing session panel colors

You can change the color and highlighting on your session panel to distinguish the
fields on the panel. Consider highlighting such areas as the current line in the
Source window, the prefix area, and the statement identifiers where breakpoints
have been set.

To change the color, intensity, or highlighting of various fields of the session panel
on a color terminal, use the PANEL COLORS command. When you issue this
command, the panel shown below appears.

The usable color attributes are determined by the type of terminal you are using. If
you have a monochrome terminal, you can still use highlighting and intensity
attributes to distinguish fields.

4 N

Color Selection Panel
Command ===>
Color Highlight Intensity

Title : field headers TURQ NONE HIGH

output fields GREEN NONE LOW Valid Color:
Monitor: contents TURQ REVERSE LOW White Yellow Blue

line numbers TURQ REVERSE LOW Turg Green Pink Red
Source : Tisting area WHITE REVERSE LOW

prefix area TURQ REVERSE LOW Valid Intensity:

suffix area YELLOW REVERSE LOW High Low

current Tine RED REVERSE HIGH

breakpoints GREEN NONE LOW Valid Highlight:
Log : program output TURQ NONE HIGH None Reverse

test input YELLOW NONE LOW Underline Blink

test output GREEN NONE HIGH

line numbers BLUE REVERSE HIGH Color and Highlight
Command Tine WHITE NONE HIGH are valid only with
Window headers GREEN REVERSE HIGH color terminals.
Tofeof delimiter BLUE REVERSE HIGH
Search target RED NONE HIGH
Enter END/QUIT to return with current settings saved.

CANCEL to return without current settings saved.
o J

Initially, the session panel areas and fields have the default color and attribute
values shown above.

To change the color and attribute settings for your Debug Tool session, enter the
desired colors or attributes over the existing values of the fields you want to

change. The changes you make are saved when you enter QUIT.

You can also change the colors or intensity of selected areas by issuing the
equivalent SET COLOR command from the command line. Either specify the fields

116 Debug Tool User’s Guide and Reference

explicitly, or use the cursor to indicate what you want to change. Changing a color
or highlight with the equivalent SET command changes the value on the Color
Selection Panel.

Settings remain in effect for the entire debug session.

To preserve any changes you make to the default color fields, specify a file before
you begin your session using the ddname inspsafe and the dsname or fileid of
your choice. Debug Tool recognizes any file with this ddname as the file where it
saves session panel settings for use during subsequent sessions. If you do not
allocate this file before your session, Debug Tool begins the next debug session
with the default values shown in the panel above.

Related tasks

: — E ARG 4

Related references
IPANEL command (full-screen maode)” on page 302

g : ”

Customizing profile settings

The PANEL PROFILE command displays the Profile Settings Panel, which contains
profile settings that affect the way Debug Tool runs. This panel is shown below
with the IBM-supplied initial settings. You can change the settings by either typing
over them with the desired values, or by issuing the appropriate SET command
from the command line or from within a commands file.

4 N\

Profile Settings Panel
Command ===>
Current Setting

Change Test Granularity STATEMENT (A11,B1k,Line,Path,Stmt)
DBCS characters NO (Yes or No)

Default Listing PDS name(MVS only)

Default scroll amount PAGE (Page,Half,Max,Csr,Data,int)
Default window SOURCE (Log,Monitor,Source)
Execute commands YES (Yes or No)

History YES (Yes or No)

History size 100 (nonnegative integer)
Logging YES (Yes or No)

Pace of visual trace 2 (steps per second)

Refresh screen NO (Yes or No)

Rewrite interval 50 (number of output lines)
Session log size 1000 (number of retained Tines)
Show log Tline numbers YES (Yes or No)

Show message ID numbers NO (Yes or No)

Show monitor Tine numbers YES (Yes or No)

Show scroll field YES (Yes or No)

Show source/Tisting suffix YES (Yes or No)

Show warning messages YES (Yes or No)

Test level ALL (A11,Error,None)
Enter END/QUIT to return with current settings saved.

9 CANCEL to return without current settings saved.)

A list of the profile parameters, their descriptions, and the equivalent SET
commands follows.

Change Test Granularity
Specifies the granularity of testing for AT CHANGE. Equivalent to SET CHANGE.

Chapter 5. Customizing your full-screen session 117

DBCS characters
Controls whether the shift-in and shift-out characters are recognized. Equivalent
to SET DBCS.

Default Listing PDS name
If specified, the data set where Debug Tool looks for the source/listing. This
field appears only if you are debugging on MVS. Equivalent to SET DEFAULT
LISTINGS.

Default scroll amount
Specifies the default amount assumed for SCROLL commands where no amount
is specified. Equivalent to SET DEFAULT SCROLL.

Default window
Selects the default window acted upon when WINDOW commands are issued
with the cursor on the command line. Equivalent to SET DEFAULT WINDOW.

Execute commands
Controls whether commands are executed or just checked for syntax errors.
Equivalent to SET EXECUTE.

History
Controls whether a history (an account of each time Debug Tool is entered) is
maintained. Equivalent to SET HISTORY.

History size
Controls the size of the Debug Tool history table. Equivalent to SET HISTORY.

Logging
Controls whether a log file is written. Equivalent to SET LOG.

Pace of visual trace
Sets the maximum pace of animated execution. Equivalent to SET PACE.

Refresh screen
Clears the screen before each display. REFRESH is useful when there is another
application writing to the screen. Equivalent to SET REFRESH.

Rewrite interval
Defines the number of lines of intercepted output that are written by the
application before Debug Tool refreshes the screen. Equivalent to SET REWRITE.

Session log size
The number of session log output lines retained for display. Equivalent to SET
LOG.

Show log line numbers
Turns line numbers on or off in the log window. Equivalent to SET LOG
NUMBERS.

Show message ID numbers
Controls whether ID numbers are shown in Debug Tool messages. Equivalent
to SET MSGID.

Show monitor line numbers

Turns line numbers on or off in the monitor window. Equivalent to SET
MONITOR NUMBERS.

Show scroll field
Controls whether the scroll amount field is shown in the display. Equivalent to
SET SCROLL DISPLAY.

118 Debug Tool User’s Guide and Reference

Show source/listing suffix
Controls whether the frequency suffix column is displayed in the Source
window. Equivalent TO SET SUFFIX.

Show warning messages (C/C++ and PL/I only)
Controls whether warning messages are shown or conditions raised when
commands contain evaluation errors. Equivalent to SET WARNING.

Test level
Selects the classes of exceptions to cause automatic entry into Debug Tool.
Equivalent to SET TEST.

A field indicating scrolling values is shown only if the screen is not large enough
to show all the profile parameters at once. This field is not shown in the example
panel above.

You can change the settings of these profile parameters at any time during your
session. For example, you can increase the delay that occurs between the execution
of each statement when you issue the STEP command by modifying the amount
specified in the Pace of visual trace field at any time during your session.

To modify the profile settings for your session, enter a new value over the old
value in the field you want to change. Equivalent SET linemode commands are
issued when you QUIT from the panel.

Entering the equivalent SET command changes the value on the Profile Settings
panel as well.

To preserve any changes you make to the default profile settings, specify a file
before you begin your session using the ddname inspsafe and the dsname or
fileid of your choice. Debug Tool recognizes any file with this ddname as the file
where it saves session panel settings for use during subsequent sessions. All PANEL
settings are saved, except the setting for the Listing panel and the following
settings:

COUNTRY

FREQUENCY

INTERCEPT

LOG

NATIONAL LANGUAGE

PROGRAMMING LANGUAGE

QUALIFY

SOURCE

TEST

If you do not allocate this file before your session, Debug Tool begins the next
debug session with the values shown in the example panel above.

Settings remain in effect for the entire debug session.

Related tasks

Related references

G ”

Chapter 5. Customizing your full-screen session 119

Saving customized settings in a preferences files

You can place a set of commands into a data set, called a preferences file, and then
indicate that file should be used by providing its name in the preferences_file
suboption of the TEST run-time string. Debug Tool reads these commands at
initialization and sets up the session appropriately.

Below is an example preferences file.

SET TEST ERROR;

SET DEFAULT SCROLL CSR;
SET HISTORY OFF;

SET MSGID ON;

DESCRIBE CUS;

Related references

4 7

120 Debug Tool User’s Guide and Reference

Chapter 6. Debugging across multiple processes and

enclaves

There is a single Debug Tool session across all enclaves in a process. Breakpoints
set in one process are restored when the new process begins in the new session.

In full-screen mode or batch mode, you can debug a non-POSIX program that
spans more than one process, but Debug Tool can only be active in one process.

A commands file continues to execute its series of commands regardless of what
level of enclave is entered.

Related tasks
Mavoking Del TooLuithi Y

Invoking Debug Tool within an enclave

Once an enclave in a process activates Debug Tool, it remains active throughout
subsequent enclaves in the process, regardless of whether the run-time options for
the enclave specify TEST or NOTEST. Debug Tool retains the settings specified from
the TEST run-time option for the enclave that activated it, until you modify them
with SET TEST. If your Debug Tool session includes more than one process, the
settings for TEST are reset according to those specified on the TEST run-time option
of the first enclave that activates Debug Tool in each new process.

If Debug Tool is first activated in a nested enclave of a process, and you STEP or GO
back to the parent enclave, you can debug the parent enclave. However, if the
parent enclave contains COBOL but the nested enclave does not, Debug Tool is not
active for the parent enclave, even upon return from the child enclave.

Upon activation of Debug Tool, the initial commands string, primary commands
file, and the preferences file are run. They run only once, and affect the entire
Debug Tool session. A new primary commands file cannot be invoked for a new
enclave.

Related references

4 1

Viewing Debug Tool windows across multiple enclaves

A particular enclave’s Source or Listing windows and their related windows
(Compact Source, Local Breakpoint, and Local Monitor windows) are hidden when
that enclave invokes another enclave. You cannot open a Source or Listing window
for a compile unit unless that compile unit is in the current enclave.

© Copyright IBM Corp. 1995, 2001 121

Using breakpoints within multiple enclaves

When any process is initialized, a termination breakpoint is automatically defined
for the process. Unless you clear or disable this breakpoint, it will be triggered
when the process finishes execution. During run time of a termination breakpoint,
GO and STEP are valid commands that cause your program to continue running the
next process in the series.

Ending a Debug Tool session within multiple enclaves

You cannot specify NOPROMPT as the third suboption in the TEST run-time option for
the next process on the host. This is to ensure that STATEMENT/LINE, ENTRY, EXIT,
and LABEL breakpoints are properly restored when the next process starts. If you
have not used these breakpoint types, you can specify NOPROMPT.

In a single enclave, QUIT closes Debug Tool.

In a nested enclave, however, QUIT causes Debug Tool to signal a severity 3
condition corresponding to Language Environment message CEE2529S. The system
is attempting to cleanly terminate all enclaves in the process.

Normally, the condition causes the current enclave to terminate. Then, the same
condition will be raised in the parent enclave, which will also terminate. This
continues until all enclaves in the process have been terminated. As a result, you
will see a CEE2529S message for each enclave that is terminated.

For CMS only: Under CMS, an unhandled condition in a nested enclave causes an
Language Environment abend 4094 with reason code 40.

For CICS and MVS only: Depending on Language Environment run-time settings,
the application may be terminated with an ABEND 4038. This is normal and
should be expected.

Using Debug Tool commands within multiple enclaves

Some Debug Tool commands and variables have a specific scope for enclaves and
processes. The table below summarizes the behavior of specific Debug Tool
commands and variables when you are debugging an application that consists of
multiple enclaves.

Debug Tool command Affects current | Affects entire |Comments
enclave only Debug Tool
session

%CAAADDRESS X

AT GLOBAL X

AT TERMINATION X

CLEAR AT X X In addition to clearing breakpoints set in the
current enclave, CLEAR AT can clear global
breakpoints.

CLEAR DECLARE X

CLEAR VARIABLES X

Declarations X Session variables are cleared at the termination of
the process in which they were declared.

122 Debug Tool User’s Guide and Reference

Debug Tool command

Affects current
enclave only

Affects entire
Debug Tool
session

Comments

DISABLE

X

X

In addition to disabling breakpoints set in the
current enclave, DISABLE can disable global
breakpoints.

ENABLE

In addition to enabling breakpoints set in the
current enclave, ENABLE can enable global
breakpoints.

LIST AT

In addition to listing breakpoints set in the current
enclave, LIST AT can list global breakpoints.

LIST CALLS

Applies to all systems except MVS batch and MVS
with TSO. Under MVS batch and MVS with TSO,
LIST CALLS lists the call chain for the current
active thread in the current active enclave.

For programs containing interlanguage

communication (ILC), routines from previous
enclaves are only listed if they are coded in a
language that is active in the current enclave.

Also lists compile units in parent enclaves under
CMS if the enclave was created using view SVC
LINK. If the enclave was created with the
system() function or the CMSCALL macro, compile
units in parent enclaves will not be listed.

Note: Only compile units in the current thread
will be listed for PL/I multitasking applications.

LIST EXPRESSION

You can only list variables in the currently active
thread.

LIST LAST

LIST NAMES CUS

Applies to compile unit names. In the Debug
Frame window, compile units in parent enclaves
are marked as deactivated.

LIST NAMES TEST

Applies to Debug Tool session variable names.

MONITOR GLOBAL

>

Applies to Global monitors.

PROCEDURE

SET COUNTRY!

This setting affects both your application and
Debug Tool.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the parent’s
settings are restored upon return from a child
enclave.

SET EQUATE!

SET INTERCEPT!

For C, intercepted streams or files cannot be part
of any C I/O redirection during the execution of a
nested enclave. For example, if stdout is
intercepted in program A, program A cannot then
redirect stdout to stderr when it does a system()
call to program B. Also, not supported for PL/1.

Chapter 6. Debugging across multiple processes and enclaves 123

Debug Tool command

Affects current Affects entire | Comments
enclave only Debug Tool
session

SET NATIONAL LANGUAGE!

X This setting affects both your application and
Debug Tool.

At the beginning of an enclave, the settings are
those provided by Language Environment or your
operating system. For nested enclaves, the parent’s
settings are restored upon return from a child
enclave.

SET PROGRAMMING LANGUAGE! X Applies only to programming languages in which

compile units known in the current enclave are
written (a language is "known" the first time it is
entered in the application flow).

SET QUALIFY!

X Can only be issued for load modules, compile
units, and blocks that are known in the current
enclave.

SET TEST?

TRIGGER condition?

X Applies to triggered conditions.> Conditions can
be either an Language Environment symbolic
feedback code, or a language-oriented keyword or
code, depending on the current programming
language setting.

TRIGGER AT

X X In addition to triggering breakpoints set in the
current enclave, TRIGGER AT can trigger global
breakpoints.

Notes:

1. SET commands other than those listed in this table affect the entire Debug Tool
session.

2. If no active condition handler exists for the specified condition, the default
condition handler can cause the program to end prematurely.

Related references

4 ”

124 Debug Tool User’s Guide and Reference

Chapter 7. Using Debug Tool in different modes and
environments

The topics below describe how to use Debug Tool in line mode and batch mode,
and how to use Debug Tool to debug ISPF, DB2, IMS, and CICS programs.

Related tasks

Using Debug Tool in line mode

If you only have access to a typewriter-like terminal, you need to use Debug Tool
in line mode.

Note: Line mode is not supported in CICS or in full-screen mode using a VTAM
terminal that is not running under TSO..

To start a line-mode Debug Tool session, make sure the setting of SCREEN is off
by specifying it in either your primary commands file, preferences file, or the
initial command string included in the TEST run-time option. Then follow the steps
outlined in FInvoking your program when starting a debug session” on page 44 to
begin a Debug Tool session in CMS or MVS with TSO. If you are using a terminal
that does not support a full-screen session, Debug Tool defaults to line mode.

Debug Tool issues a message indicating that execution has begun.

After control is given to Debug Tool, it displays the following prompt when it is
ready for a command:

TEST:

or
TEST (qualify:>location):

where qualify:>location is replaced by Debug Tool’s current location in the
program. The prompt used depends on the current PROMPT setting (SHORT or LONG).
Enter your commands at the prompt.

If you need to continue a command, use the command continuation character, the
hyphen (-), and the prompt is replaced by the word PENDING. ... When you are
finished with Debug Tool in line mode, end your session by entering QUIT.

Commands you can use in line mode

You can use most, but not all, Debug Tool commands in line mode. The commands
that you cannot use are those designed to control your full-screen session, such as
PANEL commands, WINDOW commands, and cursor-sensitive commands.

© Copyright IBM Corp. 1995, 2001 125

To help make line-mode debugging more efficient, use the LIST command to list
source statements.

Getting help during a line-mode session
Online command syntax help is available for each Debug Tool command.

You must issue a separate request for syntax help for each command.

Related tasks

I’prfihg online hp]‘p for nohng Tool command suntax” on page 204

7 : ”

% . . B ”

Related references

t/I ISI i” 28 JI

Using Debug Tool in batch mode

Debug Tool can run in batch mode, creating a noninteractive session.

In batch mode, Debug Tool receives its input from the primary commands file, the
USE file, or the command string specified in the TEST run-time option, and writes
its normal output to a log file.

Note: You must ensure that you specify a log data set.
Commands that require user interaction, such as PANEL, are invalid in batch mode.

You might want to run a Debug Tool session in batch mode if:

* You want to restrict the processor resources used. Batch mode generally uses
fewer processor resources than interactive mode.

* You have a program that might tie up your terminal for long periods of time.
With batch mode, you can use your terminal for other work while the batch job
is running.

* You are debugging an application in its native batch environment, such as
MVS/JES or CICS batch.

When Debug Tool is reading commands from a specified data set or file and no
more commands are available in that data set or file, it forces a GO command until
the end of the program is reached.

When debugging in batch mode, use QUIT to end your session.

Related tasks

Using Debug Tool in remote debug mode

Debug Tool can run in remote debug mode, creating an interactive session.

126 Debug Tool User’s Guide and Reference

Debugging multitasking programs

You can run your multitasking programs with Debug Tool. When more than one
task is involved in your program, Debug Tool might be invoked by any or all of
them. Because conflicting use of the terminal or log file, for example, could occur if
Debug Tool is operating on multiple tasks, its use is single-threaded. So, if your
program runs as two tasks (task A and task B) and task A calls Debug Tool, Debug
Tool accepts the request and begins operating on behalf of task A. If, during that
period, task B calls Debug Tool, the request from task B is held until the request
from task A is complete (for example, you issued a STEP or GO command). Debug
Tool is then released and can accept any pending invocation.

Multitasking applications require UNIX System Services R2

MVS/ESA SP™ V5R19 (or later) with UNIX System Services R2 must be installed
and activated in order to run multitasking applications. UNIX System Services R2
provides the POSIX-defined multithreading functions needed to support
multitasking.

Restrictions when debugging multitasking applications

* Debugging applications that create another process because of conflicting use of
the terminal.

* Only variables and symbol information for compile units in the task currently
being debugged are accessible.

* The LIST CALL command only provides a traceback of the compile units in the
current task.

* The source file can reside on an HFS file system, but executables that are stored
on an HFS file system cannot be debugged.

Related references
[LIST CAIIS” on page 287

z/OS Language Environment Programming
Guide

Debugging ISPF applications

You can debug ISPF applications in one of two ways:

* Using a separate terminal by specifying the LU name of a VTAM terminal as
part of the TEST parameter. For example:

TEST(,,,MFI%TCPO00O1L:)

* Using the same emulator session. Consequently, it is necessary to press PA2 after
each ISPF panel display. PA2 refreshes the ISPF application panel and removes
residual Debug Tool output from the emulator session. This is necessary only if
Debug Tool sends output to the emulator session between ISPF application panel
displays.

The rest of this section assumes you are debugging ISPF applications using the

same emulator session.

When debugging ISPF applications or applications using line mode 1/0, issue the
SET REFRESH ON command.

This command is executed and is displayed in the log output area of the
Command/Log window. Note that SET REFRESH ON modifies the Debug Tool

environment. Consequently, the REFRESH setting is saved in the preferences file

Chapter 7. Using Debug Tool in different modes and environments 127

(inspsafe), and it is preserved between Debug Tool invocations. So, you only need
to specify it once; Debug Tool uses the same setting on subsequent invocations.

Related tasks

: - — N — VE|

Related references

v ”

Debugging UNIX System Services (USS) programs

You must debug your UNIX System Services (USS) programs in remote debug
mode, using a remote debugger, or in full-screen mode using a VTAM terminal. If
your program does not span more than one process, you can debug it in
full-screen mode using a VTAM terminal. If your program does span more than
one process, you must debug in remote debug mode using a remote debugger. The
remote debugger is available through several products, including C/C++
Productivity Tools for OS/390.

Debugging MVS POSIX programs
You can debug MVS POSIX programs, including programs:
* that store source in HFS
* that use POSIX multithreading
* that use fork/exec
* that use asynchronous signals that are handled by the Language Environment
condition handler

To debug MVS POSIX programs in full screen mode or batch mode, the program
must run under TSO or MVS batch. To debug any MVS POSIX program that spans
more than one process, you must debug the program in remote debug mode.

Debugging DB2 programs

The topics below describe the steps for using Debug Tool to debug your DB2
programs.

Related tasks

D D for dhusaing” 4

Related references

FConsidorations for dobieane DD 7

Considerations for debugging DB2 programs

There are no special coding techniques for any DB2 programs you might want to
debug using Debug Tool.

To communicate with DB2, you should:
* Delimit SQL statements with EXEC SQL and END-EXEC statements

128 Debug Tool User’s Guide and Reference

¢ Declare SQLCA in working storage

* Declare the host variables

* Code the appropriate SQL statements
Test the DB2 return codes

Related references
DB2 UDB for OS/390 Application Programming
and SQL Guide

Preparing DB2 programs for debugging

Program preparation includes the DB2 precompiler, the compiler, the prelinker, the
linkage editor, and DB2 bind. The program listing (for COBOL and PL/I) or the
program source file (for C/C++) must be retained in a permanent data set for
Debug Tool to read when you debug your program.

Note: For C/C++, it is the input to the compiler (the output from the DB2
precompiler) that needs to be retained.

Precompiling DB2 programs for debugging

Before your program can be compiled, the SQL statements must be prepared using
the DB2 precompiler. No special preparations are needed in the precompile step to
use Debug Tool.

When debugging a program containing SQL, keep the following in mind:

* The SQL preprocessor replaces all the SQL statements in the program with host
language code. The modified source output from the preprocessor contains the
original SQL statements in comment form. For this reason, the source or listing
view displayed during a debugging session can look very different from the
original source.

* The host language code inserted by the SQL preprocessor invokes the SQL
access module for your program. You can halt program execution at each call to
a SQL module and immediately following each call to a SQL module, but the
called modules cannot be debugged.

Related references
DB2 UDB for OS/390 Application Programming
and SQL Guide

Compiling DB2 programs for debugging

You must use the output from the DB2 precompiler as input to the compiler.

Before using Debug Tool, you must prepare your program by compiling at least
one part of it with the TEST compiler option.

The suboptions of the TEST compiler option control the production of such
debugging aids as dictionary tables and program hooks that Debug Tool needs in
order to debug your program. The choices you make when compiling your
program can affect the amount of Debug Tool function available during your
debug session. When a program is under development, you should compile it with
TEST(ALL) to get the full capability of Debug Tool.

Important: Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

Chapter 7. Using Debug Tool in different modes and environments 129

Related tasks

: . e 3
Linking DB2 programs for debugging

To debug DB2 programs, you must link the output from the compiler into your
program load library. You can include the user run-time options module,
CEEUOPT, by doing the following:

1. Find the user run-time options program CEEUOPT in the Language
Environment SCEESAMP library.
2. Change the NOTEST parameter into the desired TEST parameter. For example:

old: NOTEST=(ALL,*,PROMPT,INSPPREF),
new: TEST=(,*,;,*),

For remote debug mode only
TEST=(,,,VACTCPIP&&9.24.104.79:*)

Note: Double ampersand is required.

For full-screen mode using a VTAM terminal only
Test=(,,,MFISTCPO00OL:)
3. Assemble the CEEUOPT program and keep the object code.
4. Link-edit the CEEUOPT object code with any program to invoke Debug Tool.

The modified assembler program, CEEUOPT, is shown below.

*/**/

/ LICENSED MATERIALS - PROPERTY OF IBM */
* /% 5688-198 (C) COPYRIGHT IBM CORP. 1994. ALL RIGHTS RESERVED. =*/
/ SEE COPYRIGHT INSTRUCTIONS. */

*/**/
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
CEEXOPT ABPERC=(NONE),
AIXBLD= (OFF),
ALL31=(OFF),
ANYHEAP= (32K, 16K, ANYWHERE, FREE) ,
BELOWHEAP= (32K, 16K, FREE),
CBLOPTS=(ON),
CBLPSHPOP=(ON),
CBLQDA=(ON) ,
CHECK=(ON) ,
COUNTRY=(US) ,
DEBUG= (ON) ,
ERRCOUNT=(20) ,
HEAP= (64K, 64K, ANYWHERE ,KEEP, 16K, 16K) ,
INTERRUPT= (OFF) ,
LIBSTACK= (32K, 16K, FREE),
MSGFILE=(SYSOUT),
MSGQ=(15),
NATLANG= (ENU) ,
TEST=(,*,;,%),
RPTOPTS=(OFF),
RPTSTG=(OFF),
RTEREUS=(OFF),
SIMVRD=(OFF),
STACK=(512K,512K,BELOW, KEEP) ,
STORAGE= (NONE , NONE , NONE, 8K) ,
TERMTHDACT= (MSG) ,
TRAP=(ON) ,
UPSI=(00000000),

DX 3K 3K 3K 3K X XX XX X 3K X X X X X X XX X X X X X X X X X X X

130 Debug Tool User’s Guide and Reference

VCTRSAVE= (OFF) , X
XUFLOW= (OFF)

DC C'5688-198 (C) COPYRIGHT IBM CORP. 1994'

DC C'LICENSED MATERIAL - PROGRAM PROPERTY OF IBM'

END

The user run-time options program can be assembled with predefined TEST
run-time options to establish defaults for one or more applications. Link-editing an
application with this program results in the default options when that application
is invoked.

If your system programmer has not already done so, include all the proper
libraries in the SYSLIB concatenation. For example, the ISPLOAD library for
ISPLINK calls, and the DB2 DSNLOAD library for the DB2 interface modules
(DSNxxxx).

Related tasks

Fosobine Dehs Tosl T z V)
Binding DB2 programs for debugging

Before you can run your DB2 program, you must run a DB2 bind in order to bind
your program with the relevant DBRM output from the precompiler step. No
special requirements are needed for Debug Tool.

Debugging DB2 programs in batch mode

In order to debug your program with Debug Tool while in batch mode, follow
these steps:

1. Make sure the Debug Tool modules are available, either by STEPLIB or through
the LINKLIB.

2. Provide all the data set definitions in the form of DD statements (example: Log,
Preference, list, and so on).

3. Specify your debug commands in the command input file.
4. Run your program through the TSO batch facility.

Debugging DB2 programs in interactive mode

In this mode, you can decide at debug time what debugging commands you want
issued during the test.

Using TSO commands

1. Ensure that either you or your system programmer has allocated all the
required data sets through a CLIST or REXX EXEC.

2. Issue the DSN command to invoke DB2.

3. Issue the RUN subcommand to execute your program. The TEST run-time option
can be specified as a parameter on the RUN subcommand. An example for a
COBOL program is:

RUN PROG(progname) PLAN(planname) LIB('user.library')
PARMS (' /TEST(,%,3,%)")

In full-screen mode using a VTAM terminal
1. Specify the MFI%LU_name: parameter as part of the TEST option.

2. Follow the other requirements for debugging DB2 programs either under TSO
or in batch mode.

Chapter 7. Using Debug Tool in different modes and environments 131

Using TSO/Call Access Facility (CAF)
1. Link-edit the CAF language interface module DSNALI with your program.

2. Ensure that the data sets required by Debug Tool and your program have been
allocated through a CLIST or REXX procedure.

3. Issue the TSO CALL command CALL 'DSN230.RUNLIB.LOAD(name of your
program)', to start your program. DSN230 is a default high-level qualifier and
DB2 might be installed elsewhere on your system. Include the TEST run-time
option as a parameter in this command.

After your program has been initiated, debug your program by issuing the
required Debug Tool commands.

Note: If your source does not come up in Debug Tool when you launch it, check
that the listing or source file name corresponds to the MVS library name,
and that you have at least read access to that MVS library.

The program listing (for COBOL and PL/I) or program source (for C/C++) that
Debug Tool displays and uses for the debug session is the output from the compile
step and precompile step respectively, and thus includes all the DB2 expansion
code produced by the DB2 precompiler.

Related references

I'PANEL command (full-screen maode)” on page 302
'SET DEFALILT LISTINGS (MVS)” on page 321
'SET SOURCE” on page 338

DB2 UDB for OS5/390 Administration

Guide

Debugging IMS programs

You can debug IMS programs in full-screen mode and remote mode. In full-screen
mode, use the Batch Terminal Simulator (BTS) Full-Screen Image Support (FSS) to
display your MFS screen formats on the TSO terminal. This enables you to enter
data on-screen in the same way as it would be entered in IMS. The rest of this
section covers additional details on debugging IMS programs in full-screen mode.
In remote mode, you can debug IMS programs with or without BTS.

You can use Debug Tool with BTS to debug IMS programs in the following three
ways.

1. To test your IMS program interactively, use Debug Tool while running BTS in
the TSO foreground. The IMS program still executes in batch; however, it
invokes a CLIST that runs interactively. This is the only way to use the
interactive mode of Debug Tool.

2. Run BTS as a batch job. Only the batch mode of Debug Tool can be used with
BTS running as a batch job.

3. Test your program as an IMS batch job (without BTS). Only the batch mode of
Debug Tool can be used without BTS.

FSS is the default option when BTS is started in the TSO foreground, and is only
available when you are running BTS in the TSO foreground. FSS can only be
turned off by specifying TSO=NO on the ./O command. When running in the TSO
foreground, all call traces are displayed on your TSO terminal by default. This can
be turned off by parameters on either the ./0 or ./T commands.

132 Debug Tool User’s Guide and Reference

Related tasks

Related references
IMS/VS Batch Terminal Simulator Program Reference and Operations Manual.

Compiling IMS programs for debugging

Your program must be compiled with the TEST compiler option. Use the default
options to gain maximum debugging facilities.

Important: Ensure that your source (if you are working with C/C++ language) or
listing (if you are working with COBOL or PL/I) is stored in a permanent data set
that is available to Debug Tool.

Linking IMS programs for debugging

When you link your program, you must include a run-time options module in
your program link. They must be coded and assembled in a user-defined run-time
option module. For instructions on how to create the CEEUOPT run-time options

module using the CEEXOPT macro, follow the steps in I'Linking DB? pragrams for

”

Additionally, for COBOL programs using IMS, include the IMS interface module
DFSLIO00 from the IMS RESLIB library.

Related tasks

Minkine DD R =0

Debugging IMS programs in interactive mode
There are two ways to invoke Debug Tool in interactive mode:

* Specifying the MFI%LU_name: parameter of the TEST run-time option. This
invokes Debug Tool in full-screen mode with a VTAM terminal. The VTAM
terminal controls the Debug Tool session.

* Run BTS in the TSO foreground.

In interactive mode, Debug Tool commands can be entered as required.

If you want to debug an IMS batch program using the interactive mode of Debug
Tool, do the following under BTS:

1. Define a dummy transaction code on the ./T command to initiate your program
2. Include a dummy transaction in the BTS input stream

3. Start BTS in the TSO foreground

Note: If your source (C/C++) or listing (COBOL and PL/I) does not come up in
Debug Tool when you launch it, check that the source or listing file name

corresponds to the MVS library name, and that you have at least read access
to that MVS library.

Currently, Debug Tool can only be used to debug one iteration of a transaction at a
time. When the program terminates you must close down Debug Tool before you

can view the output of the transaction.

Chapter 7. Using Debug Tool in different modes and environments 133

Therefore, if you use an input data set, you can only specify data for one
transaction in that data set. The data for the next transaction must be entered from
your TSO terminal.

A new debug session will be started automatically for the next transaction. When
using FSS, you must enter the /* command on your TSO terminal to terminate the
BTS session.

Related references

PANEL command (full-screen maode)” on page 302

7 ”

Debugging IMS programs in batch mode

You can use Debug Tool to debug IMS programs in batch mode. The debug
commands must be predefined and included in one of the Debug Tool command
files, or in a command string. The command string can be specified as a parameter
either in the TEST run-time option, or when CALL CEETEST or __ ctest is used.
Although batch mode consumes fewer resources, you must know beforehand
exactly which debug commands you are going to issue. When you run BTS as a
batch job, the batch mode of Debug Tool is the only mode available for use.

For example, you can allocate a data set, userid.CODE.BTSINPUT with individual
members of test input data for IMS transactions under BTS.

Under IMS, you can invoke Debug Tool in the following ways:

* Use the compiler run-time option (#pragma runopts for C and C++)

* Include CSECT CEEUOPT when linking your program (for C/C++)

» Use the Language Environment callable service CEETEST (__ctest() for C/C++)

Using alternative methods of command input under IMS

You can issue Debug Tool commands in different ways, depending on which mode
you are running under.

In TSO/BTS, commands are interactive.

* TEST run-time options (primary commands file, preferences file, or command
string)

* Line mode

¢ Full-screen mode

Outside BTS, TEST run-time (primary commands file, preferences file, or command
string) are in batch IMS mode.

Under BTS, TEST run-time options (primary commands file, preferences file, or
command string) are in BTS batch mode.

Debugging CICS programs

Before you can debug your programs under CICS, make sure your Systems
Programmer has made the appropriate changes to your CICS region to support
Debug Tool (see your compiler Installation Guide or Program Directory). You also
need to ensure that your program is translated by the CICS translator prior to
compilation. The program source file (for C/C++ and VisualAge PL/I for OS/390)
or the program listing (for COBOL and all other PL/I) must be retained in a
permanent data set for Debug Tool to read when you debug your program.

134 Debug Tool User’s Guide and Reference

Note: For C/C++ and VisualAge PL/I for OS/390, it is the input to the compiler
(that is, the output from the CICS translator) that needs to be retained. To
enhance performance when using Debug Tool, use a large blocksize when
saving these files.

Related tasks

Related references

G 7)

” .« g . 17

Debug modes under CICS

Debug Tool can run in several different modes, providing you with the flexibility
to debug your applications in the way that suits you best. These modes include:

Single terminal mode
This is probably the mode you will use the most. A single 3270 session is

used by both Debug Tool and the application, swapping displays on the
terminal as required.

As you step through your application, the terminal shows Debug Tool
screens, but when an EXEC CICS SEND command is issued, that screen will
be displayed. Debug Tool holds that screen on the terminal for you to
review; simply press Enter to return to a Debug Tool screen. When your
application issues EXEC CICS RECEIVE, the application screen again appears,
so you can fill in the screen details.

Dual terminal mode
This mode can be useful if you are debugging screen I/O applications.

Debug Tool displays its screens on a separate 3270 session than the
terminal displaying the application.

You step through the application using the Debug Tool terminal and,
whenever the application issues an EXEC CICS SEND, the screen is sent to
the application display terminal. Note that, if you do not code IMMEDIATE
on the EXEC CICS SEND command, the buffer of data might be held within
CICS Terminal Control until an optimum opportunity to send it is
encountered--usually the next EXEC CICS SEND or EXEC CICS RECEIVE. When
the application issues an EXEC CICS RECEIVE, the Debug Tool terminal will
wait until you respond to the application terminal.

Interactive batch mode
Use this mode if you are debugging a transaction that does not have a
terminal associated with it. The transaction continues to run without a

CICS principal facility, but Debug Tool screens are displayed on a 3270
session that you name.

Noninteractive batch mode
In this mode, Debug Tool does not have a terminal associated to it at all. It

Chapter 7. Using Debug Tool in different modes and environments 135

receives its commands from a command file and writes its results to a log
file. This mode is useful if you want Debug Tool to debug a program
automatically.

Invoking Debug Tool under CICS

There are several different mechanisms available to invoke Debug Tool under
CICS. Each mechanism has a different advantage and are listed below:

e DTCN, a full-screen CICS transaction that allows you to dynamically modify
any Language Environment TEST/NOTEST run-time option with which your
application was originally link-edited. You can also use DTCN to modify other
Language Environment run-time options that are not specific to Debug Tool.

DTCN is the recommended mechanism for invoking Debug Tool sessions.

* Language Environment CEEUOPT module link-edited into your application,
containing an appropriate TEST option, which tells Language Environment to
invoke Debug Tool every time the application is run.

This mechanism can be useful during initial testing of new code when you will
want to run Debug Tool frequently.

* A compiler directive within the application, such as #pragma runopts(test) (for
C/C++) or CALL CEETEST.

These directives can be useful when you need to run multiple debug sessions for
a piece of code that is deep inside a multiple enclave or multiple CU
application. The application runs without Debug Tool until it encounters the
directive, at which time Debug Tool is invoked at the precise point that you
specify. With CALL CEETEST, you can even make the invocation of Debug Tool
conditional, depending on variables that the application can test.

* CICS CEDF utility where you can invoke a debug session in Dual Terminal
mode alongside CEDF, using a special option on the CEDF command.

This mechanism does not require you to change the application link-edit options
or code, so it can be useful if you need to debug programs that have been
compiled with the TEST option, but do not have invocation mechanisms built
into them.

Related tasks

s . : ”

s . : 1

Related references

’ ”

Using DTCN to invoke Debug Tool for CICS programs

DTCN is a menu-driven tool that allows you to specify when to activate Debug
Tool for CICS programs. You can do this by entering your debugging requirements
into the DTCN panels from your CICS terminal. DTCN then saves these
debugging requirements in its repository. When a CICS program starts, Debug Tool
is invoked if the task environment matches a repository item.

DTCN profiles contain the identifiers (IDs) of CICS resources to debug. These
resource IDs can be Terminal, Transaction, Program, or User.

To debug a CICS program using DTCN to invoke Debug Tool, update the link-edit

step to include member EQADCCXT from the Debug Tool library **.SEQAMOD into the
application load module.

136 Debug Tool User’s Guide and Reference

DTCN not only provides the capability to specify what to debug by specifying
debug resource IDs, DTCN also provides the capability to specify how the debug
session will run, for example, whether a mainframe (MFI) or workstation (VAD)
debug session is desired.

Preparing your application to invoke Debug Tool using DTCN

In order to use the DTCN utility to invoke Debug Tool, link-edit the DTCN
customized Language Environment user exit, CEEBXITA, into the CICS program
you want to debug, using one of the following methods:

1. If your installation is not using this user exit, link-edit member EQADCCXT,
which contains the CSECT CEEBXITA, from library EQAW.V1R2M0.SEQAMOD
into your main program.

2. If your installation is already using CEEBXITA, request the name and location
of the DTCN customized exit from your CICS system administrator and link
that exit with your main program.

Once you have successfully link-edited your program, the application is ready to
run. However, before you begin debugging your application, make sure you use
the DTCN transaction to create a profile that specifies the resource ID combination
that you want to debug. Once the profile has been created, store it in the Debug
Tool repository. You are now ready to run your application.

Creating and storing a DTCN profile

When you want to start a Debug Tool session under CICS, log on to a CICS
terminal and enter the transaction ID DTCN. The DTCN transaction displays the
main DTCN screen, Debug Tool CICS Control - Primary Menu, shown below. Some of
the entry fields are filled in with default values. These values have been set to
activate Debug Tool for tasks running on the terminal displaying the DTCN panel.
The Debug Tool session is started in full-screen mode, so debug screens are sent to
the terminal that displays the DTCN panel.

Most users don’t need to alter the default settings; but, if you want to change the
settings on this panel, simply enter the new values.

DTCN also reads the Language Environment NOTEST option supplied to the CICS
region in CEECOPT or CEEROPT. You can supply suboptions, such as the name of
a preference file, with the NOTEST option to supply additional defaults to DTCN.

DTCN has a secondary options panel, Debug Tool CICS Control - Menu 2, also
shown below. This panel controls Debug Tool behavior when it is active. If you
want to change the default values set on this panel, switch to the panel by pressing
PF9, enter the your new values, then press PF3 to return to the primary panel.

As you enter options into the DTCN panels, DTCN displays the TEST string that is
being generated in the display field Generated String. When you are satisfied with
the settings shown on the panel, press PF4 to save the profile in the repository.

DTCN stores one profile for each DTCN terminal. Each profile is retained in the
repository until one of the following occurs:

* it is explicitly deleted by the terminal that entered it,

* DTCN detects that the terminal which created the profile has been disconnected,
or

* the CICS region is terminated.

Chapter 7. Using Debug Tool in different modes and environments 137

When a DTCN profile is active for a full-screen mode debugging session, Debug
Tool preserves all breakpoint information for that session in the profile. When the
DTCN profile is deleted, the breakpoint information is deleted. After you save the
profile in the repository, DTCN shows the saved TEST string in the display field
Repository String. When you are satisfied with the saved profile, press PF3 to exit
DTCN.

Now, any tasks that run in the CICS system and match the resource IDs that you
specified on the DTCN panel will invoke Debug Tool.

4 ™\
DTCN Debug Tool CICS Control - Primary Menu SO7CICPD
Select the combination of resources to debug (see Help for more information)
Terminal Id ==> 0006
Transaction Id ==>
Program Id ==>
User Id ==>
Select type and ID of debug display device
Session Type ==> MFI MFI, TCP, APPC, LU2
PWS Type ==> VAD, CODE
Port/Sessionld ==> TCP Port or APPC Session ID
Display Id ==> 0006
Generated String: TEST(ALL,,PROMPT,MFI%0006:%*)
Repository String: No string currently saved in repository
\?F1=HELP 2=GHELP 3=EXIT 4=SAVE 6=DELETE 9=0PTIONS
J

The definitions for the main DTCN screen are:

Terminal ID
Specifies a CICS terminal to debug. By default, this is set to the terminal
that is currently running DTCN.

Transaction ID
Specifies a CICS transaction to debug. If you specify a transaction ID
without any other resource, Debug Tool is invoked for every execution of
that transaction (including executions by other users).

Program ID
Specifies a CICS program to debug. If you specify a program ID without
any other resource, Debug Tool is invoked for every execution of that
program (including executions by other users).

User ID
Specifies a CICS userid to debug, that is, Debug Tool is invoked for all
programs executed by that user.

Session Type
Select one of the following:

MFI Indicates that Debug Tool will initialize on a 3270 type terminal.

TCP Indicates that you will interface with Debug Tool from your
workstation using the TCP/IP protocol.

APPC Indicates that you will interface with Debug Tool from your
workstation using the APPC protocol.

LU2 Indicates that you will use an LU2 cooperative debug session on

138 Debug Tool User’s Guide and Reference

the workstation with OS/2®. LU2 applies only if you have the
Workstation feature of CODE/370 installed on your OS/2
workstation.

PWS Type
Identifies which one of the following tools you plan to use when
debugging your application program:

CODE You plan to use CODE/370 to debug your application

VAD You plan to use VisualAge Remote Debugger to debug your
application

Port/Session Id
Allows you to have multiple workstation sessions so you can debug two or
more applications at the same time.

Display 1D
Identifies target destination for Debug Tool information. Depending on the
Session Type that you've selected, the Display ID is one of the following:

* If you selected MFI, the Display ID is a CICS 3270 terminal ID. This is set
by default to the terminal that is currently running DTCN, but you can
change this to direct MFI screens to a different CICS terminal.

* If you selected TCP, enter either the [P address or Host Name of the
workstation that will display the debug screens. That workstation needs
to have appropriate software installed and running for the debug session
to begin.

* If you selected APPC, enter the LU name of the workstation that will
display the debug screens. That workstation needs to have appropriate
software installed and running for the debug session to begin.

The PF keys used by the Debug Tool CICS Control - Primary Menu screen are:

PF1 Help
Context sensitive help. Provides detailed help for each entry field. Place
the cursor on any field and press PF1 for help with that field.

PF2 GHelp
General help for DTCN.

PF3 Exit
Exits DTCN.

PF4 Save
Saves the profile displayed on the screen into the repository.

PF6 Delete
Deletes this DTCN terminal’s profile from the repository.

PF9 Options
Displays the secondary DTCN entry panel.

Chapter 7. Using Debug Tool in different modes and environments 139

~
4 DTCN Debug Tool CICS Control - Menu 2 SO7CICPD

Select Debug Tool options

Test Option ==> TEST Test/Notest

Test Level ==> ALL A11/Error/None
Commands File ==>

Prompt Level ==> PROMPT Prompt/Noprompt/*/;

Preference File ==> *
Any other valid Language Environment Options

==>

PF1=HELP 2=GHELP 3=RETURN

The definitions for the DTCN Menu 2 panel are:

TEST Option
TEST/NOTEST specifies the conditions under which Debug Tool assumes
control during the initialization of your application.

Test Level
ALL/ERROR/NONE specifies what conditions need to be met for Debug Tool
to gain control.

Command File
A valid fully qualified data set name specifying the primary commands file
for this run.

Note: Enclosing the name of the data set in single or double quotes is not
allowed.

Prompt Level
Specifies whether Debug Tool is invoked at Language Environment
initialization.

Preference File

A valid fully qualified data set name specifying the preference file to be
used.

Note: Enclosing the name of the data set in single or double quotes is not
allowed.

Any other valid Language Environment Options
You can dynamically change any other Language Environment options
defined in your CICS installation as overrideable except the STACK option.
For additional information about Language Environment options, see the
various Language Environment publications or contact your CICS system
programmer.

The PF keys used by the Debug Tool CICS Control - Menu 2 screen are:

PF1 Help
Context sensitive help. Provides detailed help for each entry field. Place
the cursor on any field and press PF1 for help with that field.

140 Debug Tool User’s Guide and Reference

PF2 GHelp
General help for DTCN.

PF3 Return
Returns you to the main DTCN panel.

DTCN data entry verification
DTCN performs data verification on the data you entered in the DTCN panel.

When DTCN discovers an error, it places the cursor in the erroneous field and
displays a message. You can use context sensitive help (PF1) to find what is wrong
with the input.

Once you have entered your debug requirements and saved them, you can activate
Debug Tool. Debug Tool will run according to the options you specified.

After you have finished debugging your program, use DTCN again to turn off
your debug profile by pressing PF3 to exit. You do not need to remove EQADCCXT
from the load module; in fact, it’s a good idea to leave it there for the next time
you want to invoke Debug Tool.

Using DTCN repository profile items at runtime

When programs are invoked, Language Environment runs the EQADCCXT user exit
that you used to link-edit into the program. EQADCCXT uses a highly efficient
look-up mechanism to decide if the task’s Terminal, Transaction, Program and User
IDs match a repository profile item. EQADCCXT selects the best matching profile, that
is, the one with the greatest number of resource IDs matching the active task. If
there is a conflict between two profile items, that is, two items have an equal
number of matching resource IDs, the oldest item is selected.

For example, consider the following two profile items:
1. First, Item 1 is saved, specifying resource ID program PROG1
2. Later, Item 2 is saved, specifying resource ID userid USER1

When PROGT1 is run by USERI, profile item 1 is used.

If this situation occurs, an error message is sent to the system console, suggesting
that DTCN users should specify additional resource qualification. So, in the above
case, each profile item should be set up with both User ID and Program ID.

Sharing DTCN repository profile items among CICS systems

The DTCN repository is a CICS Temporary Storage Queue, named EQADTCN?2. If
you want to share the repository among CICS systems, define the queue as
REMOTE in your CICS Temporary Storage Tables (TST). This stores a profile item
in one CICS system, and makes it readable to another system.

Using CEEUOPT to invoke Debug Tool under CICS

To request that Language Environment invoke Debug Tool every time the
application is run, assemble a CEEUOPT module with an appropriate TEST
run-time option. It is a good idea to link-edit the CEEUOPT module into a library
and just add an INCLUDE LibraryDDname (CEEUOPT-MemberName) statement to the
link-edit options when you link your application. Once the application program
has been placed in the load library (and NEWCOPY'd if required), whenever it is
run Debug Tool will be invoked.

Chapter 7. Using Debug Tool in different modes and environments 141

Debug Tool runs in the mode defined in the TEST run-time option you supplied,
normally Single Terminal mode, although you could provide a primary commands
file and a log file and not use a terminal at all.

To invoke Debug Tool, simply run the application. Don’t forget to remove the
CEEUOPT containing your TEST run-time option when you have finished
debugging your program.

Related tasks

Using compiler directives to invoke Debug Tool under CICS

When compile-directives are processed by your program, Debug Tool will be
invoked in single terminal mode (this method supports only single terminal mode).

Related tasks

’ 17

Using CEDF to invoke Debug Tool under CICS

No specific preparation is required to use CEDF to invoke Debug Tool other than
compiling the application with the appropriate compiler options and saving the
source/listing.

CEDF has an ",1"” option that invokes Debug Tool. This option invokes both EDF
and Debug Tool in Dual Terminal mode. In Dual Terminal mode, EDF and Debug
Tool screens are displayed on the terminal where you issue the CEDF command;
application screens are displayed on the application terminal.

Note: You need to know the id of each terminal. One way to get this information
is by using the CEOT transaction. The output will include Ter(xxxx), where
xxxx is the terminal id.

To invoke Debug Tool, enter the CEDF transaction as follows:
CEDF xxxx,0N,I

where xxxx is the terminal on which you want to start the transaction to be
debugged. This terminal is where the application is started. It performs 3270
application I/O, while a Debug Tool session is invoked at the terminal where
CEDF is invoked.

CICS will return a message verifying the terminal id of the second terminal. Then,
on the xxxx terminal, enter:

TRAN
where TRAN is the id for the transaction being debugged.

Once the command is entered, Debug Tool will be invoked for all Language
Environment-enabled programs that are running on the terminal where Debug
Tool is started. Debug Tool will continue to be active on this terminal, even if you
turn off EDF.

For example, to begin a Debug Tool session using terminal T304 as the debugging
terminal and T305 as the terminal where you want to run your application, invoke
the CEDF transaction as follows on T304:

142 Debug Tool User’s Guide and Reference

CEDF T305,0N,I

Then, on terminal T305, enter the name of the transaction you are debugging:
TRAN

When you run your application on T305, Debug Tool is invoked on T304. Terminal
T305 displays only application output, that is, a specific CICS command to write to
the screen.

Restrictions when debugging under CICS

The following restrictions apply when debugging programs with the Debug Tool in
a CICS environment.

The _ ctest() function with CICS does nothing.

The CDT# transaction is a special Debug Tool service transaction, and is not
intended for activation by direct terminal input. If CDT# is invoked via terminal
entry, it will return to the caller (no function is performed).

Applications that issue EXEC CICS POST cannot be debugged in Dual Terminal
mode.

CICS does not support Debug Tool line mode.

Data definition (ddname) is not supported. All files, including the log file, USE
files, and preferences file, must be referred to by their full data set names.

The TSO, SET INTERCEPT, and SYSTEM commands cannot be used.
CICS does not support an attention interrupt from the keyboard.

The log file is not automatically started. You need to use the SET LOG ON
command.

Ensure that you allocate a log file big enough to hold all the log output from a
debug session, because the log file is truncated after it becomes full. (A warning
message is not issued before the log is truncated.)

Save files are not used under CICS.

Chapter 7. Using Debug Tool in different modes and environments 143

144 Debug Tool User’s Guide and Reference

Chapter 8. Debug Tool support of programming languages

To support multiple high-level programming languages, Debug Tool adapts its
commands to the HLLs, provides interpretive subsets of commands from the various
HLLs, and maps common attributes of data types across the languages. It evaluates
HLL expressions and handles constants and variables.

The topics below describe how Debug Tool makes it possible for you to debug
programs consisting of different languages, structures, conventions, variables, and
methods of evaluating expressions.

A general rule to remember is that Debug Tool tries to let the language itself guide
how Debug Tool works with it.

Related tasks

ualifying variables and changing the point of view” on page 147

”

Debug Tool evaluation of HLL expressions

When you enter an expression, Debug Tool records the programming language in
effect at that time. When the expression is run, Debug Tool passes it to the
language run time in effect when you entered the expression. This run time might
be different from the one in effect when the expression is run.

When you enter an expression that will not be run immediately, you should fully
qualify all program variables. Qualifying the variables assures that proper context
information (such as load module and block) is passed to the language run time
when the expression is run. Otherwise, the context might not be the one you
intended when you set the breakpoint, and the language run time might not
evaluate the expression.

Related references

G . : ”

G . : 7

G . . ”

© Copyright IBM Corp. 1995, 2001 145

Debug Tool interpretation of HLL variables and constants

Debug Tool supports the use of HLL variables and constants, both as a part of
evaluating portions of your test program and in declaring and using session
variables.

Three general types of variables supported by Debug Tool are:
e Program variables defined by the HLL compiler’s symbol table
* Debug Tool variables denoted by the percent (%) sign

* Session variables declared for a given Debug Tool session and existing only for
the session

HLL variables

Some variable references require language-specific evaluation, such as pointer
referencing or subscript evaluation. Once again, the Debug Tool interprets each
case in the manner of the HLL in question. Below is a list of some of the areas
where Debug Tool accepts a different form of reference depending on the current
programming language:
* Structure qualification

C/C++ and PL/I: dot (.) qualification, high-level to low-level

COBOL: IN or OF keyword, low-level to high-level

* Subscripting
C/C++: name [subscriptl] [subscript2]...
COBOL and PL/I: name(subscriptl,subscript2,...)

HLL constants
You can use both string constants and numeric constants. Debug Tool accepts both
types of constants in C/C++, COBOL, and PL/L

Related references

a : 1

[‘Declarations (C/C++)” on page 257

s : ”

['DECI.ARE command (PI./I)” on page 261

Debug Tool commands that resemble HLL commands

To allow you to use familiar commands while in a debug session, Debug Tool
provides an interpretive subset of commands for each language. This consists of
commands that have the same syntax, whether used with Debug Tool or when
writing application programs. You use these commands in Debug Tool as though
you were coding in the original language.

Use the SET PROGRAMMING LANGUAGE command to set the current programming
language to the desired language. The current programming language determines
how commands are parsed. If you SET PROGRAMMING LANGUAGE to AUTOMATIC, every
time the current qualification changes to a module in a different language, the
current programming language is automatically updated.

The following types of Debug Tool commands have the same syntax (or a subset of

it) as the corresponding statements (if defined) in each supported programming
language:

146 Debug Tool User’s Guide and Reference

Assignment
These commands allow you to assign a value to a variable or reference.

Conditional
These commands evaluate an expression and control the flow of execution
of Debug Tool commands according to the resulting value.

Declarations
These commands allow you to declare session variables.

Looping
These commands allow you to program an iterative or logical loop as a
Debug Tool command.

Multiway
These commands allow you to program multiway logic in the Debug Tool
command language.

In addition, Debug Tool supports special kinds of commands for some languages.

Related references

’ ”

G ”

g ”

Qualifying variables and changing the point of view

Each HLL defines a concept of name scoping to allow you, within a single compile
unit, to know what data is referenced when a name is used (for example, if you
use the same variable name in two different procedures). Similarly, Debug Tool
defines the concepts of qualifiers and point of view for the run-time environment
to allow you to reference all variables in a program, no matter how many
subroutines it contains. The assignment x = 5 does not appear difficult for Debug
Tool to process. However, if you declare x in more than one subroutine, the
situation is no longer obvious. If x is not in the currently executing compile unit,
you need a way to tell Debug Tool how to determine the proper x.

You also need a way to change the Debug Tool’s point of view to allow it to
reference variables it cannot currently see (that is, variables that are not within the
scope of the currently executing block or compile unit, depending upon the HLL's
concept of name scoping).

Related tasks

‘Qualifyine variables”]

Ta m PN 2
Qualifying variables

Qualification is a method you can use to specify to what procedure or load module
a particular variable belongs. You do this by prefacing the variable with the block,
compile unit, and load module (or as many of these labels as are necessary),
separating each label with a colon (or double colon following the load module
specification) and a greater-than sign (:>), as follows:

load _name::>cu_name:>block_name:>object

This procedure, known as explicit qualification, lets Debug Tool know precisely
where the variable is.

Chapter 8. Debug Tool support of programming languages 147

If required, load_name is the load module name. It is required only when the
program consists of multiple load modules and when you want to change the
qualification to other than the current load module. load_name can be the Debug
Tool variable %LOAD.

If required, cu_name is the compile unit name. The cu_name is required only when
you want to change the qualification to other than the currently qualified compile
unit. cu_name can be the Debug Tool variable %CU.

If required, block_name is the program block name. The block_name is required only
when you want to change the qualification to other than the currently qualified
block. block_name can be the Debug Tool variable %BLOCK.

For PL/I only:
In PL/I, the primary entry name of the external procedure is the same as the
compile unit name. When qualifying to the external procedure, the procedure
name of the top procedure in a compile unit fully qualifies the block. Specifying
both the compile unit and block name results in an error. For example:
LM: :>PROC1:>variable

is valid.
LM: :>PROC1:>PROC1:>variable

is not valid.

For C++ only:

You must specify the full function qualification including formal parameters
where they exist. For example:

1. For function (or block) ICCD2263() declared as void ICCD2263(void) within

CU "USERID.SOURCE.LISTING(ICCD226)" the correct block specification
for C++ would include the parenthesis () as follows:

qualify block %load::>"USERID.SOURCE.LISTING(ICCD226)":>I1CCD2263()

2. For CU ICCDO0320() declared as int ICCD0320(signed long int SVAR1, signed
long int SVAR2) the correct qualification for AT ENTRY is:
AT ENTRY "USERID.SOURCE.LISTING(ICCDO320)":>I1CCDO320(1ong,long)

Use the Debug Tool command DESCRIBE CUS to give you the correct BLOCK or
CU qualification needed.

Use the LIST NAMES command to show all polymorphic functions of a given
name. For the example above, LIST NAMES "ICCD0320*" would list all
polymorphic functions called 1CCD0320.

You do not have to preface variables in the currently executing compile unit. These
are already known to Debug Tool; in other words, they are implicitly qualified.

In order for attempts at qualifying a variable to work, each block must have a
name. Blocks that have not received a name are named by Debug Tool, using the
form: %BLOCKnnn, where nnn is a number that relates to the position of the block in
the program. To find out the Debug Tool’s name for the current block, use the
DESCRIBE PROGRAMS command.

Related references

[/Q] E]] 1] .] . E . . ::: 17]Zj

148 Debug Tool User’s Guide and Reference

I’()ualifving variables and changing the paint of view in COBOI.” on page 191
’ ”

[‘'LIST NAMES” on page 291

Changing the point of view

The point of view is usually the currently executing block. You can get to
inaccessible data by changing the point of view using the SET QUALIFY command
with the following operand.

load_name: :>cu_name :>block_name

Each time you update any of the three Debug Tool variables %CU, %PROGRAM, or
%BLOCK, all four variables (%CU, %PROGRAM, $LOAD, and %BLOCK) are automatically
updated to reflect the new point of view. If you change %LOAD using SET QUALIFY
LOAD, only %LOAD is updated to the new point of view. The other three Debug Tool
variables remain unchanged. For example, suppose your program is currently
suspended at Toadx: :>cux:>blockx. Also, the load module Toadz, containing the
compile unit cuz and the block blockz, is known to Debug Tool. The settings
currently in effect are:

%LOAD = loadx

%CU = cux

%PROGRAM = cux

%BLOCK = blockx

If you enter any of the following commands:
SET QUALIFY BLOCK bTockz;

SET QUALIFY BLOCK cuz:>blockz;

SET QUALIFY BLOCK Toadz::>cuz:>blockz;

the following settings are in effect:
%LOAD = Tloadz
%CU = cuz
%PROGRAM = cuz
%BLOCK = blockz

If you are debugging a program that has multiple enclaves, SET QUALIFY can be
used to identify references and statement numbers in any enclave by resetting the
point of view to a new block, compile unit, or load module.

Related tasks

7 . : ”

7 . n . n 173

” 7

Related references
I'SET QUALIEY” on pggpqqd

Handling conditions and exceptions in Debug Tool

To suspend program execution just before your application would terminate
abnormally, start your application with the following options:

TRAP (ON)
TEST(ALL, *,NOPROMPT , *)

Chapter 8. Debug Tool support of programming languages 149

When a condition is signaled in your application, Debug Tool prompts you and
you can then dynamically code around the problem. For example, you can initialize
a pointer, allocate memory, or change the course of the program with the GOTO
command. You can also indicate to Language Environment’s condition handler,
that you have handled the condition by issuing a GO BYPASS command. Be aware
that some of the code that follows the instruction that raised the condition might
rely on data that was not properly stored or handled.

When debugging with Debug Tool, you can (depending on your host system)
either instruct the debugger to handle program exceptions and conditions, or pass
them on to your own exception handler. Programs also have access to Language
Environment services to deal with program exceptions and conditions.

Related tasks

T o o Do Toal

” 7

Handling conditions in Debug Tool

You can use either or both of the two methods during a debugging session to
ensure that Debug Tool gains control at the occurrence of HLL conditions.

If you specify TEST(ALL) as a run-time option when you begin your debug session,
Debug Tool gains control at the occurrence of most conditions.

Note: Debug Tool recognizes all Language Environment conditions that are
detected by the Language Environment error handling facility.

You can also direct Debug Tool to respond to the occurrence of conditions by using
the AT OCCURRENCE command to define breakpoints. These breakpoints halt
processing of your program when a condition is raised, after which Debug Tool is
given control. It then processes the commands you specified when you defined the
breakpoints.

There are several ways a condition can occur, and several ways it can be handled.

When a condition can occur
A condition can occur during your Debug Tool session when:

* A C++ application throws an object.

* A C/C++ application program executes a raise statement.
* A PL/I application program executes a SIGNAL statement.
¢ The Debug Tool command TRIGGER is executed.

* Program execution causes a condition to exist. In this case, conditions are not
raised at consistency points (the operations causing them can consist of several
machine instructions, and consistency points usually occur at the beginnings and
ends of statements).

* The setting of WARNING is OFF (for C/C++ and PL/I).

When a condition occurs

When an HLL condition occurs and you have defined a breakpoint with associated
actions, those actions are first performed. What happens next depends on how the
actions end.

* Your program’s execution can be terminated with a QUIT command.

150 Debug Tool User’s Guide and Reference

* Control of your program’s execution can be returned to the HLL exception
handler, so that processing proceeds as if Debug Tool had never been invoked
(even if you have perhaps used it to change some variable values, or taken some
other action).

* Control of your program’s execution can be returned to the program itself,
bypassing any further processing of this exception either by the user program or
the environment.

* PL/I allows GO TO out of block;, so execution control can be passed to some
other point in the program.

* If no circumstances exist explicitly directing the assignment of control, your
primary commands file or terminal is queried for another command.

If, after the execution of any defined breakpoint, control returns to your program
with a GO, the condition is raised again in the program (if possible and still
applicable). If you use a GOTO to bypass the failing statement, you also bypass your
program’s error handling facilities.

Related references
‘AT OCCUIRRENCE” on page 237

4 ”

4 ”

4 : : ”

[SET WARNING (C/C++ and PL/I)” on page 342

t,I E . 1.. 1] :,: .] 17]S'

” gt g . 17

z/OS Language Environment
Programming Guide
COROIL for OS/390 & VM language RPfPrPnrA

Handling exceptions within expressions (C/C++ and PL/I only)

When an exception such as division by zero is detected in a Debug Tool
expression, you can use the Debug Tool command SET WARNING to control Debug
Tool and program response. During an interactive Debug